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Abstract. Constantin, Foais and Gibbon proved that the laser equations (Lorenz PDE) define a
dynamical system in L2 with a C∞ attractor. We extend this theorem to show that the attractor is
contained in every Gevrey class, Gs , for 1 < s < ∞. This demonstrates a remarkable smoothing
mechanism for this hyperbolic system. We consider the consequences of this theorem for finite-
dimensionality of the dynamics.
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1. Introduction

Constantin, Foias and Gibbon proved that the laser equations of Risken and Nummedal define
a dynamical system in L2 with a C∞ attractor of finite Hausdorff dimension [1, 2]. In this
paper we prove the stronger result that for any 1 < s < ∞ the attractor is contained in the
Gevrey class Gs . The methods follow [1]; the new idea is to obtain precise control over the
growth of derivatives.

The laser equations are a version of the complex Lorenz equations and we shall consider
them in this form. Various physical interpretations and scalings associated to these equations
are discussed in [1]. The Lorenz PDE are

∂tX + ∂xX = − σX + σY (1.1)
∂t Y = − ZX − (1 + iδ)Y (1.2)
∂tZ = − bZ + 1

2
(
X∗Y +XY ∗) − br. (1.3)

X, Y ∈ C and Z ∈ R are periodic on the domain x ∈ [0, L]; σ and b are positive decay
constants scaled to the decay rate of Y ; r is a positive phenomenological pumping term; δ is
a real detuning parameter. In passing we note that when δ = 0 the subspace of real, spatially
independent solutions to these equations is the set of solutions to the Lorenz ODE [3].

Equations (1.1)–(1.3) are a semilinear damped hyperbolic system. Thus for finite times
we may expect solutions that are only as smooth as the initial data. It is quite surprising
then that asymptotically solutions are smoothed out sharply. Recently, Xin and Moloney have
considered the laser equations with transverse terms [4]. In their notation, equation (1.1) has
a differential operator ∂t + ∂x + ai%⊥ where %⊥ is the Laplacian in (y, z). They prove the
existence of global weak solutions and the existence of an attractor with partial smoothness
for (x, y, z) ∈ T1 × R2 and (x, y, z) ∈ T3. The case (x, y, z) ∈ T3 is harder and their proof
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relies on conjectural Strichartz inequalities of Bourgain. Strong asymptotic smoothing seems
to be unique to the one-dimensional geometry.

We mention briefly some related results on the existence of analytic and quasianalytic
solutions to nonlinear PDE. Kahane proved the spatial analyticity of certain solutions to the
Navier–Stokes equations [5]. More recently, Foias and Temam have studied Gevrey regularity
for the two-dimensional incompressible Navier–Stokes equations [6]. Doelman and Titi, and
Levermore and Oliver, proved the existence of analytic solutions to certain complex Ginzburg–
Landau equations [7, 8]. A classical theorem of de La Vallée Poussin asserts that the Gevrey
classes are characterised by exponential decay of Fourier coefficients [9]. Levermore and
Oliver have proven an elegant decomposition theorem for the Gevrey classes based on this
principle. This theorem may be used to study the analyticity of solutions to other parabolic
nonlinear PDE. More exhaustive references are contained in their expository article [8]. The
Navier–Stokes equations and CGL have a smoothing Laplacian term. Our work differs in that
we study a purely hyperbolic problemwith linear damping independent of thewavenumber. For
such problems, Gevrey regularity may only be expected as an asymptotic property. Moreover,
our approach is in the spirit of Kahane: we prove direct estimates on all derivatives rather
than estimate the Fourier coefficients. This is facilitated by the special structure of the laser
equations, in particular, that equation (1.1) is carried on a different characteristic to equations
(1.2) and (1.3).

2. The main theorem

LetH = (L2(0, L))3 (with the understanding thatX, Y are complex andZ is real). Constantin
et al have shown that the laser equations define a continuous global flow S : R × H → H

in the sense of weak solutions [1, theorem 4.1], and for fixed t ∈ R the map S(t) : H → H

obtained by restricting S is locally Lipschitz. Furthermore, there exists an absorbing ball Bρ0

of radius ρ0 in H . The radius ρ0 depends only on b, r, σ and L. The time taken to enter
Bρ0 is uniform over bounded sets. The universal attractor A is defined as A = ∩t>0S(t)Bρ0 .

The universal attractor is invariant, that is S(t)A = A for all t ∈ R. This is the key property
in the proof of C∞ regularity. In [1] the authors proved infinite regularity by showing that
A ⊂ (Wn,∞

per )3 for all n ! 0. The proof is inductive and at each step one uses the invariance of
A in a bootstrapping argument. In our proof we include more detailed estimates on theWn,∞

per
norm following the methods in [1]. Remarkably, these are sufficient to prove much stronger
regularity.

We use the definition of Gevrey classes in [8] as this is most suited to our purpose. There
are other equivalent definitions that involve Fourier coefficients [6].

Definition 2.1. A function f ∈ C∞
per[0, L] is said to belong to the Gevrey class, Gs , if there

exist positive numbers M and ρ, such that for every integer n ! 0,

‖∂n
x f (x)‖L∞ " M

(
n!
ρn

)s

.

For s = 1, the Gevrey class G1 is identical to the set of periodic, real analytic functions [10,

theorem 1, p 3]. For 0 < s1 < s2 < ∞, we haveGs1
⊂
,= Gs2

⊂
,= C∞

per. Theorem 4.2 in [1] states
that A ⊂ (C∞

per[0, L])3. We prove the stronger result.

Theorem 2.2. For every s ∈ (1, ∞), the attractor A ⊂ (Gs[0, L])3.

We let U = (X, Y, Z) denote points in H , and define an = supU∈A ‖∂n
x X‖∞ and

bn = supU∈A(‖∂n
x Y‖∞ + ‖∂n

x Z‖∞). The proof of theorem 2.2 depends on estimates for an and
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bn. The purpose of the following theorem is to quantify the growth of an and bn inductively.
The proof is a calculation using the methods in [1]. Since a sufficiently detailed proof has
already been provided there for the case n = 1, and the generalisation to arbitrary n is natural,
but somewhat lengthy, we omit the proof.

Theorem 2.3. an and bn satisfy the following estimates:

(a) a0, b0 " M0 = 2r(b/β)1/2 < ∞ where β = min(1, b/2).
(b) For n ! 1, an " C1bn−1 +

∑n−1
k=0

(
n−1
k

)
akbn−k−1 where C1 = (1 + δ2)1/2 + 3σ .

(c) For n ! 1, bn " C2
∑n−1

k=0
(
n
k

)
bkan−k where C2 =

(
2β−1(1 + b−1)

)1/2.

The estimates of theorem 2.3 suggest a proof of Gevrey regularity by induction. In any such
proof one would need to control the binomial coefficients in some way. We digress briefly to
indicate some properties of a combinatorial sum that occurs in our calculations.

Definition 2.4. Suppose 0 < p < ∞. Define

(a) Rn(p) =
∑n

k=0
(
n
k

)−p
.

(b) R(p) = supn!1 Rn(p).

The properties ofR(p) needed here are quantified with the following lower and upper bounds.
First note that for p = 0, the sum

∑n
k=0

(
n
k

)−p = n + 1, diverges. Suppose p > 0, then the
elementary estimate

n∑

k=0
ak

−p ! (n + 1)p+1

(
∑n

k=0 ak)p
,

for numbers ak ! 1, k = 0, . . . n, applied to Rn(p) gives

R(p) ! Rn(p) ! (n + 1)p+12−np.

Maximizing the right hand side in n we have R(p) → ∞ at least as fast as p−1, when p → 0.
Next, we derive an upper bound onR(p). Let np be an integer depending onp that is chosen as
follows: for 0 < p < 1 it is the integer so that 1 < pnp " 1+p, and for 1 " p < ∞, np = 2.
Each term in the sum Rn(p) is bounded by 1. So Rn(p) " 2np for 1 " n " 2np − 1; and for
any n ! 2np

Rn(p) = 2
np−1∑

k=0

(
n

k

)−p

+
n−np∑

k=np

(
n

k

)−p

" 2np + n

(
n

np

)−p

.

By the choice of np, n
(

n
np

)−p is a decreasing function of n in the range 2np " n < ∞. Thus
its maximum occurs when n = 2np. This gives the upper estimate

R(p) = sup
n!1

Rn(p) "
(

2 +
(
2np

np

)−p
)

np.

As p → 0, np → ∞ and pnp → 1. Invoking Stirling’s approximation

lim
p→0

(
2np

np

)−p

= lim
p→0

(
1

√
πnp

22np

)−p

= 1
4
.

Hence, R(p) " 3np, for sufficiently small p. The upper and lower estimates taken together
demonstrate that R(p) = O(1/p) as p → 0. One may also show that R(p) is a strictly
decreasing continuous function of p that tends to 2 when p → ∞.
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Proof (of theorem 2.2). To prove Gevrey regularity we need to show that there are positive
constantsMi, ρi , i = 1, 2, so that

ak " M1

(
k!
ρk
1

)s

, bk " M2

(
k!
ρk
2

)s

for all k ! 0. (2.1)

In fact we will show that there are constantsM and ρ, so that

ak " 1
M

(
k!
ρk

)s

, bk " M

(
k!
ρk

)s

for all k ! 1. (2.2)

Notice the difference in the starting index for conditions (2.1) and (2.2). Of course, it is
sufficient to prove condition (2.2), and then chooseM1 = M2 = max(M0, M

−1, M) to prove
condition (2.1). We shall suppose at the outset thatM0 " M , so that b0 " M0 " M .
Parts (b) and (c) of theorem 2.3 tell us what conditions M and ρ must satisfy. Suppose that
(2.2) is true for 1 " k " n − 1. From part (b) of theorem 2.3

an " (C1 + a0)bn−1 +
n−1∑

k=1

(
n − 1

k

)
akbn−1−k

" (C1 +M0)M

(
(n − 1!)

ρn−1

)s

+
(n − 1)!
ρ(n−1)s

n−1∑

k=1
(k!)s−1(n − 1− k)!s−1

=
(

(n − 1)!
ρn−1

)s [
(C1 +M0)M + Rn−1(s − 1)

]
,

which will be less thanM−1(n!)sρ−ns if
ρs

ns

[
(C1 +M0)M + Rn−1(s − 1)

]
" 1

M
.

Since Rn−1(s − 1) " n " ns this condition is satisfied uniformly for n ! 1 if we choose

ρs " 1
M2(C1 +M0) +M

. (2.3)

Next we consider the choice ofM , supposing that condition (2.2) is satisfied for 1 " k " n−1,
andM ! M0. From part (c) of theorem 2.3

bn " C2
n!
ρns

n−1∑

k=0
(k!)s−1(n − k)!s−1 = C2

(n!)s

ρns

n−1∑

k=0

(
n

k

)1−s

.

This is less thanM(n!)sρ−ns , if

C2

n∑

k=0

(
n

k

)1−s

= C2Rn(s − 1) " M. (2.4)

The only way constraint (2.4) will be satisfied for all n ! 1, is if
sup
n!1

C2Rn(s − 1) = C2R(s − 1) " M.

Thus we chooseM so large that
M = max(C2R(s − 1), M0). (2.5)

We also need to satisfy a1 " 1/Mρs to start the proof by induction. But by parts (a) and (b)
of theorem 2.3, a1 " (C1 +M0)b0 " (C1 +M0)M0. Thus we choose

ρs = min
(

1
M2(C1 +M0) +M

,
1

MM0(C1 +M0)

)
= 1

M2(C1 +M0) +M
. (2.6)

Theorem 2.3 proves that A ⊂ C∞
per. WithM and ρ chosen as in conditions (2.5) and (2.6), the

inductive step is true for all n ! 1. This shows that A ⊂ (Gs)3. #
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Remark 2.5. It is natural to enquire about the case s = 1. As s ↓ 1, condition (2.5), and
the growth estimate of R(s − 1), show that M is O((s − 1)−1). Then condition (2.6) shows
that ρs = O((s − 1)2). Thus we are faced with a situation where the ‘radius of convergence’
shrinks to zero. This difficulty may be traced back to the presence of the combinatorial term(
n
k

)
in part (c) of theorem 2.3. This term comes from using the product rule to estimate the

derivatives of the nonlinear terms in equations (1.2) and (1.3). If the combinatorial term were(
n−1
k

)
as in part (b) an argument similar to the one above shows that solutions are real analytic.

Thus the failure of analyticity is quite delicate, and a direct consequence of the nonlinearity.

3. Remarks on finite-dimensional dynamics

Theorem 2.2 throws new light on the main theorem of [1] that the attractor, A, is of finite
Hausdorff dimension. For simplicity, suppose L = 2π . For every U ∈ A, the Fourier
coefficients satisfy a decay condition

|Û (n)| " CMρ1/2|n|1/2s exp
(
−ρ|n|1/s

)
n ∈ Z, n ,= 0.

The constant C depends on the parameters in the laser equations (1.1)–(1.3) and s, but may be
taken uniform for s in a finite range, say, 1 < s " s0 < ∞ . Thus for s sufficiently close to 1,
the restrictions (2.5) and (2.6) imply that there are positive constants A, B so that

|Û (n)| " A|n|1/2s exp
(
−B(s − 1)2|n|1/s

)
n ∈ Z, n ,= 0.

Thus, finite-dimensional approximations toU (such as Fourier–Galerkin truncations inL2)will
have an exponentially small error. More precisely, the distance in L2 between the attractor A
and the finite-dimensional subspace SN = span{exp (inx) : |n| " N} decreases exponentially
with N . For example, let s = 2. Then we have dist (A, SN) " CAN1/4 exp

(
−B

√
N

)
,

where C is a constant depending only on the parameters in the laser equations. Heuristically,
this suggests that the asymptotic dynamics of the laser equations are governed by only a
finite number of modes. From the computational viewpoint, this result along with the main
theorem of [1] justifies finite-dimensional models of the laser system. In particular, finite-
dimensional projections of the attractor are exponentially close to the attractor. More than being
a technical improvement, theorem 2.2 is intimately related to the dynamics of the system. For
CGL, Doelman and Titi proved the stronger result that on finite time intervals the numerical
solution obtained from a Galerkin method is exponentially close in H 1 to the true solution
(for sufficiently smooth initial data) [7]. No such result can be obtained here since the laser
equations are hyperbolic. Infinite regularity is only an asymptotic property, thus the usual
tracking arguments of numerical analysis fail. Nevertheless, since any solution approaches
the attractor exponentially fast, in a typical numerical simulation one would indeed see rapid
smoothing as the laser rises out of noise. For instance, the simulations ofRisken andNummedal
show the formation of smooth traveling waves as the laser rises out of noise [2].

We have obtained similar results in two other cases. First, when equation (1.3) has a
nonhomogeneous periodic forcing term f (t, x) = f (t + T , x) which is analytic in x and
continuous in time, the results of [1] and this paper extend immediately to the natural Poincaré
map. We have also studied equation (1.1) with a diffusion term of the formα∂2xXwithα > 0 on
the right hand side. The laser equations are then a coupled parabolic-hyperbolic system. There
are some simplifications because of the parabolic nature of the first equation. Nevertheless,
many of the difficulties of the hyperbolic problem remain.
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