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Abstract We study a discrete attachment model for the self-assembly of polyhedra
called the building game.We investigate two distinct aspects of the model: (i) enumer-
ative combinatorics of the intermediate states and (ii) a notion of Brownian motion
for the polyhedral linkage defined by each intermediate that we term conformational
diffusion. The combinatorial configuration space of the model is computed for the
Platonic, Archimedean, and Catalan solids of up to 30 faces, and several novel enu-
merative results are generated. These represent the most exhaustive computations of
this nature to date. We further extend the building game to include geometric informa-
tion. The combinatorial structure of each intermediate yields a systems of constraints
specifying a polyhedral linkage and itsmoduli space.Weuse a randomwalk to simulate
a reflected Brownian motion in each moduli space. Empirical statistics of the random
walk may be used to define the rates of transition for a Markov process modeling the
process of self-assembly.

Keywords Self-assembly · Polyhedra · Molecular cages · Polyhedral linkages ·
Brownian motion on manifolds

Communicated by Robert V. Kohn.

Partially supported by NSF DMS Grants 1148284 and 1411278.

B Govind Menon
govind_menon@brown.edu

Daniel Johnson-Chyzhykov
daniel_johnson@alumni.brown.edu

1 Division of Applied Mathematics, Brown University, 182 George St., Providence, RI 02912,
USA

2 Present Address: Hudson River Trading, 32 Old Slip, 30th Floor, New York, NY 10005, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-016-9291-z&domain=pdf


J Nonlinear Sci

Mathematics Subject Classification 52B05 · 70B15 · 92C40 · 92E10

1 Introduction

The formation of closed-shell structures provides striking examples of self-assembly
in nature. For instance, the discovery of C60, buckminsterfullerene, revolutionized
the understanding of fundamental forms of carbon (Kroto et al. 1985). In a similar
vein, the study of viral capsids with icosahedral symmetry has played an important
role in molecular biology (Caspar and Klug 1962; Crick and Watson 1956). These
natural examples have inspired the development of several synthetic examples on
larger scales, such as supramolecular polyhedral clusters (Liu et al. 2011; Sun et al.
2010; Li et al. 2011), synthetic DNA containers (Bhatia et al. 2009; Douglas et al.
2009), and self-folding polyhedra (Pandey et al. 2011).

Our purpose in this paper, and a companion paper (Russell and Menon 2016),
is to present a set of mathematical results inspired by the self-assembly of closed-
shell structures. In this paper, we study mathematical properties of the building game
(Wales 1987; Zlotnick 1994). In Russell andMenon (2016), we present amathematical
model for recent experiments on synthetic supramolecular cages. Both papers share
a common perspective rooted in discrete geometry and statistical physics. However,
the papers address distinct challenges and may be read independently.

The building game is a discrete growth-by-attachment model for a fixed polyhedron
that may be described informally as follows. The process begins with a cluster con-
sisting of a single face. At each step, a face of the polyhedron that is not in the cluster
but shares an edge with it is chosen and attached to the cluster. The process terminates
when all faces of the polyhedron are part of the cluster. The configurations or inter-
mediates of the system consist of all possible clusters formed by this process modulo
the symmetry group of the polyhedron. The combinatorial configuration space, C, is
the set of all configurations, equipped with the structure of a graph: Two configura-
tions that differ by a single face are neighbors. Pathways of assembly are paths in the
combinatorial configuration space that begin with a single face and terminate in the
complete polyhedron. These notions are illustrated in Fig. 1.

In a recent article, one of the authors (GM), along with other co-authors, illus-
trated the utility of such discrete geometric models of self-assembly for two problems:
the self-assembly of the bacteriophage MS2 and surface tension-driven self-folding
(Kaplan et al. 2014). While the work presented in the current paper is inspired by
similar scientific questions, it is focused primarily on mathematical properties of the
building game. The novel results in this work relate to two distinct issues: (i) enu-
merative problems and (ii) random motion of polyhedral linkages. In the first two
sections of this paper, we formalize and present a set of new enumerative results on
the building game. Despite the fact that the size of the configuration space explodes
combinatorially, it is necessary to perform exhaustive computations in all tractable
cases, in order to develop heuristics and sampling techniques for situations where the
configuration space is computationally intractable. The results presented here are the
most extensive such computations to date. We expect that these computational results
will be useful independent of any particular experimental system, much in the same
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Fig. 1 Combinatorial configuration space for the octahedron. Assembly proceeds by the attachment of
one face at a time. Each configuration consists of a contiguous cluster of triangular faces attached at
edges. It is convenient to graphically represent each three-dimensional cluster by projecting it into two-
dimensions as a Schlegel diagram. In the figure above, each cluster is represented by the dark blue triangles.
The combinatorial configuration space is the directed graph of all configurations. The directed edges are
denoted by arrows above. An assembly pathway is a pathway from intermediate 1 (consisting of one face)
to the intermediate 14 (the completely formed octahedron) (Color figure online)

Fig. 2 Geometry of embedded configurations. Each intermediate in the combinatorial configuration space
determines a set of polynomial constraint equations as explained in Sect. 4. The solution set (over the reals)
of these constraint equations is a real algebraic variety. Points on this variety that also satisfy the constraint
of nonself-intersection correspond to geometric embeddings of a polyhedral linkage. In this figure, we
illustrate three embeddings of intermediate 10 in Fig. 1. It is simplest to first embed this configuration by
removing two contiguous faces from the standard embedding of the complete octahedron (left figure) and
to then squash it into the two embeddings on the right. This linkage has one internal degree of freedom. In
order to visualize ‘conformational diffusion’ the reader should imagine a continuous random jiggling that
explores embeddings like those above

way that detailed computations of idealized models (e.g., configurations of minima in
the Lennard–Jones system with n particles) are useful in a variety of problems.1

The second, and main, theme in this work is to relate the geometry of intermediates
to rates of transition between them. The adjective combinatorial in the definition of the
configuration space reflects the fact that each configuration is described completely
by a 2-coloring of the faces of the polyhedron. It is included to contrast purely combi-
natorial notions with the geometric properties of intermediates, related to the manner
in which they are embedded in R3. As seen in Fig. 2, each configuration determines a

1 These data are publicly available at the Brown Digital Repository (Johnson and Menon 2016).
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polyhedral linkage. Our main thesis is that the kinematics of linkages should play an
important role in self-assembly. This insight is motivated by experiments on synthetic
self-assembly. We noted the importance of rigidity of intermediates in experiments
with self-folding polyhedra (Kaplan et al. 2014; Pandey et al. 2011). In a similar vein,
the importance of kinematics of collections of rigid spherical clusters has been noted
in Holmes-Cerfon et al. (2013).

While the building game intermediates are not the same as those seen in self-
folding, the size of the combinatorial configuration space is much smaller, making
it a more attractive model for a mathematical study. Further, in instances where the
building game is used as a model for the formation of closed-shell structures, it is
natural to use the kinematics of a linkage to develop a notion of random internal
motion of each intermediate. Indeed, perhaps the simplest physical caricature of the
formation of a closed-shell structure is the following. We assume that the fundamental
unit in the closed-shell structure (‘monomers’) is elastic, but stiff, triangles with sticky
edges in a thermal bath. The monomers diffuse at random in the bath, sticking with
a certain probability when they collide. When two or more triangles meet, they form
intermediate states. These intermediate states are subject to two forms of random
motion. On the one hand, their center of mass diffuses in space. On the other hand,
they also undergo internal vibrations, adopting different conformations. As a first
approximation of such conformational diffusion, it is natural to consider the random
motion of a rigid triangular polyhedral linkage as considered in this paper. Further,
since the monomers are assumed to be stiff, it is natural to expect that the probability
of attachment or detachment of monomers depends on the internal conformation, with
high probability of attachment when the intermediate adopts a conformation that is
close to a partially formed shell.

We formalize these ideas by introducing a stochastic process that corresponds to the
exploration of internal degrees of freedom by intermediates composed of rigid faces.
Each configuration defines a polyhedral linkage, or equivalently, an algebraic variety.
We call the collection of algebraic varieties fibered over the combinatorial configura-
tion space, the geometric configuration space, G. We study reflected Brownian motion
on each algebraic variety within the geometric configuration space.2

The link between the enumerative problems and conformational diffusion is this:
The kinetics of self-assembly are naturally modeled by a Markov process that hops
between states in the combinatorial configuration space, C. However, the combinato-
rial explosion in the size of the configuration space makes it impossible to determine
the transition rates of this Markov process from experimental data (since there is one
rate constant for each edge in the combinatorial configuration space). It is necessary to
determine rates by computation, and reflected Brownianmotion allows us tomake pre-
cise the notion of ‘typical shape’ for a configuration and to compute rates of transition
between states based on Brownian motion on each algebraic variety within G.

The remainder of this article is organized as follows. A mathematical formalism
for the building game is introduced in the next section. This is followed by a set of
enumerative results in Sect. 3. We introduce the moduli space of a configuration and

2 More precisely, we study a discretized reflected random walk on each algebraic variety. It has not been
proven in general that these random walks converge to a reflected Brownian motion on each variety.
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the geometric configuration space, G, in Sect. 4. The notion of degrees of freedom is
explored in Sect. 5. This is followed by a study of random walks on moduli space and
the extraction of transition rates in Sect. 6.

As noted above, the paper naturally breaks into two distinct parts: the first on
enumerative results and the second on the kinematics and randommotion of polyhedral
linkages. These two parts are largely independent of one another. The primary purpose
of Sect. 2 is to provide precise defintions of configurations obtained by the building
game, in a way that accounts for symmetry, since these definitions underlie Sect. 3.
The reader interested primarily in the randommotion of polyhedral linkages is advised
to simply skim over the next two sections, noting the intuitive meaning of the building
game in Fig. 1 and the combinatorial explosion implicit in the enumerative results
tabulated in Sect. 3.

2 The Building Game: Mathematical Formalism

2.1 Introduction

The building game was introduced by Wales (1987) as a model for the formation of
fullerenes. Zlotnick subsequently used it to model the assembly of polyhedral viral
capsids (Zlotnick 1994). The model consists of a graph of intermediate configura-
tions and a Markov process defined on this graph. In what follows, we focus on the
description of the graph of intermediate configurations.

In a nutshell, the configurations may be naturally described by a coloring process.
Given a polyhedron with each face painted red, choose a face and paint it blue. At
each subsequent step, choose a red face that is adjacent to a blue face and paint it
blue; stop when all faces are blue. Each step of this process yields a connected cluster
of blue faces that represents a partially formed state in the assembly process. We
further identify all states that are equivalent under the action of the rotation group of
the polyhedron, and call an equivalence class of states a configuration. The abstract
notions in this subsection are simply included in order that these equivalence classes
are defined precisely.

The principal virtue of the building games is that it provides a simple formulation
for essential features of self-assembly such as a description of partially formed states,
pathways, and kinetics of assembly. However, it does not account for more realistic
features such as the formation of malformed capsids. The reader is referred to Kaplan
et al. (2014) for a more detailed description of the advantages and drawbacks of this
model in the context of capsid formation. In this paper, we focus on its mathematical
properties.

2.2 Definitions

Assume that given a polyhedron, P , whose labeled faces, edges, and vertices are the
sets F , E , and V , respectively. Also assume that given a symmetry group, G, of the
polyhedron. In this paper, P is a Platonic, Archimedean, or Catalan solid and G is its
group of rotational symmetries. Let 2F denote the set of all subsets of F . We denote
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a subset x ∈ 2F by x = { f1, . . . , f|x |}, f j ∈ F , 1 ≤ j ≤ |x |. We say that a subset
x ∈ 2F is connected if each face fi ∈ x shares an edge with another face f j ∈ x .
Let X ⊂ 2F denote the set of connected subsets. A state for the building game is an
element x ∈ X . The states x ∈ X may also be described by 2-colorings. A 2-coloring
of the faces of the polyhedron is a function c : F → {0, 1}. We adopt the convention
that 0 is ‘red’ and 1 is ‘blue.’ Then each state x of the building game is a subset
x = c−1{1} ⊂ F such that x is connected.

Wehave indicated the connectionwith colorings, since the enumeration of colorings
is a classic problem in discrete group theory (Rotman 1995) and it allows us to make
contact with (Russell and Menon 2016). The group G acts naturally on the set X as
follows: given g ∈ G and x = { f1, . . . , f|x |} ∈ X , the set gx consists of the faces
{g f1, . . . , g f|x |}. We say that two states x and y are equivalent, written x ∼ y, if there
exists g ∈ G such that gx = y. Finally, we define a configuration to be the set of
equivalence classes [x] of states x ∈ X , under the equivalence relation ∼.

Recall that the orbit of an element x ∈ X is the subset G.x .= {g.x : g ∈ G}. Thus,
each configuration [x] in the building game may be considered as the group orbit
G · x . Group orbits are classically enumerated via Burnside’s lemma: The number of
configurations (orbits), |X/G|, is given by

|X/G| = 1
|G|

∑

g∈G
|Xg| (1)

where Xg = {x ∈ X : g.x = x} is the set of states fixed by g. The size of any
equivalence class (orbit) is enumerated in a similar manner. Recall that the stabilizer
subgroup of an element x ∈ X is the subgroupGx

.= {g ∈ G : gx = x} ofG that fixes
x (Rotman 1995). Then by the orbit stabilizer theorem and Lagrange’s theorem, the
size of any group orbit is

|G.x | = |G|
|Gx |

. (2)

We say that the symmetry number rx of a state x is the order of its stabilizer subgroup
|Gx |. The symmetry number rx is the same for all states in the equivalence class [x].
Indeed, if x and y are states in [x], we have

rx = |Gx | =
|G|
|G.x | =

|G|
|G.y| = |Gy | = ry . (3)

In Fig. 3, we see three states of the octahedron and their orbit stabilizer subgroups.
The first state, with only a single face, has a symmetry number of 3 since any rotation
by a multiple of 2π

3 fixes the face. The second has a symmetry number of 2 since
only the identity and a rotation by π will fix the faces. The final state, with three
faces, cannot be fixed by any rotation other than the identity and thus has symmetry
number 1.

There is a natural notion of neighbors on the set X . We say that two states x and y
are neighbors if they differ by a single face. There are two possibilities. Either x ⊂ y,
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Fig. 3 Stabilizer subgroups for three octahedron states. States are represented by Schlegel diagrams as in
Fig. 1

and |y| = |x | + 1 and we say that y is obtained from x by a forward step; or y ⊂ x ,
|x | = |y| + 1 and we say that y is obtained from x through a backward step. If x
and y are neighbors, so are gx and gy for all g ∈ G. We say that the orbits [x] and
[y] are neighbors if there exist states x ∈ [x] and y ∈ [y] such that x and y are
neighboring states. Two neighboring configurations may be linked by the attachment
or detachment of several possible faces. If x and y are neighboring states, the state x
may be connected to other states z ∈ [y]. The set of different faces

Fxy := { f /∈ x : x ∪ { f } ∈ [y]} ∪ { f ∈ x : x\{ f } ∈ [y]}

that can be added or removed from x to get an element of [y] is called the degeneracy
set, and the number of such faces Sxy :=

∣∣Fxy
∣∣ is called the degeneracy number.

It is important to note that Fxy is in general not the same as Fyx (see Fig. 4). Further,
while it is clear from the definition that Fxy depends only on [y], it may also be checked
that Fxy depends only on [x] and that the degeneracy and symmetry number are related
by Johnson (2015, Theorem 4)

Fig. 4 Degeneracy is not symmetric. A face may be attached at one of the four edges to obtain the
intermediate on the right from the one on the left. However, the removal of a face can take place in only
two ways
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Fig. 5 Combinatorial configuration space for the cube. The pathways 1, 2, 4, 6, 7, 8 and 1, 2, 3, 6, 7, 8
provide shellings of the cube. However, intermediate 5 is not shellable and 1, 2, 3, 5, 7, 8 is not a shelling
pathway

rx Sxy = ry Syx (4)

Definition 1 The combinatorial configuration space, denoted C, for P is the set of
configurations X/G equipped with edges linking neighbring configurations.

In order to avoid any confusionwith the edges, E , of the polyhedron, wewill refer to
these edges as connections. An assembly pathway, or pathway for short, is a sequence
of intermediates [x0], [x1], . . . , [x |F |] such that [x j ] is connected to [x j+1], |xk | = k,
[x0] = ∅, and x |F | = F . Figures 1 and 5 show the combinatorial configuration spaces
for the octahedron and cube, respectively.

2.3 Shellable Configurations

This section may be omitted on a first reading. It is included to connect the building
game with the classical notion of shelling of polytopes.

The building game is a physically motivated schema for the assembly of a polyhe-
dron from its faces. More broadly, the idea that complex polytopes can be constructed
by gluing simpler polytopes, such as simplices, is fundamental to the theory of poly-
topes and combinatorial topology. The simplest examples of such results are provided
by triangulations of two-dimensional polygons. A fundamental fact about triangula-
tions, which underlies the usual proof of Euler’s formula V −E+F = 2 for connected
planar graphs, is that the removal of a triangle from a triangulation does not change the
Euler characteristic of the triangulation. The extension of this idea to higher dimen-
sions is subtle for the following reason: There exist simplicial decompositions of the
tetrahedron for which the Euler characteristic changes when one simplex is removed
(Rudin 1958).

Loosely speaking, a shelling of a polytope is a construction of the polytope by the
attachment of basic units (e.g., vertices, faces, simplices) such that all the intermediates
along the pathway are homeomorphic. All the polyhedra considered in this work can
be viewed as spherical polyhedra (i.e., tilings of the sphere, with edges given by great
arcs). For such polyhedra, a shelling is defined as follows (Whiteley 1994, p. 152).
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We view each face as a closed subset of the sphere, and note that the boundary of each
face determines a spherical polygon.

Definition 2 A shelling ofP is an ordering of the faces (as polygons), f1, f2, . . . , fk,
fk+1, . . . , fF such that the intersection of each face fk+1 with the union of the previous
faces ∪k

j=1 f j is a single, connected polygonal path with at least one edge.

Although the notion of shelling is usually applied to a full polyhedron, we may adapt
it to partially formed polyhedra in a natural manner. It is only necessary to quotient out
the group action ofG to obtain the appropriate notion of shellability for configurations.

Definition 3 A configuration [x] is shellable if for every state x ∈ [x] there is a
linear ordering f1, f2, . . . , f|x | on the faces of x such that this ordering is the leading
sequence of a shelling f1, f2, . . . , f|x |, . . . , f|F | of the polyhedron P .

We also say that a connection is ashellable connection if the two configurations it
connects are both shellable. A shellable pathway is a pathway composed entirely of
shellable configurations [x0], . . . , [x |F |].

We illustrate these ideas for the cube and octahedron. The combinatorial config-
uration space for the cube is shown in Fig. 5. Both 1, 2, 4, 6, 7, 8 and 1, 2, 3, 6, 7, 8
are shelling pathways. However, not each pathway provides a shelling. When a face
is attached to state 3 to obtain state 5, the intersection of its boundary with the union
of previous faces yields two disconnected lines. Thus, intermediate 5 is not shellable,
and 1, 2, 3, 5, 7, 8 is not a shelling pathway. Similarly, the reader may check that the
octahedral configuration 9, 11, and 12 in Fig. 1 are not shellable (the closed subsets
of the sphere defined by 7 and 9 are not homeomorphic, because 9 includes a hole).
Only the pathways that contain the sequence 8, 10 are shellable—this gives 4 shellable
pathways for the octahedron (cf. Table 2).

As a demonstration of the utility of building game configuration space, we present
the following enumerative result. For any polyhedron P , the number of shellings is
obtained by recursively summing over all shellable pathways, weighting each path by
the degeneracy of the states along the path and we find (Johnson 2015, Theorem 7)

#(shellings) =
∑

shellable
pathways

|[x1]|
|F |−1∏

j=1

S[x j ][x j+1]. (5)

Thus, C always admits a subgraph consisting of shellable intermediates and connec-
tions. Since shellability is somewhat tangential to the discussion in this paper, the
interested reader is referred to Johnson (2015) for a proof of this result.

3 Enumerative Results

While the problem of computing the combinatorial configuration space, C, is clearly
related to classical enumerative problems in graph theory, such as the enumeration
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Table 1 Enumerative results for the Platonic, Archimedean, and Catalan solids

Polyhedron |F | Intermediates Connections Pathways

Tetrahedron 4 4 3 1

Cube 6 8 9 3

Octahedron 8 14 21 14

Dodecahedron 12 73 263 17,696

Icosahedron 20 2,649 17,241 57,396,146,640

Truncated tetrahedron 8 28 63 402

Cuboctahedron 14 340 1,634 10,170,968

Truncated cube 14 499 2,729 101,443,338

Truncated octahedron 14 555 3,069 68,106,377

Rhombicuboctahedron 26 638,850 6,459,801 164,068,345,221,515,292,308

Truncated cuboctahedron 26 1,525,658 17,672,374 13,837,219,462,483,379,105,902

Triakis tetrahedron 12 98 318 38,938

Rhombic dodecahedron 12 127 493 76,936

Triakis octahedron 24 12,748 81,296 169,402,670,046,670

Tetrakis hexahedron 24 50,767 394,377 4,253,948,297,210,346

Deltoidal icositetrahedron 24 209,675 1,989,548 418,663,242,727,526,726

Pentagonal icositetrahedron 24 345,938 3,544,987 2,828,128,000,716,774,492

Rhombic triacontahedron 30 2,423,212 26,823,095 161,598,744,916,797,017,978,128

of monochromatic subsets of colored graphs, we are unaware of any theoretical enu-
merative results on the building game.3 The first computational result is due to David
Wilson, who enumerated the number of configurations for the icosahedron (Sloane
2003, sequence A030138) (this computation was recreational, motivated by polyomi-
noes). In the context of viral self-assembly, Zlotnick and his co-workers enumerated
the configurations for the Platonic solids (Endres et al. 2005).

In Table 1 below, we present comprehensive enumerative results on the building
game for all Platonic, Archimedean, and Catalan solids. Our results also include an
enumeration of connections and pathways. The most obvious feature of the problem is
the combinatorial explosion in the number of intermediates for polyhedra of increasing
complexity. This is illustrated with several graphs in Fig. 6. The number of intermedi-
ates is roughly of the same order of magnitude as the number of connections between
intermediates, but the number of pathways is far larger.

We have also compared building game intermediates with shellable intermediates.
A dynamic programming procedure was implemented to enumerate the number of
shellings via formula (5). Tables 2 and 3 detail the shellability statistics for the Platonic,
Archimedean, and Catalan solids. Because of the added restriction of shellability, the

3 By ‘theoretical’ we mean results that are obtained without explicit enumeration on a computer. Closest in
spirit to our work are enumerative results on polyominoes, configurations of n attached squares on a planar
lattice.
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Fig. 6 Relation between
number of faces and
intermediates, connections and
pathways in the combinatorial
configuration space, C
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Table 2 Shellable intermediates for the Platonic, Archimedean, and Catalan solids

Polyhedron |F | Shellable
intermediates

Shellable
connections

Shellable
pathways

Tetrahedron 4 4 5 1

Cube 6 7 7 2

Octahedron 8 11 13 4

Dodecahedron 12 52 155 2,166

Icosahedron 20 469 1,985 105,999,738

Truncated tetrahedron 8 21 40 174

Cuboctahedron 14 136 468 477,776

Truncated cube 14 247 1,000 5,232,294

Truncated octahedron 14 342 1,464 5,704,138

Rhombicuboctahedron 26 70,887 462,721 64,308,526,503,247,584

Truncated cuboctahedron 26 515,335 4,070,813 13,890,723,216,176,694,816

Triakis Tetrahedron 12 48 115 5,012

Rhombic dodecahedron 12 67 195 6,258

Triakis octahedron 24 1,021 4,237 210,459,770,300

Tetrakis hexahedron 24 4,224 21,125 5,894,431,702,846

Deltoidal icositetrahedron 24 33,046 208,317 703,619,122,996,096

Pentagonal icositetrahedron 24 95,326 657,013 7,572,459,719,248,765

Rhombic triacontahedron 30 97,741 702,219 7,057,239,571,753,327,764

Table 3 Number of shellings for the Platonic, Archimedean, and Catalan solids with at most 30 faces

Polyhedron |F | Shellings

Tetrahedron 4 24

Cube 6 480

Octahedron 8 4,224

Dodecahedron 12 19,041,600

Icosahedron 20 1,417,229,099,520

Truncated tetrahedron 8 9,216

Cuboctahedron 14 113,055,744

Truncated cube 14 654,801,408

Truncated octahedron 14 937,087,104

Rhombicuboctahedron 26 4,728,400,467,971,102,208

Truncated cuboctahedron 26 688,499,026,944,479,645,952

Triakis tetrahedron 12 587,040

Rhombic dodecahedron 12 5,836,800

Triakis octahedron 24 66,063,419,534,592

Tetrakis hexahedron 24 1,389,323,257,015,296

Deltoidal icositetrahedron 24 125,987,819,253,281,472

Pentagonal icositetrahedron 24 1,144,572,832,023,047,616

Rhombic triacontahedron 30 15,574,782,555,813,226,074,240
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number of intermediates and connections is lower than in the general case, but the
combinatorial growth as the number of faces increases is similar.

All the results included here are based on exhaustive ‘brute-force’ computation,
though various techniques are necessary to streamline the computation and organize
the data. The methods for similar computations have been discussed in print before
(Pandey et al. 2011) and are not repeated here. The reader interested in the details of
the computation is referred to Johnson (2015).

4 The Geometric Configuration Space

4.1 The Problem of Rates

The combinatorial explosion in the number of connections in the configuration space,
C, starkly highlights the challenge of using the building game as a model for self-
assembly. In order to define a Markov process on C, we must associate a rate constant
to each connection between neighbors in C. If the rates are to be determined from
experimental data, we are facedwith a parameter estimation problem that is impossible
to resolve for even the simple polyhedra considered here.

Various strategies may be adopted to resolve this problem, while still retaining
the essential simplicity of the building game. One possibility is to prune the graph,
C, retaining only a subgraph that we hope will capture the essential configurations in
self-assembly. Zlotnick and co-workers adopt this strategy, pruning the set of assembly
pathways for the Platonic solids to a single path linking neighboring configurations
that have minimal energy (Endres et al. 2005). Numerical experiments reveal that such
procedures, while admittedly ad hoc, may be quite robust—we observed in Pandey
et al. (2011),Kaplan et al. (2014) thatmanynatural choices of rate functions led to path-
ways that focus through the same configurations. A second strategy is to resolve rates
by computation, rather than (physical) experiments. In this approach, it is necessary to
augment the purely combinatorial description of configurations in C with geometric,
chemical, or physical properties that determine the rates of transition between states.
This is the approach we adopt below.

Let us fix an embedding of P inR3 and view states x ∈ 2F as subsets of R3. Then,
each configuration [x] in C admits an embedding in R3 given by a subset x ∈ P , for
any x ∈ [x]. We call this the standard embedding. It is unique modulo the action of
G. However, viewing x as a polyhedral linkage, we see that the standard embedding
is simply one among infinitely many if the linkage has nontrivial internal degrees of
freedom (see for example, Fig. 2). The set of embeddings of x is described by an
algebraic variety. We define a stochastic process in this variety and use it to define
rates of transition between configurations.

Our approach focuses on the geometric properties of configurations, ignoring (at
present) physical modeling. There are several reasons for this choice: First, it is nat-
ural to expect that physical modeling of configurations will only augment our basic
model—for example, we may introduce attachment and detachment probabilities
based on whether the embedded configuration is close to a standard state consist-
ing of a connected subset of faces of P . Second, in recent work (Pandey et al. 2014)
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we explored the role of rigidity and degrees of freedom in self-folding polyhedra. The
current study allows us to explore mathematical ideas implicit in that paper in greater
detail. Finally, the theory of linkages provides an elegant approach to the mathemat-
ical problem of constructing manifolds with prescribed geometry. Each manifold is
identified with the moduli space of a set of constraint equations (Thurston and Weeks
1984). Thus, it is of intrinsic mathematical interest to explore the geometric properties
of the manifolds defined by each configuration [x] ∈ C.

4.2 The Constraint Equations

In this section, we assume that a state x ⊂ P is fixed. We always assume that the
edges and faces of the polyhedron are rigid. No conditions are imposed at points
where faces meet, except that of connectivity between the faces (i.e., vertices on the
common edge are identified). Thus, an embedding of the state x intoR3 is completely
prescribed by a list of coordinates for each vertex in x that is in accordance with the
constraints of rigidity of each edge and face. Let s f denote the number of vertices in
a face f ⊂ x , and let Nx = ∑

f ∈x s f . We denote the kth vertex of the j th face of x

by v jk =
(
v
jk
x , v

jk
y , v

jk
z

)
. It is convenient to list all coordinates in a single vector, z,

of length n = 3Nx , defined by

z =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1

...

v1,s f1
...

v|x |,1
...

v
|x |,s f|x |

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn . (6)

Each embedding of x is a point z ∈ Rn that solves the constraint equation
c(z) = 0 where the constraints c j,k(z) are listed in Table 4. As explained below,
these equations are not independent in general (but this does not affect the definitions
or our computation). Finally, when treating linkages it is important to prevent self-
intersection of faces. That is, while each embedding solves the equations in Table 4,
the only solutions that correspond to a physical linkage are those that are also nonself-
intersecting.

We now explain the quadratic constraints in Table 4 in greater detail. The first
constraint fixes the length of edges. If the kth edge is defined to be that between the
(k − 1)st and kth vertices, we use the following function to constrain its lengths to a
known value ℓ jk :

c j,kedge (z) =
∣∣∣v j,k − v j,k−1

∣∣∣
2
− (ℓ j,k)

2. (7)
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Table 4 Constraints defining the moduli space M[x]

Constraint type Polynomial

Edge length c j,kedge (z) =
∣∣∣v j,k − v j,k−1

∣∣∣
2

− (ℓ j,k )
2

Angle c j,kang (z) = (v j,k−1 − v j,k ) · (v j,k+1 − v j,k ) − ℓ j,kℓ j,k+1 cos(θ j,k )

2D face c j,k2D(z) = v1,k + ℓ j,k,1R(v j,0 − v j,1) − v j,k

Vertex identification c j1,k1, j2,k2,dident (z) = v
j1,k1
d − v

j2,k2
d

The constraint that the angle at each vertex of each face is fixed may be written as a
polynomial constraint using the dot product

c j,kang (z) = (v j,k−1 − v j,k) · (v j,k+1 − v j,k) − ℓ j,kℓ j,k+1 cos(θ j,k). (8)

Here, θ j,k is the angle between the kth and (k + 1)st edges at the vertex v j,k .
In practice, we need only explicitly enforce the lengths of the first two edges (k =

1, 2) and the first angle on each face. Indeed, this fixes a rigid triangle on the face
consisting of the first three vertices. Thus, there are a total of 2|x | independent edge
length constraints and |x | independent angle constraints. Once the positions of three
distinct vertices on each face has been determined, it is somewhat simpler to use a
rotation matrix and a template for each polygonal face to determine the remaining
vertices (rather than solve the nonlinear systems (7) and (8)). The template is a set
of coordinates for the vertices in a fixed reference configuration. We denote it by
the list v̂ j,0, v̂ j,1, v̂ j,2, . . . , v̂ j,k, . . . . Once the locations for v j,0, v j,1, and , v j,2 are
determined, we can identify the location of v j,k for k > 2 using the following length
and angle constants

ℓ j,k1,k2 .= |v̂ j,k1 − v̂ j,k2 |, (9)

φ j,k1,k2,k3 .= cos−1

((
v̂ j,k1 − v̂ j,k2

)
·
(
v̂ j,k3 − v̂ j,k2

)

(ℓ j,k1,k2)(ℓ j,k3,k2)

)

. (10)

We first place a point v̄ j,k in the span of v j,0 − v j,1 at a distance of |v̄ j,k − v j,1| =
ℓ j,k,1. The choice v̄ j,k = v j,1 + ℓ j,k,1

ℓ j,0,1 (v
j,0 − v j,1) will work, since

|v̄ j,k − v j,1| = |ℓ
j,k,1

ℓ j,0,1 (v
j,0 − v j,1)| = ℓ j,k,1

ℓ j,0,1 |v
j,0 − v j,1| = ℓ j,k,1. (11)

Next, a rotation matrix is used to rotate v̄ j,k by the correct angle into its position
v j,k . The rotation matrix is centered at v j,1, and its axis of rotation is defined by
u = 1

ℓ j,0,1ℓ j,2,1 (v
j,0 − v j,1) × (v j,2 − v j,1). Similarly, the angle of rotation φ j,0,1,k is

the angle created by the two line segments in the template (v̂ j,0, v̂ j,1) and (v̂ j,2, v̂ j,1).
Thus, using R = R(φ j,0,1,k, u) our equation for v j,k is
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v j,k = v1,k + R(v̄ j,k − v j,1) = v1,k + ℓ j,k,1R(v j,0 − v j,1). (12)

Since R is a polynomial in v j,0, v j,1, and v j,2, we get the following polynomial 2D
face constraint for each k > 2.

c j,k2D(z) = v1,k + ℓ j,k,1R(v j,0 − v j,1) − v j,k (13)

The final constraint type, vertex identification, is used to enforce that the edge
between two faces is a hinge. To do this, we simply need to ensure that corresponding
vertices on each edge share identical locations. This results in the constraints

c j1,k1, j2,k2,dident (z) .= v
j1,k1
d − v

j2,k2
d , (14)

where v j1,k1 and v j2,k2 are corresponding vertices from the faces j1 and j2 meeting
at a hinged edge. If there are |Ex | hinges in a state x , there are 6|Ex | corresponding
vertex identification constraints.

We do not have to use the angle and 2D face constraints when all the faces of
the polyhedron are triangles (e.g., for the tetrahedron, octahedron, and icosahedron).
Further, rather than explicitly using vertex identification constraints, we can either
treat them as length constraints with zero length between identified vertices or we
can simply reindex the vertices so that identified vertices are actually treated as a
single vertex. With either choice, in the triangular case, we may only deal with length
constraints if we wish. This property simplifies computations with such polyhedra and
is utilized in Sect. 6.

4.3 The Geometric Configuration Space

Wehave shown in the previous subsection that each state x determines a set of quadratic
constraints c(z; x) (the dependence on the state x was suppressed in the notation for
simplicity). The solution set of the constraint equations is invariant under rigid body
motions. Precisely, suppose Q ∈ SO(3) is a rotation matrix and c ∈ R3, let Qz + c
denote the vector inR3Nx obtained by the transformation v *→ Qv+ c for each vertex
contained in z. Then, the form of the constraint equations in Table 4 implies that
c(Qz + c; x) = 0.

We define the moduli space, M[x], to denote the solution set

M[x] = {z ∈ R3Nx |c(z; x) = 0 }. (15)

The moduli space is well defined since each y ∈ [x] is of the form y = gx , for
some g ∈ SO(3). Further, since M[x] is the solution set of a family of quadratic
equations determined by [x], it is an algebraic variety. Each point z in the moduli
space that corresponds to a polyhedral linkage that does not self-intersect is called a
conformation. Finally, we define the geometric configuration space, G, to be the set
of moduli spaces M[x] fibered over configurations [x] in the graph C.
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In what follows, we explore some properties of G in order to convince the reader
that it is the natural setting for the study of properties of configurations that rely on
their embedding in space (e.g., energy functions that depend on the embedding of a
state x into R3).

5 Degrees of Freedom

5.1 Definitions

Roughly speaking, the degrees of freedom of a linkage are the number of parameters
needed to specify its position completely. In more mathematical terms, this should
correspond to the dimension of the moduli space. However, this is not entirely correct:
The moduli space M[x] is an affine variety, not a manifold; it may possess singular
points, and the degrees of freedom of a linkage may depend on the conformation. That
this is not an esoteric mathematical objection is revealed in Fig. 7. Several intriguing
linkages with this property have been studied in the mechanics literature (Galletti and
Fanghella 2001; Wohlhart 1996).

There are in fact three distinct nonnegative integers that could be viewed as the
‘number of independent coordinates’: the dimension of the variety M[x]; the dimen-
sion of the variety M[x] at a point z ∈ Rn ; and finally the dimension of the tangent
space TzM[x]. In order to explain the subtleties involved, we review some basic alge-
braic geometry following (Cox et al. 1992). Our algorithm in Sect. 6 does not directly

Fig. 7 How many degrees of freedom? A linkage of six squares admits two families of embeddings into
R3. The embedding on the left has one degree of freedom; the embedding on the right has two degrees of
freedom. By generalizing this construction, one sees that a corrugated linkage with 2n squares may have
1 or n − 1 degrees of freedom corresponding to the modes above. We are unaware of a natural notion of
Brownian motion of this linkage that allows it to flip between these distinct conformations
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use these ideas, but there are inconsistencies in our approach that should be rectified
in future work.

We consider polynomials in n variables z1, . . . , zn with coefficients in a field F.
Given s poynomials f1, . . . , fs , the affine varietyV = V( f1, . . . , fs) is the set of zeros
{(z1, . . . , zn) ∈ Fn

∣∣ f j (z1, . . . , zn) = 0, 1 ≤ j ≤ s }. The set of all polynomials that
vanish on V is an ideal, denoted I (V). Let ⟨ f1, . . . , fs⟩ denote the ideal generated by
the polynomials f1, . . . , fs . Clearly, all polynomials in ⟨ f1, . . . , fs⟩ vanish on V, so
that ⟨ f1, . . . , fs⟩ ⊂ I (V). But, in general, these ideals are not the same, though they
are related through Hilbert’s Nullstellensatz if the field F is algebraically closed (Cox
et al. 1992, Ch. 4). The algorithmic approach to linkages is complicated by the fact
that R is not algebraically closed.

In this context, the dimensions of interest are defined as follows.

1. The dimension of a variety V, denoted dimV, is the degree of the affine Hilbert
polynomial of the corresponding ideal I (V) (Cox et al. 1992, Defn. 7, p. 430).

2. The dimension of V at a point p, denoted dim pV, is the maximum dimension of
an irreducible component of V containing p (Cox et al. 1992, Defn. 6, p. 460).

3. Finally, the tangent space TpV is itself an affine variety (Cox et al. 1992, Defn. 1, p.
455). It may be defined as a translate of a linear subspace of the space of poly-
nomials in n variables z1, . . . , zn ∈ F, without requiring that the field be R or C.
Since it is an affine variety, its dimension is defined as in (1) and denoted dimTpV.

4. A point p ∈ V is non-singular when dim pV = dimTpV. If not, the point is
singular. The set of singular points p ∈ V is called the singular locus.

The above definitions rely only on the algebraic properties of the ideal I (V). When
the field F = R, orC, it remains to determine whether the tangent space to the variety,
as defined above, agrees with the geometric definition of the tangent space to a real,
or complex, manifold. If a point p ∈ V is non-singular, then these two notions agree.
But when F = R, it may also happen that a point p ∈ V is singular but that the tangent
space (in the sense of manifolds) is well defined.

But how are we to determine if a point is singular or not? As the above discussion
makes clear, the fundamental definitions of singular and non-singular points on a real
affine varietyV( f1, . . . , fs) rely on purely algebraic notions (e.g., the computation of
Hilbert polynomials), rather than the use of differential calculus (e.g., the computation
of the rank of the s×n Jacobianmatrix Df ).When the fieldF = C , these computations
yield equivalent results: A point p ∈ V( f1, . . . , fs) ⊂ Cn is non-singular if and only
if dim pV = n − rank(Df ). But these two computations are not equivalent when
F = R. It is this subtlety that complicates the analysis of degrees of freedom in
practice.

5.2 Computing Degrees of Freedom

We now return to the moduli spaceM[x] and the issue of defining degrees of freedom
for a polyhedral linkage. Since the conformations of polyhedral linkages are points on
an affine variety, it is natural to define the number of degrees of freedom in accordance
with one of the definitions of dimension above. But which one? From a computational
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standpoint, if one is using only numerical algorithms, it is easy to compute the rank
of the Jacobian of the constraint matrix fast. For this reason, we adopt the following
working

Definition 4 The number of degrees of freedom of a configuration x at a non-singular
point z ∈ M[x] is defined to be

dim(TzM[x]) = n − rank (C(z)) , (16)

where C(z) is the Jacobian matrix of the constraint equations c(z; x). If z is a singular
point of M[x], then the number of degrees of freedom is undefined.

As the discussion in the previous subsection has made clear, this definition is
incomplete. A complete analysis of the building game must rely on the compu-
tation of the ideals, the affine Hilbert polynomial, and singular locus defined by
the constraint equations for each configuration [x]. While these computations may
be implemented for a given linkage using Groebner bases, in order to obtain a
tractable computation for the whole configuration space, it is also necessary to
utilize the inclusion relations between the moduli spaces M[x] and M[y] for two
neighboring configurations [x] and [y] in the combinatorial configuration space. We
have not pursued this approach in this work. An algebro-geometric analysis of the
building game is of fundamental interest and is certain to reveal interesting phenom-
ena.

5.3 Results

Assume that a configuration [x] ∈ C is fixed. For brevity, let n = 3Nx denote the
number of coordinates of vertices, and letm denote the number of constraint equations
listed in Table 4. The explicit form of the Jacobian is easily computed sinceC(z) is a set
of quadratic equations. Formula 16 is then numerically implemented as follows. First,
a solution z to the constraint equation is computed numerically. Next, we compute
the SVD of the Jacobian matrix C(z). The rank is the number of nonzero singular
values.

We implicitly distinguish between the six parameters needed to prescribe the rigid
body modes of a linkage and the (nontrivial) internal degrees of freedom. More for-
mally, in line with the definition above, for each x ∈ C it is necessary to consider the
quotient space M[x]/E(3) where E(3) denotes the Euclidean group, and the dimen-
sion of the associated tangent space at a point [z] ∈ M[x]|/E(3). In our calculations,
we have not implemented this idea formally (see Holmes-Cerfon et al. 2013, SI) for
a related calculation).

We have used this method to compute the number of degrees of freedom for
all configurations of the Platonic solids at the standard embedding. In order to
test that this embedding is non-singular, we check that the rank of the Jacobian
does not change under small random perturbations. These results are presented
in Fig. 8. We do not include the tetrahedron, since it only has four intermedi-
ates and only the one composed of two triangles is not rigid. Interestingly, the
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cube and dodecahedron have a large number of rigid intermediates due to the
fact that the linkage consisting of three faces (squares or pentagons) meeting at
the dihedral angle at a vertex is rigid. A similar linkage consisting of four or
five triangles is not rigid. As a consequence, the octahedron, with four trian-
gles meeting at each vertex, has a more varied distribution of internal degrees
of freedom. Moreover, the icosahedron has a very small number of rigid inter-
mediates, and some intermediates have as many as 13 internal degrees of free-
dom.

We carried out the above computations in order to more carefully investigate the
role of rigidity of intermediates in self-assembly. In prior work on surface tension-
driven self-folding , we noted that rigidity plays an important role in the formation of
Platonic and Archimedean polyhedra. In these experiments, the cube, dodecahedron,
and truncated octahedron could be assembled with high yield, but icosahedra could
not be formed (Pandey et al. 2011). Further, succesful self-assembly was observed
to proceed through a few dominant intermediates, with fewer degrees of freedom
than comparable intermediates with the same number of glued edges. Why could
some polyhedra be formed successfully and not others? The main distinction lies
in the rigidity of corners—the polyhedral linkage consisting of three triangles, three
squares, or three pentagons, meeting at the dihedral angles of the tetrahedron, cube,
and dodecahedron, respectively, is rigid. In contrast, the corners of the octahedron and
the icosahedron are not rigid. The dominant intermediates for the cube, dodecahedron,
and truncated octahedron were composed of two or three rigid sub-linkages, whereas
most other intermediates had long, floppy segments. These (informal) ideas of rigidity
were used to develop a model experiment on synthetic isomers, analogous to the
transformations between the ‘chair’ and ‘boat’ conformations of cyclohexane (Pandey
et al. 2014).

The idea of rigidity andmobility of intermediates also appears to explain a different
set of model experiments in DNA nanotechnology (Bhatia et al. 2009 and references
therein). The Platonic solids were synthesized, using short, stiff DNA segments to
make their edges. Unlike self-folding experiments, where the basic geometric motif
is a rigid face, in DNA-based experiments, the basic geometric motif is a rigid edge.
In Bhatia et al. (2009), octahedra and icosahedra could be synthesized with high yield,
but not dodecahedra. Again, the rigidity of linkages suggests an explanation for these
observations – the triangular linkage consisting of three rigid rods joined at hinges is
rigid, but linkages consisting of more than three rods are not rigid.

In light of these experiments, the computational results in Fig. 8 are very intriguing,
albeit with some qualification. The self-assembly techniques of both Pandey et al.
(2011) and Bhatia et al. (2009) are modeled by different combinatorial configuration
spaces, so the rigidity statistics in Fig. 8 do not apply directly to these experiments.
On the other hand, there are too many unknown effects in the assembly of fullerenes
and virus capsids and too little data on the intermediate pathways, to directly connect
rigidity statistics such as those above with the actual process of assembly. We are
unaware of syntheticmesoscale experiments that can bemodeled by the building game
that would allow a more direct interpretation of the results above in an experimental
context.
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Fig. 8 Distribution of internal degrees of freedom among intermediates computed at the standard embed-
ding. Clockwise from top left: cube, octahedron, icosahedron, and dodecahedron. The number of degrees
of freedom is plotted on the x-axis and the number of intermediates on the y-axis

6 Conformational Diffusion

6.1 Brownian Motion on the Moduli Space M[x]

Though our work is primarily numerical, we first summarize the rigorous results that
underlie our approach to conformational diffusion.

Assume that (Md , g) is a complete, C∞ Riemannian manifold of dimension d
with C∞ metric g. As usual, let %k

i j denote the Christoffel symbols of the metric. The
Wiener process on M is the diffusion process whose infinitesimal generator is &/2,
where the Laplace–Beltrami operator

& = gi j
∂2

∂xi∂x j
− gi j%k

i j
∂

∂xk
. (17)

There are several approaches to Brownian motion on manifolds, and a useful general
reference is Hsu (1988). Our interest lies in a construction of the Wiener process that
is amenable to direct numerical simulation. For this reason, we focus on a construction
of Brownian motion as a limit of randomwalks. Basic rigorous results in this direction
were established by Jørgensen (1975).

A random walk on M is defined as follows. For each point, p ∈ M, tangent
vector v ∈ TpM, and time parameter τ ∈ R, let p(τ ) = expp (τv) denote the (unit
speed) geodesic through p0 in the direction v. In order to construct a random walk
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{p0, p1, . . . , pk, . . .}, we assume given an initial condition p0, a step size τ > 0, and
a family of probability measures {νp}p∈M on TpM. Then given pk , k = 0, 1, . . ., we
define the geodesic segment on the time interval t ∈ [0, τ ],

pk+1(t) = exppk

(
t
τ

(
τ s(pk)+

√
τ (Vk − s(pk))

))
, s(p) =

∫

TpM
Vdνp(V ).

(18)

(We abuse notation by identifying pk = pk+1(0)). The sequence {pk} is a randomwalk
taking values inM that is determined by the metric g and the probability measures νp.
By interpolating in time as above, we also obtain a continuous path p(τ ) : [0, 1] → M
with p(τ )(kτ ) = pk . This construction thus provides a discrete measure on the path
space C([0, 1],M). As in Donsker’s theorem, Jørgensen established the weak con-
vergence of these measures to a limiting diffusion process, under certain assumptions
on the measures νp (Jørgensen 1975, §2). When νp is the uniform measure on the unit
sphere in (TpM, g), the limiting diffusion is the Wiener process on (Md , g).

In applying these ideas to the moduli space M[x], certain caveats are necessary.
First, to the best of our knowledge, there appear to be no systematic treatments of
Brownian motion of linkages. From the physical point of view, the main issue here is
that a natural notion of Brownian motion on moduli space should allow the linkage to
explore distinct vibratory modes. For instance, a naive simulation of random walk for
the linkage shown in Fig. 7 based on the scheme above will leave the linkage trapped
in the random motion of a one-dimensional hinge (left, Fig. 7) or two-dimensional
hinge (right, Fig. 7) with no possibility of transfer between these modes. It is of course
possible to resolve these issues by ‘softening’ the constraints, but this is not an adequate
mathematical resolution of the issue. Further, there seems to be no hope of establishing
the geodesic completeness of M[x] as is required for a rigorous convergence proof à
la Jørgensen.

Nevertheless, the theory of Brownian motion on manifolds does provide some sup-
port for our approach. For example, it immediately follows from the implicit function
theorem that if z ∈ M[x] is a non-singular point there is a ball Bϵ(z) ⊂ Rn with posi-
tive radius ϵ > 0 such thatM[x] ∩ Bϵ(z) is an analytic manifold (recall that n = 3Nx
is the dimension of the space of coordinates andm denotes the number of constraints).
Thus, at least locally, the notion of a Wiener process on M[x] is well founded and
amenable to numerical experiment. In order to apply the above construction, all that is
needed is a sufficiently smooth metric g. In all our numerical experiments, we simply
use the uniform metric on the tangent space TzM[x]. The methods presented below
may be easily amended to include other metrics and general stochastic processes on
M[x].

6.2 Numerical Scheme for a Random Walk

In order to construct a random walk {z0, z1, . . . , zk, . . .} on M[x] according to the
above prescription, it is necessary to solve for geodesics approximately. We use a
naive first-order scheme: At each point zk , we pick a tangent vector vk ∈ TzkM[x] at
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random, shoot along the tangent space in the direction vk for time τ , and then project
the point zk + √

τvk ∈ Rn orthogonally onto M[x]. This scheme is implemented
in two steps. First, we compute the tangent space. Next, we compute the projection
back to the manifold. Finally, in order to prevent self-intersection, we always begin
the random walk in a conformation without self-intersection. The random walk is
reflected at the boundaries corresponding to self-intersecting conformations using a
rejection scheme.

At each point z ∈ M[x], the tangent space TzM[x] is naturally identified with the
nullspace {v ∈ Rn : C (z) v = 0} where C : Rn → R(n−m)×n is the Jacobian of c
at z. Thus, sampling from the tangent space is the same as sampling from the null
space of C(z). We construct a basis for TzM[x] as follows. Let A = [CT (z) B] be the
concatenation of CT (z) and a random matrix B ∈ Rn×m with iid unif(0, 1) entries
Bjk . The square matrix A is of full rank with probability 1. We compute the QR
decomposition

A =
[
CT B

]
= QR =

[
Q(1) Q(2)

]
R. (19)

The columns of Q(2), written Q(2)
i , i = 1, . . . ,m, form an orthonormal basis for

TzM[x]. By contrast, the columns of Q(1) are an orthonormal basis for TzM⊥
[x]. The

coordinates α ∈ Rm of a vector v ∈ TzM[x] are defined by v = Q(2)α. The metric g
can be expressed in these coordinates as follows.

g(v, v) =
m∑

i=1

m∑

j=1

αiα j g
(
Q(2)

i , Q(2)
j

)
:=

m∑

i=1

m∑

j=1

αiα j Gi j . (20)

Our task is to sample uniformly from ,G =
{
v = Q(2)α : αT Gα = 1

}
. Since this set

corresponds to a level set of the multivariate normal distribution with mean zero and
covariance matrix G−1, our sampling problem reduces to sampling u ∼ N (0,G−1).
Once u is obtained, we set v = u

|u| . We generally choose G to be the identity, but this
is not necessary.

In order to project the point z+√
τv back toM[x], we seek a vector v⊥ ∈ TzM⊥

[x]
such that c(z+√

τv+v⊥) = 0. Since Q(1) provides a basis for TzM⊥
[x], we can write

v⊥ = Q(1)w for some w ∈ Rn−m and solve c(z +
√

&tw + Q(1)w) = 0. We define
an objective function F and its Jacobian J ,

F(w) = c(z + √
τv + Q(1)w), J (w) = C(z + √

τv + Q(1)w)Q(1), (21)

and use the following Newton–Raphson iteration to solve for w

J (wk) (wk+1 − wk) = −F(wk). (22)

The usual initial condition for the iteration is w0 = 0.
Naive sampling from the moduli space yields self-intersecting conformations.

We avoid these conformations using reflected Brownian motion. To sample from a
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reflected Brownian motion on the manifold, we use a rejection scheme that first gener-
ates a proposal conformation according to the unbiased random walk scheme. We use
an implicit boundary function that returns ‘true’ if a proposed configuration is valid
(not self-intersecting) and ‘false’ otherwise. This process is repeated until a ‘true’
proposal is accepted—more precisely, if the system is at a position z, the system stays
at z, until a valid proposed configuration, say z̃, is found. When recording the discrete
steps of a trajectory, we do not record it as z, z, . . . , z, z̃—repeating the current config-
uration z until an admissible configuration z̃ is found. Instead, the discrete trajectory
is recorded as z, z̃. Testing for self-intersection is expensive: If there are k faces in a
linkage, testing for self-intersecting requirs

(k
2

)
pairwise comparisons. It is imperative

that these comparisons are carried out as efficiently as possible. We use an efficient
algorithm presented by Möller (1997).

Finally, we point out that our scheme is inefficient in the sense that we do not
explicitly remove the rigid body modes. Ad hoc schemes for fixing these modes lead
to inconsistent results (Johnson 2015, Chapter 6). At present, our method includes
diffusion of both the center of mass and the orientation of the polyhedral linkage.
However, these modes do not affect the internal modes, such as those shown in Fig. 11.
This issue may be avoided by using the quotient metric for g as in Holmes-Cerfon
et al. (2013).

6.3 Test Cases

6.3.1 Unitary Matrices

A simple consistency test for the numerical scheme is provided by Brownian motion
on U (N ) the group of N × N unitary matrices. Recall that each matrix U ∈ U (N )

satisfies the quadratic equationU∗U = UU∗ = I . This matrix equation is equivalent
to a systemof N+N 2 real quadratic polynomial constraints.As a test of ourmethod,we
simulate a random walk, U0, U1, . . . ,Uk, . . . on U (N ), and compute the eigenvalues
of the matricesUk . The statistics of these eigenvalues are known (the joint distribution
of eigenvalues is given by Weyl’s integration formula, and the 1-point distribution of
eigenvalues is uniform on S1). Sample numerical results are shown in Fig. 9.

6.3.2 2- and 3-Triangle Linkages

As a more direct test of our scheme, we consider the simple linkages consisting of
two and three triangles. As seen in Fig. 10, the 2-triangle linkage can be specified
by the three-dimensional locations of four vertices, and lives in the ambient space
R12. It has one internal degree of freedom corresponding to the dihedral angle at
the hinged edge. Similarly, the 3-triangle linkage is parameterized by five vertices.
It has two internal degrees of freedom and lives in the ambient space R15. Figure 11
shows histograms of the dihedral angles of these linkages as sampled using out random
walk scheme. Interestingly, the distribution is not uniform (note that while we assume
that the metric g is the identity in all our simulations, this does not imply that the
pushforward of the equilibrium measure onto the dihedral angle must be uniform).
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Fig. 9 Empirical distribution of unitary matrices sampled by a random walk with 3,000,000 steps, each
time step of size &t = 0.05 in U (10). Compare with the sampling schemes for Haar measure in Mezzadri
(2007) and Li and Menon (2013)

Fig. 10 Two and three triangle linkages

The constraint preventing self-intersection modifies the empirical distribution most at
the endpoints. Similarly, we consider the 3-triangle linkage in Fig. 12. The empirical
distributions agree except in the lower right and upper left corners of the plot. These
regions are forbidden, since they correspond to self-intersecting conformations. A
noticeable boundary layer of lower probability is seen around the periphery of the
plot.

As a test of convergence for our scheme, Fig. 13 shows the Kolmogorov–Smirnov
distance of the empirical distribution on the first dihedral angle of the three triangle
linkage as a function of the number of samples. More precisely, let {z0, z1, . . . , zn−1}
be the first n steps of a random walk with N steps (n ≤ N ), let θ1(zk) denote the
first dihedral angle of the conformation z j ; 1[0,θ] denotes the indicator function for
the interval [0, θ ] for any θ ∈ [0, 2π ] and defines the empirical distribution at step n,

Fn(θ) =
1
n

n1∑

k=0

1[0,θ] (θ1(zk)) . (23)
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Fig. 11 Histogram of the dihedral angle in sampled conformations of the 2-triangle linkage. Free rotation
allowing self-intersection (left) and no self-intersection (right). The red curve is the least squares fit to a
curve of the form a0 + a1 cos θ + a2 cos 2θ , where θ denotes the dihedral angle (Color figure online)

Fig. 12 Ramachandran plots of the two dihedral angles in the 3-triangle linkage. Free rotation allowing
self-intersection (left) and no self-intersection (right). The sampled random walk on the right respects the
constraint of non-intersection, as seen in the blue zones which are forbidden. However, a faint boundary
layer is perceptible (Color figure online)

We empirically study the rate of convergence of the scheme with the Kolmogorov–
Smirnov statistic

Dn,N = sup
θ∈[0,2π ]

|Fn(θ) − FN (θ)| . (24)

The line of best fit has a slope of−0.461 and−0.449, respectively. This is nearly−0.5
indicating that the (naively) expected square root rate of convergence is achieved.

7 From Conformational Diffusion to Transition Rates

The mathematical framework of the building game allows us to separate the kinetics
and geometric combinatorics of the growth process. The geometric combinatorics
of the growth process is described completely by the combinatorial configuration
space, C. The kinetics of growth are described by a Markov process on C. In order to
prescribe a Markov process, we must prescribe the rate of transition Q[x][y] from a
configuration [x] to a configuration [y]. The transition matrix Q is of size |C| × |C|
and has nonnegative entries on the off-diagonal. Further, the only off-diagonal terms
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Fig. 13 Empirical convergence of the scheme. Convergence is measured with the Kolmogorov–Smirnov
distance defined in Eqs. (23)–( 24) for the 3-triangle linkages. We fix N = 107 and use n = 103,103,
104, 105 and 106. The figures show convergence for free rotation allowing self-intersection (left) and no
self-intersection (right)

that are nonzero are those that correspond to neighbors. The terms on the diagonal are
determined by the condition that the row sum vanishes: i.e.,

∑
[y ]̸=[x] Q[x][y] = 0.

In several biophysical applications, it is conventional to assume that the system is
described by equilibrium statistical mechanics. We assume the existence of a discrete
energy landscape E : C → R and a thermal bath at inverse temperature β > 0 and
postulate that the equilibrium measure of the system is the Gibbs distribution

π([x]) = e−βE([x])

Zβ
, Zβ =

∑

[x]∈C
e−βE([x]). (25)

For the building game, a natural choice is to define E([x]) to be minus the number of
edges between the faces in [x], since each edge between faces can be viewed as a bond
with unit energy. We further assume that the microscopic interactions are reversible,
so that the only admissible transition matrices are those that satisfy the condition of
detailed balance

π([x])Q[x][y] = π([y])Q[y][x]. (26)

These restrictions still allow many possible transition matrices. The conventional
assumption is that these must be of the form

Q[x][y] = S[x][y]e−β(B([x],[y])−E([y])), (27)

where the function B : C × C → R describes energy barriers between configurations,
and S[x][y] = Sxy is the degeneracy number defined in Sect. 2.

In our work, we view the energy function, equilibrium measure, and detailed bal-
ance as fundamental. Thus, any transition matrix Q must respect Eqs. (25) and (26).
However, we do not introduce the notion of an energy barrier, and we focus instead
on the computation of rates Q[x][y] using conformational diffusion. (Of course, these
results could then be used to fit energy barriers to the system, but that is unnecessary—
all that the model must predict are rates of transition.)
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Fig. 14 Rates of transition for the octahedron. A rate matrix computed by conformational diffusion in the
geometric configuration space, G for the octahedron. The state is numbered as in Fig. 1. The phenomeno-
logical parameters in this example are β = 0.8, ϵ = 0.5

The rates are determined as follows. We consider two neighboring configuration
[x] and [y] such that [y] is obtained from [x] by the attachment of a face. We then
simulate a conformational diffusion onM[x] and associate a probability of probability
of transition from [x] to [y] based on the fraction of total time spent in a conformation
where the dihedral angles of conformations inM[x] are favorably aligned for attach-
ment of a face that corresponds to a conformation inM[y]. Observe that it is enough to
determine the ‘attachment’ rates Q[x][y] because the reverse ‘detachment’ rate Q[y][x]
is given by detailed balance.

To illustrate ideas, and for simplicity of implementation, we focus on the octahe-
dron. Given a tolerance ϵ and a conformation z ∈ M[x], our criterion for attachment
is as follows:

1. We consider all triplets of vertices in a state x ∈ [x] at which it is combinatorially
admissible for a new face to attach to form a state y ∈ [y].

2. For each such triplet, let va , vb, vc denote the coordinates of these vertices in R3.
We compute the angles in the triangle formed by the vertices va ,vb and vc. If each
of these angles differs from π/3 by less than ϵ, we say that the triplet (va, vb, vc)
is ϵ-close to attachment.

3. We say that z lies in the ϵ-exit set, denoted S[x][y](ϵ), if at least one of the admissible
triplets of vertices is ϵ-close to attachment.

Given the above exit criterion, the empirical transition rate Q[x][y] may be obtained
from the first N steps z0, z1, . . . , zN−1 of a random walk inM[x] as follows

Q[x],[y](N , ϵ) = 1
N

N−1∑

k=0

1S[x][y](ϵ)(zk). (28)
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In practice, we simulate and store the random walk for a large number of steps (107).
The rates may then be extracted for any ϵ > 0. An example of rates computed by this
procedure is shown in Fig. 14. We have not attempted to connect these computations
with any physical experiment on self-assembly: They are simply chosen to illustrate
the underlying mathematical structure. Various related calculations may be found
in Johnson (2015).

8 Conclusions

In summary, this article contains a linked set of mathematical ideas that arise in the
study of the self-assembly of closed-shell structures. There are four distinct aspects:

1. The combinatorics of growth-by-attachment and the combinatorial configuration
space C.

2. Thekinematics of polyhedral linkages on themoduli spacesM[x], for each [x] ∈ C,
and the geometric configuration space, G.

3. A pure jump Markov process on the graph C that models the kinetics of assembly
pathways.

4. A continuous-time diffusion on each M[x] exits problems for which determine
the rates of the jump process.

Informally, (4) may be thought of as a ‘blow-up’ of (3). That is, while (3) is a well-
formulated problem if one knows the rates of transition between states, (4) addresses
the problem of determining rates based only on the kinematics of polyhedral linkages.
Mathematically, (4) is the study of diffusion on an affine variety; physically, it cor-
responds to perhaps the simplest microscopic model which can be used to compute
rates of transition between configurations.

At present, these ideas should be viewed as a consistent framework, rather than a
detailed investigation of the self-assembly of a particular polyhedron. In particular,
while our results on enumeration are the most extensive to date, the work on kinemat-
ics is restricted to Platonic solids. We find simple, but interesting, results on degrees of
freedom of intermediates for the dodecahedron and icosahedron (Fig. 8). The imple-
mentation of the complete framework (1)–(4) above is restricted to the octahedron,
whose combinatorial configuration space has only 14 configurations. A full computa-
tional study for larger polyhedra requires a careful analysis of conformational diffusion
on each algebraic variety in G and may require new computational techniques because
of the combinatorial explosion in the size of C.

This work illustrates that conformational diffusion arises naturally in discrete geo-
metric models of self-assembly. However, we are unaware of rigorous mathematical
formulations ofBrownianmotionon affinevarieties. In order to formulate these notions
precisely, it is important to pay careful attention to the interplay between the singular
locus of the variety and the diffusion coefficients (the choice of metric in our work). As
illustrated by the linkage in Fig. 7, in order to obtain a Brownian motion onM[x] that
is ergodic and explores all irreducible components of the varietyM[x], it is necessary
to carefully resolve the Brownian motion in the neighborhood of the singular locus, in
order that it passes from one irreducible component to another. This issue is of inde-
pendent interest – even well-known examples of conformational changes in isomers,
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such as flips between chair and boat conformations for idealized geometric models of
cyclohexane, seem to yield interesting new questions on Brownian motion of linkages
when one considers ‘hard’ constraint models for these isomers (Baker 1986; Pandey
et al. 2014).
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