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The Airy function is a Fredholm determinant
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Abstract Let G be the Green’s function for the Airy operator

Lϕ := −ϕ′′ + xϕ, 0 < x < ∞, ϕ(0) = 0.

We show that the integral operator defined by G is Hilbert-Schmidt and that the
2-modified Fredholm determinant

det2(1 + zG) =
Ai(z)

Ai(0)
, z ∈ C.
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1 Introduction

Let L denote the Airy operator on the half-line R+ with Dirichlet boundary con-
dition

Lϕ := −ϕ′′ + xϕ, 0 < x < ∞, ϕ(0) = 0. (1)

Recall that the differential equation ϕ′′ = xϕ admits two linearly independent
solutions, denoted Ai and Bi [1]. As x → ∞, Ai(x) decays, and Bi(x) grows, at

the super-exponential rate x−1/4e−2x3/2/3. For z ∈ C, both Ai(z) and Bi(z) are
entire functions of exponential type 3/2. The zeros of Ai lie on the negative real
axis and are denoted

−∞ < . . . < −an < −an−1 < . . . < −a1 < 0. (2)
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For each n, Ai(x− an) is an eigenfunction of L with eigenvalue an. Further, these
eigenfunctions form a complete basis for L2(R+) (see e.g. [7, §4.12]).

The spectral problem for L may also be approached via the Hilbert-Schmidt
theory of integral equations. Let f± denote linearly independent solutions to the
Airy equation y′′ − xy = 0, with f+(x) = Ai(x), and

f−(x) =
π

Ai(0)
(Ai(0)Bi(x)−Ai(x)Bi(0)) . (3)

Then f−(0) = 0 and

W (f+, f−) := f+(x)f ′−(x)− f−(x)f ′+(x) = 1. (4)

The Green’s function for L is

G(x, y) = f−(min(x, y))f+(max(x, y)), x, y ∈ R+, (5)

and the integral equation

ϕ(x) = z

Z ∞
0

G(x, y)ϕ(y) dy (6)

is equivalent to the spectral problem

Lϕ = zϕ, z ∈ C. (7)

Theorem 1 The kernel G defines a Hilbert-Schmidt operator (also denoted G) on
L2(R+). The 2-modified Fredholm determinant

det2(1 + zG) =
Ai(z)

Ai(0)
= 3

2
3 Γ

„
2

3

«
Ai(z), z ∈ C. (8)

Let Lα, α ∈ (−a1,∞), denote the Airy operator on [α,∞) with Dirichlet boundary
condition at α, and let Gα be the associated Green’s function analogous to (5).

Corollary 1

det2(1 + zGα) =
Ai(z + α)

Ai(α)
, z ∈ C. (9)

The point here is the explicit expression for det2(1+zG). The asymptotics of Ai(x)
and Bi(x) imply that G is Hilbert-Schmidt, but not trace class, on L2(R+). As
a consequence, the 2-modified Fredholm determinant det2(1 + zG) exists, and is
an entire function whose zeros coincide with minus the eigenvalues of L. However,
this only tells us that det2(1 + zG)/Ai(z) is an entire function with no zeros, not
that it is a constant. Thus, (8) is not obvious.

Much of the current interest in Airy functions and Fredholm determinants
stems from their importance in probability theory; for example, in the descrip-
tion of the Tracy-Widom distribution [8], and of Brownian motion with parabolic
drift [4]. Theorem 1 was motivated by a surprising formula in Burgers turbu-
lence [5, equation (19)]. While these probabilistic connections will be presented
elsewhere, the identity (8) strikes me as a calculation of independent interest. In
an area this classical, the odds that it is new would seem to be rather low. How-
ever, I could not find (8) in the literature, even after a thorough search. Thus,
Theorem 1, if not new, is certainly hard to find, and I hope the reader will find
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some value in this exposition. It is rare that one can compute Fredholm deter-
minants explicitly, and despite the fact that there are no new methods here, the
calculation is quite pleasing.

It is a pleasure to dedicate this article to John Mallet-Paret, in respect for his
deep knowledge of differential equations and functional analysis.

2 Proof of Theorem 1

2.1 A remark on trace ideals

Recall that the notion of a Fredholm determinant may be generalized to the
trace ideals Ip, 1 ≤ p ≤ ∞ [6]. The trace-class operators form the ideal I1 and
the Hilbert-Schmidt operators form I2. The 2-modified determinant for Hilbert-
Schmidt operators is defined by extending the following formula

det2(1 + A) = det1(1 + A)e−Tr(A), A ∈ I1, (10)

to operators in I2. The factor e−Tr(A) provides a suitable “renormalization” of the
divergent factor Tr(A) when A ∈ I2 is not trace-class [6, Ch. 9].

The proof of Theorem 1 proceeds as follows. First, we show that G ∈ I2. Next
we approximate G by a sequence of trace-class operators Gb obtained by restricting
the Airy operator to the interval [0, b]. The Fredholm determinant det1(1 + zGb)
may be computed by the methods of the Gohberg-Krein school. Finally, the iden-
tity (8) is obtained by applying (10) with A = zGb and passage to the limit
b →∞.

2.2 The operator G is Hilbert-Schmidt

In all that follows, the asymptotics of Ai(z) and Bi(z) as z →∞ play an important
role. As z →∞ in the sector | arg(z)| < π/3 we have [1]

Ai(z) ∼ e−ζ

2
√

πz1/4
, Bi(z) ∼ eζ

√
πz1/4

, ζ =
2

3
z3/2. (11)

These asymptotics imply rather easily that G is Hilbert-Schmidt, but not trace-
class. If G were trace-class, its trace would beZ ∞

0
G(x, x) dx =

Z ∞
0

f−(x)f+(x) dx. (12)

Since
R∞
0 Ai2(s) ds < ∞, it is clear that

R∞
0 G(x, x) dx is finite if and only ifR∞

0 Ai(x)Bi(x) dx < ∞. But as a consequence of (11)

Ai(x)Bi(x) ∼ 1

2π
√

x
, x →∞, (13)

and Ai(x)Bi(x) is not summable. Thus, G is not trace-class.
However, a similar calculation shows that G is Hilbert-Schmidt. By definition,

‖G‖2HS(L2(R+)) =

Z ∞
0

Z ∞
0

G2(x, y) dx dy.
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In order to show that the above integral is finite, it suffices to show thatZ ∞
0

Z ∞
0

(Ai(x)Bi(y)1y<x + Bi(x)Ai(y)1x<y)2 dx dy (14)

=

Z ∞
0

Ai2(x)

Z x

0
Bi2(y) dy +

Z ∞
0

Bi2(x)

Z ∞
x

Ai2(y) dy < ∞.

The asymptotic formulae (11) imply that these integrals are finite if and only ifZ ∞
0

e−4x3/2/3

√
x

Z x

0

e4y3/2/3

√
y

dy < ∞ and

Z ∞
0

e4x3/2/3

√
x

Z ∞
x

e−4y3/2/3

√
y

dy < ∞.

(15)
This is easily checked by making the change of variables x3/2 = u, y3/2 = v. (A
similar calculation is presented in section 2.5).

2.3 The Fredholm determinant on a finite interval [0, b], b < ∞

Fix 0 < b < ∞ and consider the operator Lb defined by

Lbϕ := −ϕ′′ + xϕ, 0 < x < b, ϕ(0) = 0, ϕ(b) = 0. (16)

The Green’s function for Lb is given by

Gb(x, y) = f−(min(x, y))fb
+(max(x, y)) (17)

where f−(x) denotes the solution to −ϕ′′+xϕ = 0 given by (3) (it does not depend
on b), and fb

+(x) is the solution that satisfies the boundary condition fb
+(b) = 0,

as well as the normalization W (f−, fb) = 1. We find

fb
+(x) = cb

„
Ai(x)− Bi(x)

Ai(b)

Bi(b)

«
, cb =

1

1 + Ai(b)Bi(0)
Bi(b)Ai(0)

. (18)

Both f− and fb
+ lie in L2(0, b) and Gb is trace-class. Its Fredholm determinant

may be computed explicitly.

Proposition 1

det1(1 + zGb) = (19)

1− zπ

Ai(0)

Z b

0

„
Ai(x)− Bi(x)

Ai(b)

Bi(b)

«
(Bi(z)Ai(x + z)−Ai(z)Bi(x + z)) dx.

Proof There are two steps in the proof.
1. Theorem 3.1 [3, Ch. IX] yields the following formula for the Fredholm

determinant:
det1(1 + zGb) = U22(b, z), (20)

where the 2×2 matrix U(x, z) is the fundamental solution to the canonical system

∂U

∂x
= −zJA(x)U, U(0, z) = I, (21)

J =

„
0 1

−1 0

«
, A(x) =

„
fb
+(x)

f−(x)

«“
fb
+(x) f−(x)

”
. (22)
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2. Canonical systems such as (21) may be solved as follows (we follow [2]). Let

f̂b
+(x, z) and f̂−(x, z) denote the solutions to the Volterra equations

f̂b
+(x, z) = fb

+(x)− z

Z x

0
Gb(x, y)f̂b

+(y, z) dy, (23)

f̂−(x, z) = f−(x)− z

Z x

0
Gb(x, y)f̂−(y, z) dy.

We may then check by substitution that

U(x, z) = I − z

 R x
0 f−(y)f̂b

+(y, z) dy
R x
0 f−(y)f̂−(y, z) dy

−
R x
0 f+(y)f̂b

+(y, z) dy −
R x
0 fb

+(y)f̂−(y, z) dy

!
(24)

is the unique solution to (21).
The calculation so far applies to all semi-separable kernels. Since Gb is the

Green’s function of Lb, we may go further. We apply Lb to (23) to find that

Lbf̂b
+ = −zf̂b

+, Lbf̂− = −zf̂−. (25)

Thus, f̂b and f̂− are linear combinations of Ai(x + z) and Bi(x + z). Moreover,

the initial conditions on f̂b
+ and f̂− are determined by 

f̂b
+(0)

f̂b
′
+(0)

!
=

 
fb
+(0)

fb
+
′(0)

!
,

 
f̂−(0)

f̂ ′−(0)

!
=

„
f−(0)
f ′−(0)

«
. (26)

We solve for fb
± and substitute in (24) to find that U22(b, z) is given by (19).

2.4 The limit b →∞ and the proof of Theorem 1

The kernel Gb may be trivially extended to an integral operator on L2(R) by
setting Gb(x, y) = 0 if either x or y is greater than b. We abuse notation and
continue to denote this extension by Gb. The proof of Theorem 1 now rests on the
following assertions.

Lemma 1

lim
b→∞

det1(1 + zGb)e−zTrGb

=
Ai(z)

Ai(0)
, Re(z) > 0. (27)

Lemma 2
lim

b→∞
‖Gb −G‖HS(L2(R+)) = 0. (28)

Proof (of Theorem 1) For each z in the right-half plane

Ai(z)

Ai(0)
= lim

b→∞
det1(1 + zGb)e−zTrGb

= lim
b→∞

det2(1 + zGb) = det2(1 + zG).

The first equality follows from Lemma 1, the second equality from Lemma 2. This
established the identity (8) for Re(z) > 0. Since det2(1+ zG) is an entire function
of z, the identity holds for all z ∈ C.
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2.5 Proof of Lemma 1

Lemma 3

lim
b→∞

Tr(Gb)√
b

= 1. (29)

Proof We must consider the asymptotics of the integral Tr(Gb) =
R b
0 f−(x)fb(x) dx.

It is clear from formulas (3) and (18) for f− and fb
+ that the dominant term in

this limit must involve Bi(x) as b →∞. Moreover, cb → 1. Thus,

Tr(Gb) ∼ π

Z b

0

„
Ai(x)− Bi(x)

Ai(b)

Bi(b)

«
Bi(x).

Equation (13) shows that the integral
R b
0 Ai(x)Bi(x) is divergent, whereas as we

show below, as a consequence of (11) and Lemma 4

lim
b→∞

Ai(b)

Bi(b)

Z b

0
Bi2(x) dx = 0. (30)

Hence we find

lim
b→∞

Tr(Gb)√
b

= lim
b→∞

π√
b

Z b

0
Ai(x)Bi(x) dx = 1. (31)

Proof (of Lemma 1) Fix z such that Re(z) > 0. Lemma 3 allows us to ignore all
the terms in (19) that remain finite as b → ∞, since these are weighted by the

decaying factor e−z
√

b as b →∞. An inspection of the terms in (19), equation (30)
and Lemma 3 imply that

lim
b→∞

det2(1 + zGb) =
πzAi(z)

Ai(0)
lim

b→∞
e−z

√
b
Z b

0
Ai(x)Bi(x + z) dx. (32)

As x →∞, equation (11) yields the leading order asymptotics

Ai(x)Bi(x + z) ∼ 1

2π
√

x
ez
√

x.

Thus, to leading order

Z b

0
Ai(x)Bi(x + z) dx ∼ 1

2π

Z b

0

eb
√

x

√
x

dx =
ez
√

b

πz
,

which combines with the right hand side of (32) to yield (27). These asymptotics
can be rigorously justified without much effort (for example, by rescaling so that
the integrals are over a fixed domain [0, 1] and using the dominated convergence
theorem to justify taking pointwise limits).
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2.6 Proof of Lemma 2

Since Gb vanishes when x > b or y > b we have

‖Gb−G‖2HS =

Z b

0

Z b

0

“
Gb(x, y)−G(x, y)

”2
dx dy+‖G‖2HS−

Z b

0

Z b

0
G2(x, y) dx dy.

Since ‖G‖HS < ∞,

lim
b→∞

‖G‖2HS −
Z b

0

Z b

0
G2(x, y) dx dy = 0.

Therefore, to prove Lemma 2, it is enough to show that

lim
b→∞

Z b

0

Z b

0

“
Gb(x, y)−G(x, y)

”2
dx dy = 0. (33)

We use the definition of G and Gb in equations (5) and (17) to obtain

Gb(x, y)−G(x, y) = f−(min(x, y))
“
fb
+(max(x, y)− f+(max(x, y)

”
.

We use the definition of fb
+ in (18) and recall that f+(s) = Ai(s) to obtain

“
fb
+(s)− f+(s)

”2
= (1− cb)

2Ai2(s) + 2cb(1− cb)
Ai(b)

Bi(b)
Bi(s) + c2b

Ai2(b)

Bi2(b)
Bi2(s).

We must show that the contribution of each of these terms vanishes in the limit.
Since cb → 1 it is easy to see that the first term gives a vanishing contribution. The
calculation for the second and third term is similar, and we present the calculation
only for the third term

Ai2(b)

Bi2(b)

Z b

0

Z b

0
f2
−(x, y)Bi2(max(x, y)) dx dy.

Since f− is a linear combination of Ai(x) and Bi(x), and Ai(x) decays fast, it will
suffice to show that the “worst” term

Ai2(b)

Bi2(b)

Z b

0

Z b

0
Bi2(min(x, y))Bi2(max(x, y)) dx dy =

Ai2(b)

Bi2(b)

„Z b

0
Bi2(x) dx

«2

vanishes in the limit. Applying the asymptotic relations (11), we see that we must
prove that

lim
b→∞

Ai(b)

Bi(b)

Z b

0
Bi2(x) dx = lim

b→∞
e−4b2/3/3

Z b

0
x−1/2e4x2/3/3 dx = 0.

We define u = 4x2/3/3 and note that the limit above is (upto a constant)

lim
b→∞

e−4b2/3/3
Z 4b2/3/3

0
u−2/3eu du,

which vanishes by the following lemma.
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Lemma 4 Fix 0 < α < 1. Then

lim
M→∞

e−M
Z M

0
u−αeu du = 0. (34)

Proof Fix a > 0. We separate the integral into an integral over two intervals:
(0, M − a) and (M − a, M). First,

e−M
Z M−a

0
u−αeu du ≤ 1

1− α
e−aM1−α.

Similarly,

e−M
Z M

M−a
u−αeu du ≤ a

(M − a)α
.

We now choose a(M) → ∞ in a such a way that e−aM1−α → 0 and aM−α → 0
(a = Mα/2 will do).

Acknowledgements Supported by NSF grant 1411278.
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