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Abstract. This paper provides an introduction to an information the-
oretic formulation of the embedding problem for Riemannian manifolds
developed by the author. The main new construct is a stochastic relax-
ation scheme for embedding problems and hard constraint systems. This
scheme is introduced with examples and context.
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1 The embedding problem for Riemannian manifolds

The purpose of this paper is to outline an information theoretic formulation of
the embedding problem for Riemannian manifolds developed by the author. The
main new contribution is a stochastic relaxation scheme that unifies many hard
constraint problems. This paper is an informal introduction to this method.

The modern definition of a manifold was formalized by Whitney in 1936 [11].
He defined manifolds as abstract spaces covered by locally compatible charts,
thus providing a rigorous description of the intuitive idea that a manifold is a
topological space that ‘locally looks like Euclidean space’. Whitney’s definition
should be contrasted with the 19th century idea of manifolds as hypersurfaces
in Euclidean space. The embedding problem for a differentiable manifold checks
the compatibility of these notions. Given an (abstractly defined) n-dimensional
differentiable manifoldMn, an embedding ofMn is a smooth map u :Mn → Rq
that is one-to-one and whose derivative Du(x) has full rank at each x ∈Mn.

An embedded manifold carries a pullback metric, denoted u#e, where e de-
notes the identity metric on Rq. Assume that Mn is a Riemannian manifold
equipped with a metric g. We say that an embedding u :Mn → Rq is isometric
if u]e = g. In any local chart U , this is the nonlinear PDE

q∑
α=1

∂uα

∂xi
∂uα

∂xj
(x) = gij(x), x ∈ U, 1 ≤ i, j ≤ n. (1)

Let us contrast equation (1) with isometric embedding of finite spaces.
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(a) Embedding metric spaces: We are given a finite set K with a distance func-
tion ρ(x, y) and we seek a map u : K → Rq such that

|u(x)− u(y)| = ρ(x, y), x, y ∈ K. (2)

(b) Graph embedding: We are given a graph G = (V,E) with a distance function
ρ : E → R+ that associates a length to each edge. The graph embedding
problem is to find u : V → Rq such that

|u(e+)− u(e−)| = ρ(e), e ∈ E, (3)

where e± denote the vertices at the two ends of an edge e ∈ E.

In each of these problems an abstractly defined metric space is being mapped
into the reference space Rq. The LHS is the length measured in Rq. The RHS is
the intrinsic distance on the given space. In equation (1), the equality of length
is expressed infinitesimally, which is why we obtain a PDE.

Modern understanding of (1) begins with the pioneering work of Nash in the
1950s [8, 9]. His work led to the following results: for q = n+ 1 and g ∈ C0 there
are infinitely many C1 isometric embeddings (assuming no topological obstruc-
tions); when q ≥ n+ n(n+ 1)/2 + 5 and g ∈ C∞ there are infinitely many C∞

isometric embeddings. These results are improvements of Nash’s original work,
but follow his ideas closely. Nash’s work has been systematized in two distinct
ways: as Gromov’s h-principle in geometry and as hard implicit function theo-
rems in analysis. However, several fundamental questions remain unresolved [5].

Our interest in the area was stimulated by an unexpected link with turbu-
lence [2]. A long-standing goal in turbulence is to construct Gibbs measures
for the Euler equations of ideal incompressible fluids whose statistical behavior
is in accordance with experiments. This connection suggests the application of
statistical mechanics to embeddings. The construction of Gibbs measures for
embeddings allows us to formalize the question ‘What does a typical isometric
embedding look like?’. This is in contrast with the questions ‘Does an isometric
embedding exist? If so, how smooth is it?’ resolved by Nash and Gromov.

The Gibbs measures have a natural information theoretic construction. We
model embedding as a stochastic process in which an observer in Rq makes a
copy of a given Riemannian geometry by measurement of distances at finer and
finer scales. This is a Bayesian interpretation suited to the interplay between
geometry and information theory at this conference. However, prior to the au-
thor’s work there was no attempt to study (1) with probabilistic methods or to
treat equations (1)–(3) through a common framework. Further, the devil lies in
the details, since any new attempt must be consistent with past work and must
be nailed down with complete rigor. This paper discusses only the evolution
equations. Analysis of these equations will be reported in forthcoming work.

2 The role of information theory

The embedding theorems are interesting both for their conceptual and techni-
cal depth. They arise in apparently unrelated fields and they have been studied
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by disparate techniques. Within mathematics, Nash’s three papers on manifolds
appear unrelated on first sight. Mathematical techniques for graph embedding,
mainly stimulated by computer science, appear to have little relation to the em-
bedding problem for manifolds [7]. The embedding problem also appears under
the guise of the nonlinear sigma models in quantum field theory. In his break-
through work, Friedan showed that the renormalization of the nonlinear sigma
model is the Ricci flow [3, 4]. However, Friedan’s technique, renormalization by
expansion in dimension, is notoriously hard to pin down mathematically.

Such a diversity of methods and applications is bewildering until one rec-
ognizes that it offers a route to a radical conceptual simplification. In order to
obtain a unified treatment, it is necessary to insist on a minimalistic formulation
of embedding that does not rely in a fundamental manner on the structure of
the space being embedded (e.g. whether it is a graph, manifold, or metric space).
Such a formulation must be consistent with both Nash and Friedan’s approach
to the problem, as well as applications in computer science. This line of reason-
ing suggests that the appropriate foundation must be information theory – it is
the only common thread in the above applications.

The underlying perspective is as follows. We view embedding as a form of in-
formation transfer between a source and an observer. The process of information
transfer is complete when all measurements of distances by the observer agree
with those at the source. This viewpoint shifts the emphasis from the structure
of the space to an investigation of the process by which length is measured.
In the Bayesian interpretation, the world is random and both the source and
the observer are stochastic processes with well-defined parameters (we construct
these processes on a Gaussian space to be concrete). Thus, embedding is simply
‘replication’ and the process of replication is complete when all measurements
by the observer and the source agree on a common set of questions (here it is
the question: ‘what is the distance between points x and y ?’). From this stand-
point, there is no fundamental obstruction to embedding, except that implied
by Shannon’s channel coding theorem.

The challenge then is to implement this viewpoint with mathematical rigor.
In order to explain our method, we must briefly review Nash’s techniques. The
main idea in [8] is that when q = n + 2 one can relax the PDE u]g = e to a
space of subsolutions and then introduce highly structured corrugations in the
normal directions at increasingly fine scales. This iteration ‘bumps up’ smooth
subsolutions towards a solution. In [9], Nash introduces a geometric flow, which
evolves an immersion and a smoothing operator simultaneously. Unlike [8], which
is brief and intuitive, the paper [9] is lengthy and technical, introducing what
is now known as the Nash-Moser technique. A central insight in our approach
is that one can unify these methods by introducing a reproducing kernel that
evolves stochastically with the subsolution.

A rigid adherence to an information theoretic approach to embedding con-
tradicts Nash’s results in the following sense. If all that matters is agreement in
the measurement of distances between different copies of a manifold, the histor-
ical emphasis in mathematics on the role of codimension and regularity cannot
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be a fundamental feature of the problem. All embeddings are just copies of the
same object, an abstractly defined manifold. Typical embeddings of the mani-
fold (Mn, g) into Rp and Rq for p, q ≥ n should have different regularity: a C∞

metric g may yield a crumpled embedding in Rp and a smooth embedding in Rq
for p < q, but since it is only the measurement of length that matters, there is
no preferred embedding. Thus, existence and regularity of solutions to (1) must
be treated separately. This mathematical distinction acquires salience from its
physical meaning. While Wilson renormalization is often seen as a technique for
integrating out frequencies scale-by-scale, it reflects the role of gauge invariance
in the construction of a physical theory. The only true measurements are those
that are independent of the observer. Therefore, in order to ensure consistency
between mathematical and physical approaches to the isometric embedding prob-
lem it is necessary to develop a unified theory of embeddings that does not rely
substantially on codimension. Nash’s methods do not meet this criterion.

Finally, embedding theorems may be used effectively in engineering only if
the rigorous formulation can be supported by fast numerical methods. Here too
Nash’s techniques fail the test. The first numerical computations of isometric
embeddings are relatively recent [1]. Despite the inspiring beauty of these images,
they require a more sophisticated computational effort than is appropriate for a
problem of such a fundamental nature. The numerical scheme in [1] is ultimately
based on [8]. Thus, it requires the composition of functions, which is delicate
to implement accurately. The models proposed below require only semidefinite
programming and the use of Markov Chain Monte Carlo, both of which are
standard techniques, supported by excellent software.

These remarks appear to be deeply critical of Nash’s work, but the truth
is more mysterious. The imposition of stringent constraints – consistency with
applications, physics and numerical methods – has the opposite effect. It allows
us to strip Nash’s techniques down to their essence, revealing the robustness of
his fundamental insights. By using information theory to mediate between these
perspectives, we obtain a new method in the statistical theory of fields.

3 Renormalization group (RG) flows

3.1 General principles

The structure of our method is as follows. Many hard constraint systems and
nonlinear PDE such as u]e = g admit relaxations to subsolutions. We will begin
with a subsolution and improve it to a solution by adding fluctuations in a
bandlimited manner. These ideas originate in Nash’s work [8, 9]. We sharpen his
procedure as follows:

1. The space of subsolutions is augmented with a Gaussian filter. More pre-
cisely, our unknown is a subsolution ut and a reproducing kernel Lt, t ∈
[0,∞). In physical terms, the unknown is a thermal system.

2. We introduce a stochastic flow for (ut, Lt). This allows us to interpolate be-
tween the discrete time iteration in [8] and C1 time evolution in [9], replacing
Nash’s feedback control method with stochastic control theory.
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3. We apply the modeling principles of continuum mechanics – a separation
between kinematics and energetics – to obtain a semidefinite program (SDP)
for the covariance of the Itô SDE.

4. A principled resolution of the SDP is the most subtle part of the problem. We
illustrate two approaches: low-rank matrix completion and Gibbs measures
for the SDP. In physical terms, this is a choice of an equation of state.

The use of reproducing kernels provides other insights too. The Aronszajn-Moore
theorem asserts that the reproducing kernel Lt is in one-to-one correspondence
with a Hilbert space HLt

. Thus, (ut, Lt) describes a stochastically evolving affine
Hilbert space (ut,HLt) much like subspace tracking in machine learning.

3.2 An example: random Lipschitz functions

Let us illustrate the structure of the RG flows on a model problem. We construct
random Lipschitz functions as solutions to the Hamilton-Jacobi equation

|∇u(x)|2 = 1, x ∈ Tn, u : Tn → R. (4)

Equation (4) is simpler than equation (1) because the unknown u is a scalar.
We say that v : Tn → R is a smooth subsolution if v ∈ C∞ and |∇v(x)| < 1 for
x ∈ Tn. Define the residual r(x; v), trace l, and the density matrix P by

r(x; v) = (1−|∇v(x)|2)
1/2
+ , l =

∫
Tn

L(x, x) dx, P (x, y) =
1

l
L(x, y), x, y ∈ Tn.

(5)
The simplest RG flow associated to equation (4) is the stochastic evolution

dut(x)dut(y) = (PSP )(x, y) dt, Ṗ = PSP −Tr(PSP )P,
l̇

l
= Tr(PSP ), (6)

where S is a covariance kernel constructed from r(x;ut) as follows

S(x, y) = ∇r(x) · ∇r(y) =

n∑
i=1

∂xi
r(x;ut)∂yir(y;ut), x, y ∈ Tn. (7)

Both S and P are integral operators on L2(Tn) and PSP denotes the natural
composition of such operators.

The first equation in (6) reflects stochastic kinematics. As in Nash’s work, we
are bumping up a subsolution, but now by stochastic fluctuations with covariance
tensor PSP . The density matrix P smoothes the correction S, so that fluctua-
tions are band-limited. The last equation shows that lt is slaved to (ut, Pt). The
study of (ut, Pt) and (ut, Lt) is equivalent for this reason and both choices offer
different insights. The equation for (ut, Lt) (after a change of time-scale) is

dut(x)dut(y) = L̇(x, y) dt, L̇ = LSL. (8)
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Observe that this equation is invariant under reparametrization of time.
The specific relation between S and r in equation (7) emerges from an explicit

rank-one solution to a matrix completion problem. More generally, all RG flows
for equation (4) require the resolution of an SDP that provides a covariance
kernel S, given a residual r. An alternate resolution of this question, involving
Gibbs measures for the SDP, is described in the next section.

3.3 Interpretation

The intuition here is as follows. Assume given initial conditions (u0, L0) where u0
is a smooth subsolution and L0 is a band-limited reproducing kernel. Standard
SDE theory implies the existence of strong solutions to equations (6) and (8).
Equation (8) tells us that Lt is increasing in the Loewner order, so that the
Hilbert spacesHLt

are ordered by inclusion. This corresponds to the subsolutions
getting rougher and rougher, while staying band-limited. On the other hand,
equation (6) tells us that ut and Pt are bounded martingales, so that (u∞, P∞) :=
limt→∞(ut, Pt) exists by the martingale convergence theorem. The limit u∞ is
always a random subsolution to (4). Our task is to find the smallest space L0 so
that u∞ is a solution to (4), thus providing random Lipschitz functions.

The analogous evolution for the isometric embedding problem (1) is obtained
from similar reasoning. A subsolution is a map v : Mn → Rq such that v]e
satisfies the matrix inequality v]e(x) < g(x) at each x ∈ Mn. The residual
r(x; v) is the matrix square-root of the metric defect g− v]e(x). The covariance
kernel Lt is also now a matrix valued kernel. Thus, the generalization reflects
the tensorial nature of (1) and does not change the essence of equation (6). The
associated flow makes precise the idea that embedding is a process of estimation
of the metric g by estimators u]te. At each scale t, we choose the best correction
to ut given the Gaussian prior Pt and a principled resolution of an SDP.

Finally, equation (8) has a simple physical interpretation. The RG flows
model quasistatic equilibration of the thermal system (ut, Lt). This is perhaps
the most traditional thermodynamic picture of the flow of heat, dating back
to Clausius, Gibbs and Maxwell. What is new is the mathematical structure.
The mean and covariance evolve on different time-scales, so that the system is
always in local equilibrium. This insight originates in Nelson’s derivation of the
heat equation [10]. Like Nelson, we stress the foundational role of stochastic
kinematics and time-reversibility. However, unlike Nelson, we rely on informa-
tion theory as the foundation for heat flow, not a priori assumptions about a
background field. The flows are designed so that L̇t is always the ‘most symmet-
ric’ fluctuation field with respect to the prior. This offers a rigorous route to the
construction of Gibbs measures by renormalization, using different techniques
from Friedan’s work. This is why we term our model an RG flow.

4 Isometric embedding of finite metric spaces into Rq

In this section we show that RG flows for equations (1)–(3) may be derived from
common principles. This goes roughly as follows: the discrete embeddings (2)–(3)



Information theory and the embedding problem for Riemannian manifolds 7

have subsolutions and we use a stochastic flow analogous to (8) to push these up
to solutions. The main insights in this section are the role of an underlying SDP
and the use of low-rank kernels Lt as finite-dimensional analogs of smoothing
operators. Formally, we expect embeddings of the manifold to be the continuum
limit of discrete embeddings of geodesic triangulations of the manifold. However,
this has not yet been established rigorously.

Assume given a finite metric space (K, ρ). Equation (2) is a hard constraint
system that may not have a solution. For example, an equilateral triangle cannot
be isometrically embedded into R. It is necessary to relax the problem. Following
Nash [8], let us say that a map v : K → Rq is short if |v(x)− v(y)| < ρ(x, y) for
each pair of distinct points x, y ∈ K. These are our subsolutions.

Let P(n, q) denote the space of covariance tensors for Rq-valued centered
Gaussian processes on K. Our state space is Sq = {(u, L) ∈ Rnq × P(n, q)}. The
RG flow analogous to equation (8) is the Itô SDE

duit(x)dujt (y) = L̇(x, y)ij dt, L̇t = C(ut, Lt), x, y ∈ K, 1 ≤ i, j ≤ q. (9)

The rest of this section describes the use of SDP to determine C. First, we set
C(u, L) ≡ 0 when u is not short. When u is short its metric defect is

r2(x, y;u) =
(
ρ2(x, y)− |u(x)− u(y)|2

)
+
, x, y ∈ K. (10)

We’d like to choose C(u, L) to correct a solution by r2(x, y;u) on average. To
this end, assume dui(x)duj(y) = Qij(x, y) dt and use Itô’s formula to compute

d |u(x)− u(y)|2 = 2 (u(x)− u(y)) · (du(x)− du(y)) + ♦Qdt. (11)

The Itô correction, captured by the ♦ operator defined below, provides the ex-
pected bump up in lengths

(♦Q) (x, y) :=

q∑
j=1

(
Qjj(x, x) +Qjj(y, y)− 2Qjj(x, y)

)
. (12)

In order to correct by the metric defect, Q must satisfy the linear constraints

(♦Q) (x, y) = r2(x, y;u), x, y ∈ K. (13)

A second set of constraints is imposed by the Cameron-Martin theorem: the
Gaussian measure associated to L̇ must be absolutely continuous with respect
to that of L. Explicitly, this means that Q = ALAT where A is a linear transfor-
mation, given in coordinates by Aij(x, y). This restriction is trivial when L has
full-rank; but when L is rank-deficient, it provides P(n, q) with a sub-Riemannian
geometry. We use the notation Q ∈ TLP(n, q) to recognize this constraint.

These constraints describe a matrix completion problem: chooseQ ∈ TLP(n, q)
that satisfies (13). This may not have a solution, so we introduce the convex set

P = {Q ∈ TLP(n, q)
∣∣♦Q(x, y) ≤ r2(x, y), x, y ∈ K }. (14)
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Our model design task is to make a principled choice of a point C(u, L) in P.
Equation (7) is obtained by choosing a rank-one solution to the analogous

operator completion problem for (4). But one may also use the theory of SDP
to provide other resolutions of the above matrix completion problem. Interior
point methods for SDP associate a barrier FP to P and it is natural to choose

C(u, L) = argminQ∈PFP(Q). (15)

When FP is the canonical barrier associated to P we find that C is the analytic
center of P. This choice is similar in its minimalism to (7). The barrier FP is a
convex function on P whose Hessian D2FP provides a fundamental Riemannian
metric on P [6]. It provides a natural microcanonical ensemble for embedding.

We may also introduce Gibbs measures on TLP(n, q) that have the density

pβ(Q) =
1

Zβ
e−βEr(Q), Zβ =

∫
TLP(n,q)

e−βEr(Q) dQ, C =

∫
TLP(n,q)

Qpβ(Q) dQ,

(16)
where the energies Er replace the constraints ♦Q ≤ r2 with suitable penalties.
In these models, the covariance C(u, L) is the most symmetric choice at scale t,
with respect to the Gibbs measure pβ . As noted in Section 3.3, this is why these
models may be termed renormalization group flows.
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