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bstract

This is a brief overview of some mathematical work on dynamic scaling and coarsening in problems of phase separation.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Studies of phase separation lead to many interesting prob-
ems in non-equilibrium thermodynamics. The hypothesis of
ynamic scaling plays an essential role in our understand-
ng of such processes (see for example, Ref. [1]). This is a
ell-tested hypothesis based on experiments and determinis-

ic and stochastic numerical simulations. This article is a short
ntroduction to mathematical methods useful in the analysis
f dynamic scaling. It is organized into two case studies: (1)
ynamic scaling of the interface in viscous fingering; (2) mean-
eld models of coalescence. These studies illustrate two distinct

echniques—(1) the use of estimates to analyze scaling in ‘fully
onlinear regimes’; (2) the relation between scaling laws and
robabilistic methods. This article is didactic. There are no
ew research results here (the two cases simply summarize
roblems I have worked on). However, the techniques used in
hese problems are natural and simple, and have been used in

any similar models. Given the interdisciplinary nature of the
WNET 006 meeting, my hope is that an informal, but con-
rete, introduction to the mathematical research they represent
ill be of interest to the wide readership of this journal. The

urious reader is also referred to a very readable survey of this
rea [14].
Please cite this article in press as: G. Menon, Mathematical approac
doi:10.1016/j.jnnfm.2007.01.003
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lation equation

. Scaling of the interface in viscous fingering

.1. Introduction

The Saffman–Taylor instability of free-surfaces in a
ele–Shaw cell or porous medium is a widely studied problem

n fluid mechanics. A good review is provided by Homsy [5].
he classical approach to this problem relies on special solutions

the famous Saffman–Taylor fingers [15]) and their linear stabil-
ty. A basic limitation of linear stability results is that they hold
or very small time regimes. Consequently, a great deal of bold
andwaving is needed to assert that these special solutions have
nything to do with a typical experimental situation where one
as an interface between two phases with many interacting fin-
ers. My goal is to illustrate another approach, based on bounds
inequalities) for physically natural quantities. This perspective
ields useful information about such ‘fully nonlinear regimes’
ith little fuss. It is similar in spirit to the now classical work of
owarth [6].
To fix ideas, I will focus on the simplest setting of gravity

riven miscible fingering studied experimentally by Wooding
17]. Consider an infinite column of fluid in a porous medium
ith a heavy solute lying above a pure phase. For sufficiently
ilute solutions, the mobility is independent of the solute con-
entration, and after a suitable non-dimensionalization Wooding
btained the system:
hes to dynamic scaling, J. Non-Newtonian Fluid Mech. (2007),

ts + u · ∇s = �s, (1)

· u = 0, (2)

dx.doi.org/10.1016/j.jnnfm.2007.01.003
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Fig. 1. Coarsening of

+ ∇p = −sez. (3)

ere 0 ≤ s ≤ 1 is the normalized concentration of the solute that
s transported by convection and diffusion. Eq. (3) is Darcy’s law:
he velocity is linearly proportional to the driving force which
omprises a pressure gradient and buoyancy (−sez). The domain
s x = (y, z) ∈ [0, L] × R. The Peclet number, L, is a measure
f the strength of diffusion. It is the only external parameter.
e are interested in scaling behavior that is independent of L

nd boundary effects, and in particular the behavior as L → ∞.
herefore, it is convenient to use periodic boundary conditions

n y.

.2. The scaling laws

Fig. 1 shows four snapshots of the evolution starting with
mall perturbations of the flat unstable stratification. After an ini-
ial transient, the system develops a mixing zone with an intricate
etwork of fingers. The details of fingering are sensitive to initial
ata, but there is a remarkable statistical regularity observed in
hysical [17] and numerical experiments [5]:

(a) The end-to-end width of the mixing zone is typically t.
b) The fingers broaden at the rate O(

√
t).

The only dependence on the Peclet number L is as a finite-size
Please cite this article in press as: G. Menon, Mathematical approac
doi:10.1016/j.jnnfm.2007.01.003

ut-off. The scaling regime persists until time O(L2) when the
nger-width is comparable to the domain size. For large L, this
egime is clearly of greater importance than the initial stages of
he instability governed by linearization.

w
a

c

rs and bulk transport.

The emergence of such regularity given the initial instabil-
ty is striking. In practical terms, what is most important is the
ize of the mixing zone (or the speed at which the upper and
ower boundaries spread). A survey of scientific interest in this
uestion may be found in a recent article of Yortsos and Salin
18]. It is also interesting to understand the internal structure
f the mixing zone. For example, numerical simulations show
learly that the coarsening is driven by coalescence of fingers,
ot diffusive spreading.

.3. Energy, perimeter and mixing entropies

A rigorous formulation of dynamic scaling involves a defini-
ion of vertical and horizontal length scales (denoted a(t) and b(t)
espectively as in Fig. 2), followed by upper and lower bounds
f the form:

− o(1) ≤ a(t)

t
≤ 1, c ≤ b(t)√

t
≤ C, t � 1 (4)

or some constants C ≥ c > 0, under minimal assumptions on ini-
ial data. However, (4) is false in such generality: the unstable
tratification s0 (defined in (5) below), evolves diffusively with-
ut fingering. Therefore, for this solution a(t) ∼ √

t and there
s no coarsening since there are no fingers. Nevertheless, by
ocusing on physically meaningful quantities such as the poten-
ial energy, mean perimeter, and mixing entropies we can prove
ne-sided bounds that scale in the natural way with time. Though
hes to dynamic scaling, J. Non-Newtonian Fluid Mech. (2007),

e obtain only one-sided estimates, these are simple and robust
nd free of any ansatz on the structure of the flow.

Let Q denote the spatial domain x:=(y, z) ∈ [0, L] × R. We
onsider periodic boundary conditions in y. The unstable strati-

dx.doi.org/10.1016/j.jnnfm.2007.01.003
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Fig. 2. Caricature of a(t) and b(t).

cation:

0(z) =
{

0, z < 0

1, z ≥ 0
(5)

ill serve as the main reference configuration. To obtain
stimates independent of the Peclet number L, we consider nor-
alized integrals of the form:

f dx:=
∫
R

1

L

∫ L

0
f (y, z) dy dz:=

∫
R

f̄ dz. (6)

The (negative) gravitational potential energy of s(t, x) is
efined by

(t) = −
∫

(s0(z) − s(t, x))z dx =
∫
R

(s0(z) − s̄(t, z))z dz. (7)

Observe that since s ∈ [0, 1] we have E = −
∫ |z||s0 − s̄| dz.

herefore,
√

E is a length scale, and we define the vertical length
cale as a = 2

√
6E (the choice of constant is explained in [9]).

e also consider the mean perimeter:

(t) = −
∫

|∇s(t, x)| dx. (8)

If there were no diffusion, P(t) would measure the mean
ength of the interface between the regions s = 0 and s = 1. One
ffect of diffusion is to smooth sharp transitions and create
mushy zones” where 0 < s < 1. The size of these mixing zones
an be measured by “mixing entropies” that vanish in the pure
Please cite this article in press as: G. Menon, Mathematical approac
doi:10.1016/j.jnnfm.2007.01.003

hases where s is 0 or 1. We will work mainly with the entropies:

H(t) = −
∫

s(1 − s) dx,

S(t) = −−
∫

(s log s + (1 − s) log (1 − s)) dx. (9)

t

2

u
t
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The word “entropy” is used here in the same sense that
t is used in the mathematical theory of hyperbolic conserva-
ion laws. Aside from the fact that the functions s(1 − s) and

(s log s + (1 − s) log (1 − s)) are concave for s ∈ [0, 1] and van-
sh when s = 0 or s = 1, there is no deeper physical motivation in
he choice of these mixing entropies.

.4. Scale-invariant estimates and their interpretation

The following estimates provide an upper bound on a(t) and
lower bound on b(t) independent of the Peclet number L.

heorem 1. Let s(t, x) be a smooth solution to (1)–(3), with
nergy E(t), mixing entropy H(t), and perimeter P(t). Then

im sup
t→∞

E(t)

t2 ≤ 1

6
, lim sup

t→∞
H(t)

t
≤ 1

3
, (10)

nd

im sup
t→∞

1

t2

∫ t

0
P2(τ) dτ ≤ π

9
. (11)

The first inequality is essentially the assertion that a(t) ≤ 2t
symptotically. The crux of this problem is really to prove the
harp bound a(t) ≤ t (as done in [9]), but I will focus on this
naive’ bound here. Inequality (11) can be viewed as a lower
ound on the finger width of the form b(t) ≥ C

√
t. This is seen

s follows. Firstly, we note that (11) is an integrated version of
he (unproven) pointwise inequality:

(t) ≤
√

2πt

3
. (12)

ore precisely, the largest C and α in a scaling ansatz P(t) = Ctα

ompatible with (11) are the values in (12). If we assume the
ypical form of s is as shown in Fig. 2, we see that

(t) ≈ −
∫

|∂ys| dx ≈
∫

|z|≤a/2
N(z) dz = aN̄ = a

b
, (13)

here N(z) is the number of fingers per unit width on any hor-
zontal level z = constant, N̄ the mean number of fingers, and
= 1/N̄ is the mean wavelength of fingers. The upper estimate

12) now yields:

(t) ≥ a(t)

P(t)
≥ 3

√
t√

2π
(14)

f a(t) = t. It is in this averaged (but also robust) sense, that (11)
s an estimate on coarsening. We should note that quantities like
he perimeter are more basic to the problem than a somewhat
rtificial notion of fingers based on special solutions. All we see
n experiments and simulations is a jagged interface between
wo phases.

.5. The back-of-the-envelope proof
hes to dynamic scaling, J. Non-Newtonian Fluid Mech. (2007),

Theorem 1 is based on energy balance, control of gradients
sing mixing entropies, and an interpolation argument linking
he mixing entropies and energy. One may integrate by parts to

dx.doi.org/10.1016/j.jnnfm.2007.01.003
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nd that the decay of the energy is given by

˙ = −
∫

|u|2 dx + 1 = −
∫

(s − s̄)2 − −
∫

|∇p|2 dx + 1

=
∫
R

s̄(1 − s̄) dz − H(t) − −
∫

|∇p|2 dx + 1. (15)

Since the entropy functions are concave, the mixing entropies
row because of diffusion as follows

˙ = 2−
∫

|∇s|2 dx, Ṡ = −
∫ |∇s|2

s(1 − s)
dx. (16)

Finally, the energy and mixing entropies are linked by the
ollowing inequalities that are purely calculus facts, and have
othing to do with the equations:

≤
∫
R

s̄(1 − s̄) dz ≤
√

2E

3
, S ≤ π

√
2E

3
. (17)

We combine these relations to find

˙ ≤
∫
R

s̄(1 − s̄) dz + 1 ≤
√

2E

3
+ 1, (18)

hich may be integrated to yield the first inequality in (10).
hen (17) immediately yields the second inequality in (10). To
rove (11) we apply the Cauchy–Schwarz inequality and (16) to
btain

(t) = −
∫

|∇s| ≤ (−
∫

s(1 − s))
1/2(

−
∫ |∇s|2

s(1 − s)

)1/2

= H1/2(Ṡ)
1/2

. (19)

We integrate in time to obtain

t

0
P2(τ) dτ ≤

∫ t

0
H(τ)Ṡ(τ) dτ ≤ H(t)S(t) ≤ 2π

3
E(t). (20)

In the second inequality we have used the monotonicity of
and S. In the third inequality we used (17). We combine (20)

nd (10) to obtain (11). This completes the proof of Theorem 1.

.6. Outlook

Mathematical approaches based on bounds should be con-
rasted with the older approach that relies on exact solutions and
inear stability. There is little doubt that the newer methods pro-
ide a more solid foundation for our understanding in regimes of
hysical interest. The most appealing aspect of the approach here
s that it mimics back-of-the-envelope calculations that under-
ie many dynamic scaling laws, yet it is completely rigorous.
he method is robust: for example, it applies with no change

n higher dimensions, and simplifying assumptions such as uni-
orm mobility are easily removed [10]. The basic argument used
Please cite this article in press as: G. Menon, Mathematical approac
doi:10.1016/j.jnnfm.2007.01.003

ere was introduced by Kohn and Otto in the context of spin-
dal decomposition of alloys [7]. It has since been used to prove
ounds on coarsening in epitaxial growth and thin fluid films.
key aspect is to find the right physical quantities to estimate,

i
b
‘
i
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nd the right notion of length scale (this can be quite sophisti-
ated). There is also a closely related body of work on bounds
or turbulent flows and combustion problems [2,3].

. Mean-field models of clustering

.1. The LSW model

In the example above, we analyzed dynamic scaling start-
ng with the basic field equations. There are many situations
here this is too complicated and simpler models are called for.
or example, a fundamental problem in phase separation is to
nderstand the growth of a solid phase in an undercooled liquid.
his is described mathematically by a Stefan problem with sur-

ace tension at the boundary between phases. This formulation
as a sound thermodynamic basis, and may be used to prove
ne-sided bounds on the coarsening rates [7]. However, a finer
nalysis is possible under simplifying assumptions. What fol-
ows is an outline of a basic mean-field model of this process,
ollowing [13].

In the late stages of solidification, the solid phase often con-
ists of many spherical particles of different sizes. In this stage,
ass is transported from small to large particles via a quasi-

tatic diffusion in the liquid phase. Since we are most interested
n the statistics of the particle sizes, it is reasonable to focus
n f (t, v), a function that describes the number of particles of
olume v at time t. A mean-field description of the evolution of
is the following model derived independently by Lifshitz and
lyozov [8] and Wagner [16]. We assume all particles interact
ith the same diffusion field, so that the particle volume changes

ccording to the equation:

tv = v1/3θ(t) − 1:=Λ(v, θ(t)). (21)

ere θ(t) is the same for all particles, and the critical particle
olume is θ(t)−3:=4π/3r3

c , where rc is the critical radius. Par-
icles with radius larger than rc grow at the expense of those
ith radius smaller than rc. The evolution of f is determined by

onservation of mass:

tf (t, r) + ∂v(Λ)(v, θ(t))f ) = 0. (22)

inally, θ(t) is determined by the self-consistency condition:

(t) =
∫ ∞

0 f (t, v) dv∫ ∞
0 v1/3f (t, v) dv

. (23)

ifshitz, Slyozov and Wagner predicted that (a) the critical radius
c(t) ∼ 4t/9 as t → ∞, (b) f approaches a self-similar form after
escaling by the critical volume, and (c) that this self-similar
orm is universal, has compact support, and may be computed
xplicitly. Observe that we are no longer satisfied with only
coarse relation such as rc(t) ∼ 4t/9, instead we also want to

nderstand the ‘universality of scaling’ ((b) and (c)).
A short summary of the vast scientific literature on this model,
hes to dynamic scaling, J. Non-Newtonian Fluid Mech. (2007),

s that predictions (a) and (b) have been experimentally verified,
ut (c) has not. The basic obstruction is that there is not just one
universal’ self-similar form with compact support, but in fact
nfinitely many self-similar solutions that differ delicately at the

dx.doi.org/10.1016/j.jnnfm.2007.01.003
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uter tip of their support. An interesting mathematical contribu-
ion to this problem was made by Niethammer and Pego [13].
iven initial data f0 with compact support in [0, v0] they showed

hat if f0 ∼ (v0 − v)p near v0 for any p < ∞, then the conver-
ence to the solution predicted by Lifshitz, Slyozov and Wagner
s impossible. Their work makes two distinct contributions. The
rst is to make precise the obstructions to ‘universality’ implicit

n many scientific papers on the LSW model. The second was
o recognize the utility of methods from probability theory to
tudy mean-field models such as (21)–(23). The analysis of the
SW model is quite tricky, and as often happens, the model
here these probabilistic methods are most transparent was

tudied later. This is another fundamental model of clustering:
moluchowski’s coagulation equation. But first, here is a quick
ntroduction to the basic method.

.2. The analogy with the central limit theorem

The fundamental probabilistic result on ‘universality’ is the
entral limit theorem, and its extension to the stable laws dis-
overed by Lévy. These theorems deal with fluctuations in the
ummation of independent, identically distributed random vari-
bles (for example, a coin-toss experiment). Let Xn be a sequence
f independent, identically distributed random variables with
ean zero. To be concrete, let us restrict attention to symmetric

andom variables, that is P(Xn > a) = P(Xn < −a) for every a ≥ 0.
n a coin toss, we would have Xn = ±1 with probability 1/2. The
entral limit theorem asserts that if E(X2

n) = 1 then the normal-
zed sums Sn = (X1 + · · · + Xn)/

√
n converge in distribution

o the Gaussian with unit variance. This is simply the assertion
hat the characteristic function of Sn/

√
n converges to that of

he unit Gaussian, that is

lim→∞E(eiksn/
√

n) = e−k2/2, k ∈R. (24)

his is proved as follows. Consider the characteristic function
(k) = E(eikXn ). For example, if Xn = ±1 with probability 1/2,
(k) = cos k. The essence of universality is that the precise form
f ϕ(k) is of little relevance–what matters is that Xn has mean
ero E(Xn) = 0) and bounded fluctuations E(X2

n) = 1). This
nsures ϕ(k) ≈ 1 − k2/2 as k → 0. Since the Xn are iid we now
ave

(eiksn/
√

n) =
(

ϕ

(
k√
n

))n

≈
(

1 − k2

2n

)n

→ e−k2/2.

What if E(X2
n) is divergent? A non-trivial limit is still possible

f we assume ϕ(k) ∼ 1 − |k|α as k → 0 for some α ∈ (0, 2]. We
ow obtain

Sn

n1/α
= X1 + · · · + Xn

n1/α
→ Yα, (25)
Please cite this article in press as: G. Menon, Mathematical approac
doi:10.1016/j.jnnfm.2007.01.003

here Yα is the symmetric, stable distribution with exponent α.
α is defined completely by its characteristic function:

(eikYα ) = e−|k|α, 0 < α ≤ 2. (26)

a

f
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The proof is simple. As before, the characteristic functions
onverge for fixed k as n → ∞:

(eikn−1/αSn ) = (ϕ(kn−1/α))
n ≈

(
1 − |k|α

n

)n

→ e−|k|α .

To summarize, we see that (a) there is a one-parameter fam-
ly of self-similar distributions, of which only one has finite
ariance; (b) the domains of attraction of the self-similar distri-
utions are determined by the tails of the initial distribution (the
ehavior of the characteristic function near k = 0 is determined by
he tails of the distribution of Xn). Let me now indicate how this

ethod translates immediately to Smoluchowski’s coagulation
quation.

.3. Universality in Smoluchowski’s coagulation equation

The following coagulation equation was proposed by Smolu-
howski to study the clustering of colloids in suspension.
ssume the suspension is dilute so that only binary collisions
ccur, and that particles of volume v and w meet at a rate K(v, w).
e sum over the gain and loss of particles of size v in this process

o obtain the rate equation:

tf (t, v) = 1

2

∫ v

0
K(v − w, w)f (t, v − w)f (t, w) dw

−
∫ ∞

0
K(v, w)f (t, w)f (t, v) dw. (27)

All knowledge of the underlying mechanisms is contained
n the rate kernel K. For example, for the coagulation of
olloids by Brownian motion, Smoluchowski derived (after non-
imensionalization):

(v, w) = (v1/3 + w1/3)(v−1/3 + w−1/3). (28)

Note that v1/3 is the length scale of a spherical particle.
oughly speaking, the term (v1/3 + w1/3) measures the colli-

ion cross-section, and (v−1/3 + w−1/3) measures the rate of
iffusion given by the Stokes–Einstein relation.

The simplicity of this model ensures that it has been used
n a vast array of applications ranging from problems in phys-
cal chemistry (coagulation of colloids, formation of aerosols,
inetics of polymerization), environmental science (formation
f smoke, dust and haze), astrophysics (gravitational cluster-
ng of asteroids, planets, stars and galaxies), computer science
random graphs, hashing algorithms) and mathematical biology
schooling of fishes). A good, if slightly dated, review is provided
y Drake [4].

Most interesting kernels are homogeneous; that is,
(av, aw) = aγK(v, w) for some fixed γ and every a, v, w > 0.
his may be viewed as a modeling assumption needed to capture

he dynamic scaling seen in experiments. Our goal is to deduce
ynamic scaling, once this modeling assumption has been made.
he most direct approach (largely worked out by van Dongen
hes to dynamic scaling, J. Non-Newtonian Fluid Mech. (2007),

nd Ernst) is to make the ansatz:

(t, v) = λ(t)−2f∗
(

v

λ(t)

)
(29)

dx.doi.org/10.1016/j.jnnfm.2007.01.003
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n Eq. (27). This scaling is chosen so that solutions conserve
ass (normalized initially to unity). That is

∞

0
vf (t, v) dv =

∫ ∞

0
vf∗(v) dv = 1, t > 0. (30)

ass-preservation holds only when there is no runaway growth
aused by the interaction of large-large clusters (gelation). This
s known to hold in the range γ ≤ 1 and we find an integral
quation for f* and an ordinary differential equation for λ(t) with
he solution λ(t) = t1/(1−γ), γ < 1 or λ(t) = ect, γ = 1. Except for
ery special cases, we cannot solve for f* explicitly. However, the
olklore in the scientific literature (based on formal asymptotics
nd numerics) is that (a) f* is unique, (b) f* decays exponentially
s v → ∞, (c) f* is universal, that is all solutions approach this
istribution as t → ∞ after suitable rescaling.

Let me contrast this folklore, with precise mathematical
esults for three solvable kernels K(v, w) = 2, v + w and vw. To
xplain the ideas most simply, I will only consider K(v, w) = 2.
his is a crude truncation of the kernel in (28), since K(v, w) =
+ v1/3w−1/3 + v−1/3w1/3. For these three kernels, one may
se the Laplace transform to solve (27). If we define

(q, t) =
∫ ∞

0
(1 − e−qv)f (t, v) dv, (31)

e may use (27) to find for K = 2:

tϕ = −ϕ2 (32)

ith explicit solution:

(q, t) = ϕ(q, 0)

1 + tϕ(q, 0)
. (33)

It is now easy to guess self-similar solutions of the form:

(q, t) = t−1 tqρ

1 + tqρ
:=t−1ϕρ(qt1/ρ). (34)

t turns out that these do define positive self-similar solutions to
32) for every ρ ∈ (0, 1] which have the form:

(t, v) = λρ(t)−2fρ

(
v

λ(t)

)
, λρ(t) = t1/ρ. (35)

When ρ = 1, λ(t) = t and f∗ = f1(v) = e−v is the ‘univer-
al’ profile with an exponential tail. However, for 0 < ρ < 1 the
olutions have algebraic (‘fat’) tails, and do not have finite mass.

The domains of attraction (‘universality classes’) of these
elf-similar solutions are characterized precisely as follows. Ini-
ial data f0 is in the domain of attraction of fρ if and only if there
s a function L, slowly varying at infinity, such that

v

0
wf0(w) dw ∼ v1−pL(v), v → ∞. (36)

Roughly speaking, the assertion is that f0 is in the domain of
ttraction of the fat-tailed solutions fρ, 0 < ρ < 1 if and only if it
Please cite this article in press as: G. Menon, Mathematical approac
doi:10.1016/j.jnnfm.2007.01.003

as an algebraic tail that is almost identical to that of fρ. Typical
xamples of slowly varying functions are log v, log log v, (log v)2

i.e., all iterates and powers of log v), so the term L should be
hought of as a correction to the dominant power-law v1−ρ. The

[
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ndpoint ρ = 1 is special. In order to be attracted to solution f1 it
s sufficient that

∫ ∞
0 vf0(v) dv < ∞. Similar results hold for the

ther solvable kernels, and in all likelihood for all homogeneous
ernels.

.4. Outlook

To summarize, the folklore on uniqueness of the self-similar
rofile in Smoluchowski’s coagulation equation is false. There
s a one-parameter family of self-similar profiles with algebraic
ails and their domains of attraction can be classified completely
n terms of the tails of initial data. As in the LSW model, what
s crucial for universality is that the distribution of large clusters
hould be suitably regular.

The basic probabilistic analogy is simply the starting point
or a deeper analysis that exploit connections between such
caling dynamical systems and probabilistic methods [11,12].
t a fundamental level, both the addition of independent ran-
om variables, the LSW model and Smoluchowski’s coagulation
quation are mechanisms for transporting mass from small to
arge scales with no cut-off scales. Thus, the same degeneracies
ppear in both problems. The fat-tailed solutions are conse-
uences of the modeling assumptions we make, and if these
re considered pathological, we should view this as a model-
ng defect, to be resolved by the incorporation of additional
cale-breaking effects such as small or large volume cut-offs
ot present in the original model.
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