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Abstract. These notes outline a new approach to the isometric embedding
problem and related problems, including turbulence. We introduce a model

and describe its roots in various areas of mathematics and the sciences. The

goal is to document partial progress in order to begin numerics and rigorous
mathematical analysis.

The main new idea is to formulate the embedding problem as a stochastic

gradient descent. The probabilistic foundation of our work is the fact that
spaces of Gaussian measures have a natural Riemannian geometry and that

every Riemannian manifold carries an intrinsic notion of Brownian motion.

The common structure of the PDE we study is that they have a natural no-
tion of subsolution, along with a partial order on subsolutions. Informally,

solutions to the PDE may be seen as the ‘boundary’ of the space of subsolu-
tions. We combine these ideas to contruct probability measures on solutions

by running a diffusion in the space of subsolutions that fluctuates ‘outwards’

to the ‘boundary’. As a numerical algorithm, this corresponds to a stochastic
interior-point method for optimization.

This idea takes the following form for the isometric immersion problem.

Here we are given a Riemannian manifold (Mn, g∞) and our task is to find a
map u :M→ Rq such that u]e = g∞, where u]e denotes the pullback of the

identity metric e on Rq . The set of subsolutions in this problem consists of

(sufficiently smooth) short maps v :M→ Rq such that v]e < g∞, where the
inequality refers to the natural order on symmetric (0, 2) tensors on M.

We reformulate this problem as a stochastic dynamical system for an infinite-

dimensional Gaussian measure µt ≡ (ut, Lt), 0 ≤ t <∞. Here ut, the mean of
µt, is a smooth short mapM→ Rq . The fluctuations around ut are described

by Lt, a covariance kernel for a smooth centered Gaussian random field taking

values in Rq . Since the space of Gaussian measures has a natural Riemann-
ian geometry, it is possible to define a diffusion on it by solving a stochastic

differential equation for µt. In this manner, we lift the PDE u]e = g∞ to a

stochastic flow of Gaussian measures µt.
Several natural diffusions may be constructed in this way. The typical

structure we study is the stochastic flow expressed in coordinates (ut, Lt) by

du =
√
dL,

L̇ = argminP∈TLPosq(M,g)+
E(u, L, P ).

The formal, but suggestive, notation
√
dL is used to signify that L̇ should

be thought of as a ‘stochastic velocity field’. Its precise meaning is that L̇ is
the covariance of a centered spatially smooth Gaussian noise. Thus, the first

equation describes the stochastic kinematics of the problem. The second equa-

tion describes the energetic and gradient structure. In the simplest setting,
the cost function E is analogous to a constrained Dirichlet energy. The tan-

gent space TLPosq(M) and the positive cone TLPosq(M)+ are defined using

the Riemannian geometry of Gaussian measures. The model provides a joint
construction of a stochastically improving subsolution ut along with an in-
creasing family Lt of Gaussian kernels. It thus provides a probability measure

supported on isometric immersions as well as information on fluctuations.
Other problems that may be reformulated in a similar way include some

Hamilton-Jacobi equations, the Euler equations for incompressible fluids, and
some KAM theorems. This approach also provides a bridge between the sta-

tistical theory of fields and various applications. These include the thermody-
namic foundations of continuum mechanics, turbulence and Bayesian formu-
lations of learning.

In order to complete this program, several key steps need to be established

rigorously. These include the analysis of the Riemannian geometry of Gaussian
measures, elliptic regularity for the minimization problem, and the develop-
ment and implementation of fast numerical schemes. Several simpler problems

are considered in order to develop these ideas.
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1. Introduction

1.1. The isometric embedding problem and turbulence. The primary pur-
pose of this work is to introduce a new constructive method in the statistical theory
of fields. This work has its roots in the unexpected link between Nash’s work on
the isometric embedding problem and the Euler equations discovered by De Lellis
and Székelyhidi [18, 21]. Their work has stimulated rapid progress on h-principles
for PDE that is well documented by now [19, 20].

We approach this link in a different way, by viewing both problems through the
lens of statistical mechanics. In this context, the underlying physical questions are
classical: what form does the second law of thermodynamics take for a system with
infinitely many degrees of freedom? How do we resolve the ultraviolet divergence
present in classical field theories? If we believe that turbulence can be described by
statistical mechanics, how should we formulate the process of equilibration so that
it corresponds to the empirically observed universality of the cascade?

The main theme that runs through this work is an attempt to bridge PDE the-
ory with information theory and statistical mechanics with the above examples in
mind. We will view entropy as the primary concept and formulate an existence
theory that replaces Nash’s schemes with a stochastic flow of Gaussian measures
that corresponds to a gradient descent of free energy. The construction of such
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stochastic flows is based on the following observations: (a) there is well-defined
notion of Brownian motion, and thus stochastic differential equations, on any Rie-
mannian manifold; (b) the space of Gaussian measures on Rn equipped with the
2-Wasserstein distance may itself be thought of as a (stratified) Riemannian man-
ifold; (c) there is a well-developed theory of Gaussian measures on reproducing
kernel Hilbert spaces, so that (a) and (b) can be extended to infinite dimensions.

We apply these ideas as follows. In order to solve a given PDE for a variable u,
we ‘lift’ the PDE into a stochastic flow of infinite-dimensional Gaussian measures
µt, 0 ≤ t < ∞ where µt has mean ut and covariance kernel Lt. Here t denotes an
energy scale, ut is a smooth subsolution to the PDE and Lt serves to describe band-
limited fluctuations around ut. Heuristically, the Gaussian measure µt describes
an approximate solution ut along with ‘error-bars’ given by Lt. We then use a
stochastic flow for µt to minimize a natural cost function, such as a relative entropy,
thus driving µt towards a probability measure µ∞ whose mean u∞ is a solution to
the given PDE. We design the flows so that pathwise convergence of µt ≡ (ut, Lt)
is an immediate consequence of the martingale convergence theorem. The main
task is then to show that the limit u∞ is a solution to the given PDE. If succesful,
the method provides more than existence, since it includes a space of fluctuations
parametrized by L∞, in addition to a solution u∞.

This approach has a thermodynamic interpretation. The stochastic evolution(s)
proposed here correspond to infinite-dimensional Fokker-Planck equations that de-
scribe cascades in the isometric embedding problem and turbulence as a process
of equilibration. The work of Otto and his co-workers has shown that the Fokker-
Planck equations correspond to a gradient descent of free energy. This idea is
implicit in our work, but we find it simpler to work with stochastic flows instead
of Fokker-Planck equations on infinite-dimensional spaces of Gaussian measures.
These viewpoints are loosely equivalent and the choice one makes is a matter of
taste.

The main purpose of these notes is to convince the reader that this approach is
natural. To this end, we focus on explaining the geometry of Gaussian measures
and the stochastic flows in simpler examples. While our ideas originated in an
attempt to improve Nash’s work on the isometric embedding problem, the main
ideas are best understood in a simpler setting. Much of this work is devoted to
constructing probability measures supported on 1-Lipschitz functions on the inter-
val [0, 1]. The structure of the stochastic dynamical system we propose is easiest
to see in this problem. Once this example has been understood, the reader will see
that these ideas extend immediately to the construction of 1-Lipschitz functions on
Riemannian manifolds. This problem is of independent interest. We then return
to the embedding problem and introduce a stochastic flow, which differs from the
1-Lipschitz problem mainly in the increased complexity of the associated space of
Gaussian measures. Once this problem has been absorbed, it becomes clear that
we have the beginnings of a general method. In order to demonstrate this point,
we formulate stochastic dynamical systems for several other applications.

An assesment of the choices we make in the design of these dynamical systems,
along with numerical schemes to compute the flows, reveals interesting connections
with other areas. These include a probabilistic view of interior-point methods for
semidefinite programming and the possible extension of universality from random
matrix theory to geometry and turbulence.
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1.2. Information theory and PDE. The embedding problem is closely tied to
foundational questions in mathematics, physics and statistics. The techniques pre-
sented below do not require any familiarity with these questions, but it is helpful
to discuss these briefly since these issues have guided our choice of model.

We remarked at the outset that our goal is to develop a new method in the
statistical theory of fields. But how fundamental is statistical mechanics? When
Shannon created information theory in the 1940s, the early speculation was that
information theory should be seen as a branch of statistical mechanics, since entropy
is the primary concept in both theories. However, in the 1950s, Jaynes showed that
statistical mechanics may itself be derived from information theory. Jaynes’ work
has disturbing philosophical implications, since it causes us to question if there
are any fundamental physical models. One of the interpretations of the entropy
of a discrete random variable is that it provides the optimal length of a code for
the random variable. This interpretation leads to the idea, developed mainly by
computer scientists and statisticians, that the best models are those that have
Minimum Description Length (MDL). This view is an extreme counterpoint to
physical theories since it makes no assumptions on the structure of the source that
produces the signal and states only that the best description of the data is the one
that compresses it in the most efficient manner. In the MDL description, learning
is data compression and there are no ‘true’ models.

It seems fair to say that such foundational concerns play no part in the analy-
sis of PDE. Instead, analysts usually adopt the pragmatic approach that physical
models, such as the equations of continuum physics, are well-founded because these
have been tested by physical and numerical experiments and a rich mathematical
tradition attests to their internal consistency. Such pragmatism can be justified by
the large gap between the analysis of PDE and the work of statisticians, especially
on the MDL principle. However, the rapid expansion of machine learning suggests
that it is useful to pay close attention to the foundations and to recognize that the
eventual goal of much of the analysis of the PDE, especially in continuum physics,
revolves around the question of whether they constitute useful models for phenom-
ena. Further, such introspection is valuable for an expansion of the domain of PDE
theory beyond the traditional confines of continuum physics.

The embedding problem is an excellent test case for bridging this divide. The
stochastic flows presented here have the following Bayesian interpretation. We view
embedding as a process by which an observer makes a copy of a given Riemannian
geometry by increasingly accurate estimation of a metric by measurement at finer
and finer scales. Stochastic gradient descent is a particular process of measurement
chosen to optimize a cost function (several choices are possible as discussed below).
One does not usually think of embedding as a stochastic process, so it is worth
noting that the source of noise here is not an external thermal source, but simply
the errors present in any process of measurement. This viewpoint connects the
embedding problem to Bayesian formulations of learning, since we see that the
observer ‘learns a geometry’ by improving their model (the Gaussian measure µt)
in response to signals from a Gaussian source (white noise on the given manifold
(Mn, g∞)). This perspective reveals close ties between the embedding theorem and
Shannon’s channel coding theorem by making explicit the idea that embedding is a
form of information transfer from one Gaussian source to another. The embedding
process is complete when signals generated by µ∞ are indistinguishable from those
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generated by the source. Thus, information theory provides a microscopic view
of thermodynamic equilibrium in the embedding problem. (This is a Bayesian
description, not an MDL description, because we assume the signal is generated
by a ‘true’ Gaussian source, while the observer tunes their Gaussian measure µt in
response.)

In a similar manner, we find it useful to accept that despite their distinguished
history, it is possible that the equations of continuum mechanics may ‘just’ be useful
models of noisy signals. This means, for example, that we do not assume that the
Cauchy problem for the Euler equations constitutes a fundamental description of
fluid flow. Instead, we view the existence theory as complete only when all the
information in the measurement of a velocity field – which we model by a given
mean velocity along with a Gaussian fluctuation – is captured by the probability
measure µ∞. From this viewpoint, we do not see the constructions of De Lellis and
Székelyhidi as a demonstration of ‘unphysical’ fluid behavior. Rather, we see it as
an indication of the incompleteness of continuum mechanics as a model for physical
phenomena, without the inclusion of the second law of thermodynamics. This is not
a negative description, since their results also suggest that the Euler equations do
constitute a complete information theoretic description of fluid flow, provided they
are augmented by information on fluctuations in addition to a mean velocity (this
involves interpreting the Reynolds averaged stress in their work as the fluctuation
of a Gaussian field; it remains to establish this rigorously). Traditionally, entropy
or viscosity conditions are chosen to augment PDE models and resolve uniqueness
of weak solutions. The use of stochastic flows is consistent with these ideas, since it
provides a microscopic characterization of thermodynamic equilibrium as a process
of information transfer between a source and an observer, just as in the embedding
problem.

More generally, as soon as one pays attention to a measurement process, ‘thermal
effects’ appear in every continuum model, not just those that explicitly involve
‘temperature’ or ‘heat flow’. We return to these questions after introducing the
model, when the parallels between our approach and prior results in PDE theory
can be described in greater detail.

1.3. Outline. The main goal of these notes is to introduce a new class of models
in a way that allows easy access to numerical computations and rigorous analysis.
The notes consist primarily of formal computations, heuristics and links between
areas. This is unexplored territory and my purpose is to invite the reader to explore
it, since a great deal of work remains. To this end, the notes are structured so that
the main structure can be absorbed as easily as possible.

We first introduce the model along with a brief description of the Riemannian
geometry of Gaussian measures. The emphasis in this section is to include just
enough detail so that the reader understands the structure of the model, along
with some numerical schemes for exploration. An important task at this point is to
develop fast numerical schemes and emprirical data on the possibility of universal-
ity in these problems. This is necessary for a broader appreciation of the richness
of the embedding problem, as well as for applications in turbulence and machine
learning. In order to compute embeddings with convex integration one must rely on
the composition of functions, which is delicate to implement numerically. Despite
some beautiful new images of embeddings [2], the absence of numerical computa-
tions in more general situations has restricted our imagination. At the same time,
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the intricate constructions used for existence proofs of wild solutions to the Euler
and Navier-Stokes equations are yet to be implemented numerically. In contrast
with convex integration, the model presented here requires only semidefinite pro-
gramming, Markov Chain Monte Carlo (MCMC), and numerical linear algebra.
These are the engines of modern scientific computing. My hope is that this will
allow the development of fast numerical schemes to compute critical exponents and
fine structure in geometry, learning theory and turbulence. The interpretation of
the flow as a stochastic interior-point method is of particular interest, both for the
purpose of fundamental bounds on algorithms as well as practical schemes.

This is followed by a section describing the geometry of Gaussian measures in
finite-dimensions in more detail. Complete proofs are included here since our in-
terest is primarily in low-rank matrices, whereas most of the literature is dedicated
to matrices of full rank. This section also allows us to explain the stratification
of the space of Gaussian measures in a more convenient coordinate system than
has been used in the literature. The geometric mean of two positive semi-definite
matrices plays an important role here along with further connections to quantum
information theory.

It is only after these sections that we turn to our main interest, the embed-
ding problem. In contrast with Nash’s work, codimension plays only a secondary
role in our formulation. and we find an interesting interplay between the infinite-
dimensional Riemannian geometry of spaces of Gaussian measures and the space
of metrics. The Gaussian spaces have positive curvature, whereas the space of
metrics has negative curvature. We then extend these ideas to stochastic flows in
other gauge groups, in particular the group of diffeomorphisms. Concrete examples
include diffeomorphisms of the circle and torus. This allows us to make contact
with some classical KAM theorems. Finally, the formalism is applied to the Euler
equations.

These later sections are formal. All that we do is to show that these models can
be reformulated as stochastic gradient descent. Since the techniques for rigorous
analysis require the combination of ideas from different areas of mathematics, these
sections should be seen as a road map rooted in the historical development of the
embedding problem along with its relation to other areas of mathematics. I have
tried to include enough detail so that the plausibility of this approach is clear. The
basic ideas are simple enough to admit many variations and there are many more
questions than answers.

1.4. An appreciation of Nash’s work. No one who thinks carefully about the
embedding problem can fail to be inspired by Nash’s work. These papers reveal
entirely unexpected phenomena, while containing a wealth of powerful techniques.

All the work presented here originated in an attempt to rework Nash’s papers [41,
42] from the viewpoint of statistical mechanics, in light of the link with turbulence.
In our interpretation, the first of these papers [41] makes a compelling case for an
entropic expansion of short metrics. Roughly, there are many different choices of
iteration that lead to the existence of embeddings with low regularity and entropy
is the natural tool to quantify degeneracy in statistical mechanics. The second
paper [42] has a very different character, since the emphasis is on the interplay
between the codimension of an embedding and its smoothness. Further, the discrete
iteration of [41] is replaced by a continuous flow. However, as Nash remarks the
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main techniques in [42] have less to do with geometry than the use of feedback
control methods to solve PDE.

The moral in our work is the same. What we have done is to replace Nash’s use
of deterministic control with stochastic controls and the idea of gradient descent.
This allows us to interpolate between the two papers and separate the problems of
existence and regularity of embeddings. Though the resulting structure emerged
from a study of the embedding problem and its connections to turbulence, it is not
limited to these problems.

With hindsight, it is surprising that this line of attack has not been attempted
before. One of the reasons seems to be that the interplay between geometry and
probability is very recent. The idea that the space of Gaussian measures has an
underlying geometric structure has emerged rather slowly. In particular, the Rie-
mannian structure we use was discovered only after the development of mass trans-
portation theory. At the same time, despite the fundamentally geometric nature of
quantum gravity and gauge theories, there were few mathematically rigorous treat-
ments of probability measures on interesting geometries, until the introduction of
Schramm-Loewner evolution.

One of the most striking aspects of Nash’s first paper [41], is the generality of
his results – it applies to every compact Riemannian manifold – along with the
simplicity of his proof. Our work originated in an attempte to randomize this proof
to improve the known critical exponents that separate flexibility and rigidity in
this problem. It was only later that we realized that it was possible to unify the
treatment of his two papers, rather than viewing them as disparate entities.

The insistence on the use of Gaussian measures follows the work Dyson, Gaudin
and Mehta on random matrix theory, as well as the theory of Gaussian measures
developed by Gross. A great deal of statistical mechanics is devoted to the study
of lattice models. On the other hand, random matrix theory shows that restricting
attention to Gaussian measures provides a powerful set of tools to understand
the limit behavior for a interesting class of ensembles. Gross’ work provides a
completely satisfactory theory of infinite-dimensional Gaussian measures, avoiding
the use of lattice models altogether. This is why we flow through Gaussian measures
to construct probability measures supported on solutions to PDE.

This article concludes with a discussion of the process of discovery of the model.
This section is included to reassure analysts that that one can make natural step-
by-step modifications of Nash’s arguments to arrive at a simple new structure.
However, simplicity of formulation does not yet mean simplicity of analysis. This
section also introduces the role of concentration estimates. It will be necessary to
combine these tools with the older approach of several mathematicians, especially
Moser and Nash, to obtain a completely rigorous understanding of the embedding
problems based on the viewpoint introduced here.

2. Stochastic gradient descent

2.1. The isometric empbedding problem. We assume given an n-dimensional
manifold M with C∞ charts. The manifold is closed, i.e. it is compact and it
has no boundary. In addition to these assumptions on the topological structure
of the manifold, we assume that the manifold has a Riemannian metric g. A map
u : M → Rq is an isometric immersion if the pullback metric equals the given
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metric, i.e.

(2.1) u]e = g,

where e denotes the identity metric ds2 = dx21 + . . .+dx2q in Rq. We may also write
(2.1) in a local system of coordinates as

(2.2) ∂xiu
α∂xju

α(x) = gij(x), 1 ≤ i, j ≤ n, x ∈M

We will also write (2.2) as DuT (x)Du(x) = g(x), x ∈M.
Here we adopt the convention that we sum over repeated indices, that we use

Greek indices for the coordinates in Rq and Latin indices for coordinates in M
(thus, uα are the coordinates of u in Rq and we sum over the index α above).

The map u is an isometric embedding if it is an isometric immersion that is also
one to one. We will focus on isometric immersions, in particular on a method to
solve the PDE (2.1). The two problems are closely tied to one another.

Modern understanding of this problem begins with Nash’s pioneering work in
the 1950s [41, 42]. The system of equations (2.2) has sn = n(n + 1)/2 equations
and q unknowns. Nash’s results involve an interplay between the codimension
q − n and the smoothness of the metric g. In his 1954 paper, Nash established the
existence of C1 solutions to (2.1) when q = n + 2 and g is C0 [41]. These results
extend to the case q = n + 1 [33]. This case is overdetermined: the number of
unknowns q is smaller than the number of equations sn when n ≥ 3. Once q >
n(n+1)/2 the problem is underdetermined and in his 1956 paper, Nash established
high codimension and high regularity solutions. For example, when g ∈ C∞, Nash
established the existence of C∞ solutions to (2.1) when q is large [42]. His initial
estimates of q were too high. Gromov has shown that q = n + n(n + 1)/2 + 5 is
sufficient (his work is the authoritative reference in the area [28]). The factor of 5 is
undoubtedly technical, however the integer n+ n(n+ 1)/2 has geometric meaning:
it is the maximal dimension of the osculating space at a point u(x), i.e. the space
spanned by the vectors {∂xi

u, ∂2xixj
u}1≤i,j≤n. It will play a role below.

There is an extensive PDE literature on (2.1), especially an important result of
Günther [29]. We will not review these here since our goal is develop a new ap-
proach that is inspired by the connections with turbulence, and thus with statistical
mechanics and constructive field theory.

2.2. A new formalism. We introduce a stochastic approach to solve (2.1). While
this formalism was discovered through laborious calculations, it is simple with hind-
sight. We rely crucially on Nash’s insight that ‘short metrics can fluctuate upward’
as well as his idea of realizing the embedding as the endpoint of a dynamic process
(a discrete dynamical system in [41] and a smooth flow in [42]). However, we re-
place his analytic techniques, especially his use of explicit geometric constructions
to vary the metric, with a stochastic dynamical system.

The “time” in our dynamical system is actually the energy scale, but we will
denote it by t as usual. In order to stress the dynamic nature of embedding, let
us switch notation slightly and replace g in equation (2.1) with g∞ to denote that
this is our target metric as t→∞. Our goal will be to construct a stochastic flow

ut of C∞ maps M → Rq such that gt := u]te satisfies gt < g∞ for t ∈ [0,∞) and
limt→∞ gt = g∞. We will generate such flows in the following way.

(a) We consider the joint evolution of (ut, Lt) where ut :M→ Rq is a smooth

map such that u]te < g∞ and Lt ∈ Posq(M, gt) is a covariance kernel. Here
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Posq(M, g) denotes the space of covariance kernels for Gaussian random
fields v : (M, g)→ Rq given in coordinates by Pαβ(x, y) = E(vα(x)vβ(y)),
x, y ∈M, 1 ≤ α, β ≤ q. 1

(b) We use a gradient flow structure based on the Riemannian geometry of

Posq(M, g) to choose an optimal ‘stochastic velocity’ L̇.

This results in the following stochastic evolution equation.

du =
√
dL,(2.3)

L̇ = argminP∈(TLPosq(M,u]e))+E(u, L, P ).(2.4)

To the best of my knowledge, the structure (2.3)–(2.4) is new 2.

The notation
√
dL is suggestive shorthand for the fact that du is a stochastic

differential with covariance dL. The precise structure and its consequences are
explained in more detail below, as is the Riemannian geometry of Posq(M, g). We
will refer to equation (2.3) as stochastic kinematics and to (2.4) as the energetics.
This terminology is adapted from Otto [45]. The term stochastic gradient descent
is motivated by its use in the machine learning community, especially Bottou’s
work [13]. Several variants of stochastic gradient descent have been proposed. We
will only use it to refer to equations with the above structure. This model does
have an information theoretic interpretation, so this terminology is not inconsistent
with its usage in learning.

An important feature of this evolution is that by construction it yields a Lipschitz
martingale ut and an increasing kernel Lt. Therefore the limit u∞ exists by the
martingale convergence theorem, and limt→∞ Lt = L∞ exists by monotonicity.
What needs to be established is that the limit is isometric. In a similar manner,
general theory ensures that each P ∈ Posq(M, g) is equivalent to a reproducing
kernel Hilbert space provided it is sufficiently smooth. Thus, if L∞ is sufficiently
regular, the method yields a limiting space of regular fluctuations in addition to
an immersion. Thus, the main ‘hard’ task is to establish regularity of (ut, Lt) as
well as the convergence to an isometric immersion. Some speculation about this
question is contained at the end of this section. For now, the primary task is to
explain the structure of this model and to explain why it is natural.

2.3. Some heuristics.

2.3.1. Cellina’s differential inclusion. Equation (2.3)–(2.4) admits a natural exten-
sion to other problems. What changes is the geometry of the space of covariance
kernels, the cost function E and the nature of subsolutions. One of these problems,
which is the first test case of the method, is the following question motivated by
Cellina’s work on differential inclusions.

How does one construct natural probability measures that are supported on the
space of solutions to the differential equation

(2.5) |u′(x)|2 = 1, x ∈ (0, 1), u(0) = u(1) = 0 ?

1It is possible that the intrinsic Gaussian geometry of Posq(M) is all we need; but right now

I also use the metric g to define its geometry, which is why I use Posq(M, g).
2Its closest relative in the literature could be Nelson’s stochastic mechanics [43]. However,

despite several attempts to link these ideas, I still don’t see how to do it. The noise in our model
arises from errors in measurement, not from a background field hypothesis. Nevertheless, there

are several common themes and it is hard to escape the feeling that the models must be related.
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Equation (2.5) has a viscosity solution. This means that uniqueness is determined
by a pointwise maximum principle. What we are asking is whether the viscosity
solution has a stochastic origin, i.e. whether the probability measures supported on
solutions to (2.5) converge to the viscosity solution in a suitable small noise limit.
This is what we mean by constructing a ‘natural’ probability measure on the space
of solutions to (2.5).

The importance of (2.5) as a test case is that it begins to reveal a structure that
has more to do with general PDE theory than the specific geometric perturbation
devices used by Nash. The stochastic flow associated to (2.5) is now a diffusion in
the space of subsolutions. These are smooth maps {v : (0, 1)→ R} that satisfy the
boundary condition v(0) = v(1) = 0 as well as the strict inequality |v′(x)| < 1 at
all x ∈ (0, 1). Given a smooth subsolution and Gaussian kernel (u0, L0) our task is
to find a stochastic flow (ut, Lt) in the space of smooth subsolutions that solves

du =
√
dL,(2.6)

L̇ = argminP∈TLPos(0,1)E(u, L, P ),(2.7)

and satisfies limt→∞ |u′t(x)| = 1 for every x ∈ (0, 1). The space Pos(0, 1) is defined
in Section (5) below. We see that equations (2.6)–(2.7) have the same character as
(2.3)–(2.4), though of course the underlying energy and space of covariance kernels
is different.

Thus, our constructive approach to the isometric embedding problem also sheds
light on the structure of typical Lipschitz functions on a Riemannian manifold. It
is easy to generalize (2.5) and the associated stochastic flow (2.6)–(2.7) to other
Hamilton-Jacobi problems with convex Hamiltonians.

The probabilistic structure of the problem is simplest to understand when we
consider (2.5). In this case, the set of subsolutions is convex and we may think
of it as an infinite-dimensional polytope. This allows us to visualize the stochastic
evolution as a growth process that introduces fluctuations in a manner that pushes
subsolutions ‘outwards’ towards the boundary of the polytope. This is a useful
heuristic, provided one keeps in mind that it is atypical; in higher-dimensional
problems such as (2.1) the set of subsolutions is not (naively) convex. Nevertheless,
it illustrates the idea that it is useful to think of PDEs such as (2.1) and (2.5) as an
infinite systems of constraints that formally define a polytope. What we are trying
to do is to create a diffusion in the space of subsolutions that continues to push
outwards until all the constraints are saturated on the boundary of the polytope.
This approaches stresses the role of (statistical mechanical) entropy in PDE theory,
unlike the conventional emphasis on energy methods. It also provides a useful
connection with work in the 1980s that revealed unexpected dynamical structure in
fundamental numerical algorithms [6, 7, 15, 22]. As an MCMC scheme, it is useful
to think of (2.3)–(2.4) as a stochastic interior point algorithm.

2.3.2. Controllability and Hypoellipticity. The main point to note about (2.3)–(2.4)
is that the gradient structure determines the covariance of the fluctuations. The
problem does not separate into the sum of an applied gradient and stochastic forc-
ing. What we have is a system that evolves only through fluctuations. As we
show below, the fact that L̇ lies in TLPosq(M, g) necessarily means that L̇ inherits

smoothing properties from L. For this reason, we will say that L̇ is bandlimited.
One should think of a map ut that gets rougher with time, but in a manner that
is controlled by the balance between the descent of the energy and the expansion
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of L̇. Thus, (2.3)–(2.4) has the character of a Carnot-Caratheodory diffusion with

an expanding range of fluctuations. In order to prove that u]te → g∞ it will be
necessary to prove that for L0 sufficiently large the flow is hypoelliptic. Similar re-
sults – though not exactly what we need– play an important role in control theory,
probability and turbulence [14, 39, 30].

2.3.3. Singular behavior at the boundary. This model suggests that the simplest
physical cartoon for equilibration in turbulence is not the familiar picture of a par-
ticle in a potential well subject to thermal noise. This caricature is best illustrated
with the Ornstein-Uhlenbeck process

(2.8) dX = −X dt+ dB = −∇V (X) dt+ dB, X ∈ R,

where we have chosen V (x) = x2/2 for simplicity. Instead, our work suggests that
a better paradigm is the Feller diffusion

(2.9) dX =
√
X dB = −

√
∇V (X) dB, X > 0

Loosely speaking, this reflects the fact that entropic fluctuations give rise to a one-
sided transport in the embedding problem and turbulence with singular behavior
at an exit boundary. 3

3. Stochastic kinematics for the embedding problem

We will always assume that u(x, t) := ut(x) and L(x, y, t) := Lt(x, y) are C∞ in
the spatial variables x,y ∈ M. Equation (2.3) shows that ut evolves stochastically

in time. However, Lt evolves differentiably in time and dL = L̇ dt in equation (3.2)
is a classical differential. 4

The formal, but suggestive, notation
√
dL is used to signify that L̇ should be

thought of as a stochastic velocity field . This notation was introduced by Lévy to
describe stochastic differentials [38]. While Lévy’s notation is no longer standard,
it is very useful to resurrect it in our setting since it allows us to collapse the
stochastic kinematics to a single suggestive equation. Its precise meaning is that
u(x, t) satisfies the Stratonovich stochastic differential equation

(3.1) du(x, t) = X(x, t, ◦dB), x ∈M, t > 0,

where X is a Gaussian noise on C∞(M,Rq) with reproducing kernel L̇ [4, 34]. Here
B(t) = (B1(t), B2(t), . . .) denotes a sequence of independent standard Brownian
motions and dB and ◦dB denote its Itô and Stratonovich differentials respectively.

The Stratonovich formulation is necessary to ensure invariance under coordinate
transformations on a manifold. However, to fix ideas it is simpler to think in

3These diffusions are related in an interesting way [46]. For example, the Feller diffusion (with
a drift) may be obtained by projecting Brownian motion in RN onto the half-line via Xt = |Bt|2;

in a similar way, the map Yt = |Bt| gives the Bessel process. What is entropic about these
processes is the fact that Bt has N degrees of freedom while Xt and Yt have only one degree of

freedom. Entropy is simply the volume factor we obtain when we integrate out the angular degrees

of freedom of Bt to determine the evolution of Xt and Yt. The reason this cartoon is relevant
in the embedding problem is that the stochastic process ut, like Bt, has many more degrees of

freedom than gt = u]te because of gauge transformations. Thus, it is necessary to integrate these

out, scale by scale, and that is what we are attempting with a stochastic flow.
4Of course, it is necessary to establish this rigorously for given initial data (u0, L0). The key

step is to establish elliptic regularity for (2.4), since the standard theory of stochastic flows may
be used after that.
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terms of coordinates and Itô differential equations since this allows us to ‘see the
fluctuations’. (At the first pass it is best to suppose that M is the torus Tn so
that we have a global coordinate system. In this setting, one may simply view the
formulation (2.3)–(2.4) as a technique for solving the PDE (2.1) using stochastic
gradient descent with an Itô SDE).

The relationship between u and L̇ is transparent in this setting: 5

(3.2) E
(
Xα(x, t, dB)Xβ(y, t, dB)

)
= dLαβ(x, y, t), x, y ∈M, 1 ≤ α, β ≤ q.

As described in Section 8, our use of stochastic flows was at first motivated by
Nash’s paper on C1 embeddings [41]. In this paper, Nash constructs immersions
by adding fluctuations in physical space. The use of Gaussian fluctuations is a
natural extension of this idea. What is more surprising is that the same approach
provides a unified treatment of embedding in any codimension and leads naturally
into Nash’s work on smooth embeddings. Let us explain this idea with the following
comparison.

In order to construct smooth embeddings, Nash used a geometric flow of the
form [42]

(3.3) ∂tu(x, t) = v(x, t),

where v(x, t) is a C∞ vector field that is normal to an immersion u. That is, we
assume (recall that 1 ≤ α ≤ q and that we sum over repeated indices)

(3.4) vα∂xiuα = 0, x ∈M, 1 ≤ i ≤ n.

It immediately follows from (3.3), (3.4) and the definition gt = u]te that

(3.5) ∂tgij = −2
(
vα∂2xixjuα

)
.

This equation may be viewed as a linear system relating ∂tg and v. Nash prescribes
∂tg and chooses the least squares solution for v, assuming q is large enough. A
necessary condition for existence of a least squares solution is that v should not be
normal to the osculating plane (if so, vα∂2xixjuα = 0 for all i,j, and it would be
impossible to change the metric). The fact that the change of metric is driven by
an interaction between vα and the second derivatives ∂2xixjuα gives his proof a very
delicate character (this effect is in addition to his use of a smoothing operator that
evolves with ut). Thus, the situation when v is normal to the osculating plane is
the worst case scenario for the deterministic flow (3.3).

By contrast, let us consider the analogous computation for a stochastic flow 6

(3.6) du = X(dB) =
√
dL,

assuming L is supported on spatially smooth vector fields normal to the immersion.
The change in metric now includes an Itô correction because the metric is quadratic
in Du. We apply Itô’s formula to find

(3.7) dgij = −2
(
Xα(dB)∂2xixjuα

)
+ ∂xiXα(dB)∂xjXα(dB).

The Itô correction is a function of L̇ alone. Indeed, differentiating the covariance
kernel using the definition

(3.8) Xα(x, dB)Xβ(y, dB) = dLαβ(x, y),

5The E is actually redundant here, but is included for clarity since the formal multiplication

rule dBkdBl = δkl dt implicitly involves an expectation.
6We suppress the arguments (x, t) when possible. So X(dB) = X(x, t, dB).
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we find that

(3.9) ∂xiXα(dB)∂xjXα(dB) = ∂xi∂yjdL
αα(x, y)

∣∣
x=y

.

This linear operator on covariance kernels appears so often that it is useful to
introduce notation for it. We define the operator ♦ that maps symmetric kernels
to symmetric (0, 2) tensors by 7

(3.10) (♦P )ij (x) := ∂xi∂yjP
αα(x, y)

∣∣
x=y

.

The linear operator ♦ is analogous to a divergence operator because it involves a
first derivative in each component and a trace on the diagonal. I am not sure if it
has appeared in the literature (if so, I will correct the terminology).

With these definitions in place, let us summarize our calculations. We have
found that a stochastic flow normal to u given by (3.6) yields

(3.11) dg = dm+ (♦L̇)dt,

where we have defined the martingale term dm by

(3.12) dmij := −2
(
Xα(dB)∂2xixjuα

)
.

Equation 3.11 is the stochastic counterpart of equation (3.7). We see immediately
that the martingale term dm is the analog of the right hand side of (3.7).

The dimension q has played no role so far in the analysis. Let us now assume
that q > n + n(n + 1)/2 and that it is possible to choose spatially smooth X(dB)
that is normal to the osculating plane. This is the worst case scenario for Nash’s
deterministic flow. However, it is the best case scenario for a stochastic flow,
because now dm ≡ 0 and equation (3.11) becomes the deterministic evolution

(3.13) dg = ♦dL, i.e ∂tg = ♦L̇.

Thus, we observe a stark change in the evolution of the metric when q crosses the
threshold q = n+n(n+ 1)/2. Although u evolves stochastically, if the fluctuations
are normal to the osculating plane the metric evolves deterministically. In analogy
with problems in phase transitions it is tempting to speculate that this value of q
is a threshold that separates exponential decay of g∞ − gt from algebraic decay.
Since these decay rates are in the energy scale t, they should (I hope) translate to
a sharp gap in regularity of immersions constructed by this method. This is one of
our reasons for treating the problem of existence for all q in a unified manner.

We will now try to exploit this idea in a weak formulation by choosing an energy
minimization principle to determine L̇. By adding a term that penalizes gradients it
is possible to add smoothing in a relatively conventional manner. More interesting
is the fact that equation (2.4) includes a subtle smoothing mechanism that is related
to the geometry of Posq(M, g). Let us first explain this geometry and then describe
the energetics.

4. The geometry of Posq(M, g)

The space of covariance kernels Posq(M, g) has a natural (infinite-dimensional)
Riemannian geometry that is used to define the tangent space TLPosq(M, g) and the
positive cone TLPosq(M, g)+. This geometry has not been studied in the generality
we need, but it is well known in simpler settings, which allows us to work by analogy.
A useful expository account is [10].

7This needs to be done properly in an invariant fashion with the Stratonovich formulation.



GAUSSIAN PROCESSES, THE ISOMETRIC EMBEDDING PROBLEM AND TURBULENCE15

4.1. The geometry of positive definite matrices. The simplest example is
the following. Let Symm(N) and Pos(N) denote the space of real symmetric and
symmetric positive semi-definite (psd) of size N . The natural inner product on
Symm(N) is the Frobenius (or Hilbert-Schmidt) inner product 〈A,B〉 = Tr(ATB).
When this inner product is pushed forward to Pos(N) by the map X 7→ expX it
yields the Riemannian structure of Pos(N) as a symmetric space [9, 35]. At any
L ∈ Pos(N) we find that

(4.1) TLPos(N) = {M |M = LA+AL, A ∈ Symm(N)}.
Further, the inner product on TLPos(N) is given by

(4.2) 〈MA,MB〉L = Tr(ALB), MA = LA+AL, MB = LB +BL.

In a basis in which L is diagonal with positive eigenvalues {li}Ni=1, this may also be
written as

(4.3) 〈MA,MB〉L =
∑
i,j

li
(li + lj)2

(MA)ij(MB)ij , MA,MB ∈ TLPos(N).

This metric on Pos(N) is canonical because it may also be obtained in several
other ways. Algebraically, Pos(N) is the quotient space GL(N)/O(N), and the
above inner product is inherited by Riemannian submersion. Thus, it is the only
metric that respects (discrete) gauge invariance.

More relevant for our needs is the following probabilistic interpretation. Consider
a centered Gaussian vector v = (v1, . . . , vN ) ∈ RN . The covariance kernel for v is
the matrix Lij = E(vivj) ∈ Pos(N). This matrix determines (and is equivalent to)
a Gaussian measure on RN . A natural metric on probability measures on RN is
the Wasserstein-2 transport metric. It turns out that the inner-product (4.2) may
also be obtained by restricting the Wasserstein-2 metric to Gaussian measures [10].

The above formulas continue to hold when L is positive semi-definite. The
following analogy is helpful to understand the smoothing that is implicit in (2.4).
We have seen that the tangent space TLPos(N) is the image of the linear map

(4.4) Symm(N)→ TLPos(N), A 7→ AL+ LA.

Now suppose that L has finite rank. Choosing a basis in which L is diagonal, say
Lii = li, i = 1, . . . , r and li = 0, r < i ≤ N , we find that each matrix M ∈ TLPos(N)
has coordinates

Mij = (li + lj)Aij ,

so that Mij = 0 when i and j are greater than r. Thus, a rank restriction on L
imposes restrictions on the tangent space TLPos(N).

While there are subtleties in extending these ideas to the operator theoretic
setting of (2.4), the above connection with the Wasserstein-2 metric provides a
natural way to understand the Riemannian geometry of Posq(M, g) in the setting
of (2.4). While the precise results we need do not exist in the literature, there has
been some related work, though mainly in finite-dimensions [47].

4.2. The geometry of bandlimited Gaussian kernels. Let us briefly explain
how the finite-dimensional calculations extend to infinite dimensions when q = 1,
since this captures the essence of the situation. These ideas may then be extended
to Rq valued Gaussian random fields for arbitrary q. Assume given (M, g), consider
the fixed reference space L2(M, g) and let Symm(M, g) denote the space of Hilbert-
Schmidt operators on L2(M, g). Now consider a centered scalar Gaussian field
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v : (M, g) → R with covariance L(x, y) = E(v(x)v(y)). In this case, the formal
tangent space TLPos(M, g) has the form

(4.5) TLPos(M, g) = {M |M = LA+AL, A ∈ Symm(M, g)},

where AL and LA denote composition of operators in the obvious way

(4.6) (LA)(x, y) =

∫
M
L(x, s)A(s, y)

√
Gds,

where G = det(g) so that
√
Gds is the volume form defined by the metric g.

It is at this point that the inner-product defined by L begins to play a role.
If L(x, y) is sufficiently smooth in x and y, it defines a trace-class operator on
L2(M, g). By Mercer’s theorem, it has a complete eigenfunction expansion and
by Lidskii’s theorem TrL =

∑
i li < ∞, where li ≥ 0 denote the eigenvalues of L.

We now see that in infinite-dimensions the inner-product (4.3) becomes a weighted
norm defined by the spectrum of L. More precisely, the tangent space TLPosq(M, g)
is the Hilbert space obtained by closing the linear space (4.5) in the norm

(4.7) 〈M,M〉L :=
∑
i,j

li
(li + lj)2

M2
ij .

Here Mij denote the coordinates of M in the basis of eigenfunctions of L.
The case q > 1 is slightly more complicated because the composition rule

(4.6) must account for the fact that L and A act on vector valued functions in
L2(M, g;Rq). However, this does not affect the basic observation that TLPosq(M, g)
carries a weighted norm that is determined by L.

5. Stochastic gradient descent for Cellina’s problem

We first explain the stochastic kinematics and energetic for the simplified prob-
lem (2.5) and the associated stochastic flows (2.6)–(2.7).

The stochastic velocity fields in this problem are covariance kernels for scalar
Gaussian fields on (0, 1) and at any time t we have

(5.1) dLt(x, y) = X(x, t, dB)X(y, t, dB), x, y ∈ (0, 1).

Let Pos(0, 1) denote the space of such kernels. More generally, let Symm(0, 1) denote
the space of symmetric Hilbert-Schmidt kernels on (0, 1) with Lebesgue measure.
Given a smooth positive kernel L, we let {li}∞i=1 denote its eigenvalues and {ϕi}∞i=1

its eigenfunctions. Then every kernel in TLPos is of the form

(5.2) M = AL+ LA, A ∈ Symm(0, 1)

subject to the condition that the squared norm

(5.3) 〈M,M〉L =
∑
i

li
(li + lj)2

M2
ij <∞,

where the coefficients Mij are obtained using the eigenfunctions of L

(5.4) Mij =

∫ 1

0

∫ 1

0

M(x, y)ϕi(x)ϕj(y) dx dy.

Now let us turn to the energetics. In what follows we will assume that we choose
a kernel P ∈ TLPos(0, 1) as a candidate for L̇. We finally choose L̇ by optimizing
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over all such P . For brevity, let ρt(x) := u′(x, t)2. An application of Itô’s formula
analogous to equations (3.7)–(3.10) yields

(5.5) dρ = 2u′du′ + du′du′ := dm+ ♦P dt.

In this setting, the ♦ operator is a linear map from Symm(0, 1) to functions on the
interval (0, 1) given by

(5.6) (♦P )(x) := ∂x∂yP (x, y)|x=y ,

The ♦ operator is positivity preserving in the sense that if P is the smooth co-
variance kernel of a Gaussian process, ♦P is a non-negative density on (0, 1). In a
similar manner, the quadratic variation of the martingale dm is given in terms of
♦P as follows

(5.7) [dm, dm] := (2u′du′)(2u′du′) = 4ρ♦P dt.

Our task is to use the stochastic flow to drive ρt(x) to 1 in a manner that is
constrained by the geometry of Pos(0, 1). If we had no restrictions, a natural way
to force ρt(x) to approach 1 would be to impose the condition

(5.8) ∂tρt(x) = 1− ρt(x), or dρt(x) = (1− ρt(x)) dt.

This is our ‘ideal’ evolution. On the other hand, equation (5.5) denotes the evolution
that is accessible with stochastic kinematics. So we now try to do the best we can
subject to the kinematic constraints. This means that we’d like to match the means
and minimize the fluctuations, i.e.

(5.9) (1− ρt(x))− ♦P ) ≈ 0, [dm, dm] ≈ 0.

For these reasons, we choose the cost function

(5.10) E(ρ, P ) =

∫ 1

0

((1− ρ(x)− ♦P )
2
dx+ 4

∫ 1

0

ρ♦P dx

We have penalized the terms in (5.9) equally. Clearly, there are many other pos-
sibilities here – we may choose different weights, different ideal evolutions that re-
place (5.8), etc. It is also possible to incorporate a smoothing term by minimizing
the quadratic variation of du′′. Let us define

(5.11) (♦2P )(x) := ∂2x∂
2
yP (x, y)

∣∣
x=y

.

Then noting that

(5.12) du′′du′′ = ♦2P,

we fix a parameter ε > 0 and consider the energy

(5.13) Eε(ρ, P ) =

∫ 1

0

((1− ρ(x)− ♦P )
2
dx+ 4

∫ 1

0

ρ♦P dx+ ε

∫ 1

0

(♦2P ) dx.

Finally, the evolution is prescribed by setting

(5.14) L̇ = argminP∈TLPos(0,1)+Eε(ρ, P ).

The cone TLPos(0, 1)+ is convex and the energy Eε is strictly convex on this set.

Thus, there is a unique minimizer L̇.
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6. Energetics for the embedding problem

6.1. Scaling the metric defect. Let us now extend the ideas of Section 5 to the
embedding problem. While the main ideas are roughly the same, we will explore
two different ‘ideal’ evolutions. The first is the analog of (5.8)

(6.1) ∂tgt = g∞ − gt, or dgt = (g∞ − gt) dt.

If this equation held, we would have exponential decay of the metric defect g∞−gt =
e−t(g∞ − g0).

The second ideal evolution is a gradient flow on the space of metrics Met(M)
on M. In order to describe this gradient flow we must introduce the Riemannian
structure of Met(M). The formal tangent space TgMet(M) at a metric g consists
of symmetric (0, 2) tensors. If h, h′ ∈ TgMet(M) the natural inner-product on
TgMet(M) is

(6.2) 〈h, h′〉g =

∫
M
gijgklhikh

′
jl

√
G,

where G = det(g). 8 We need this inner-product to form the Dirichlet energy that
is the analog of (5.10).

We have already seen in equation (3.11) that if L̇ = P ∈ TLPosq(M, g), stochas-
tic kinematics restrict us to

(6.3) dg = dm(P ) + ♦P dt

where the components of the martingale term are9

(6.4) dmij = ∂xiXα(dB)∂xjuα + ∂xjXα(dB)∂xiuα.

Therefore, its quadratic variation is

E0(P ) := 〈dm(P ), dm(P )〉g =

∫
M
gijgkldmikdmjl

√
G(6.5)

= 2

∫
M
gijgkl∂xjuα∂xluβ∂xi∂yk P

αβ(x, y)
∣∣
x=y

√
G.

In a similar manner, the natural penalty for enforcing ♦P ≈ g∞ − g is

(6.6) E1(P ) = 〈g∞ − g − ♦P, g∞ − g − ♦P 〉g

Thus, the Dirichlet energy that is the analog of (5.10) is E(P ) = E0(P )+E1(P ). In
a similar manner, we may also incorporate a penalty for smoothing. Again, these
give strictly convex energies on the cone TL(Posq(M, g)).

6.2. An energy function and ideal gradient flow for metrics. The evolution
in equation (6.1) is not entirely satisfactory since it is not apparent that it corre-
sponds to a gradient flow. Interestingly, there is a natural ‘ideal’ gradient flow but

8I am following the physicists here [26]; this must be completely standard in mathematics too.
9We do not want to assume that Xα is normal to the map u a priori; this should emerge from

energy minimization. This is why we do not write this term in the form of equation (3.12).
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it does not yield (6.1) 10. Let us define the following energy functionals on Met(M):

Vol(g) =

∫
M

√
G(6.7)

A(g) = −
∫
M
gab(g∞)ab

√
G∞,(6.8)

F (g) = A(g)− 2Vol(g).(6.9)

where G = det g and G∞ = det(g∞).
The terms in this energy have an intuitive meaning: clearly the volume is mono-

tonic under the order on metrics. The energy A(g) may be thought of as an applied
field that drive the metric gt to g∞. So it is a bit like the quadratic energy for the
Ornstein-Uhlenbeck process, except that it is more subtle because of the nonlinear-
ity in the metric, as well as the one-sided condition g < g∞.

Computing the gradient of F with respect to the metric 〈·, ·〉g on Met(M) we
find the gradient flow

(6.10) ∂tg = gradgA(g) = (g∞ − g) +

(√
G∞
G
− 1

)
g∞.

This flow has the desired positivity property gradgA(g) > 0 in the cone g∞ > g.
Further, gradgA(g) > (g∞ − g) in the region 0 < g < g∞. Thus, we may use it as
our ‘ideal evolutions’ instead of the flow chosen in (6.1) by choosing the associated
energy penalty and Dirichlet energy

(6.11) E2(P ) = 〈gradgA(g)− ♦P, gradgA(g)− ♦P 〉g, Ẽ(P ) = E0(P ) + E2(P ).

The computation of (6.10) goes as follows. Consider a curve g(τ) with g(0) = g
and ġ(0) = h. Then we find that

(6.12) ġij
∣∣
τ=0

= −giphpqgqj ,
d

dτ

√
G

∣∣∣∣
τ=0

=
1

2
gabhab

√
G.

Therefore, we find that

〈gradgA(g), h〉g =
d

dτ
A(g(τ))

∣∣∣∣
τ=0

=

∫
M
gakgblhkl(g∞)ab

√
G∞(6.13)

〈gradgVol(g), h〉g =
d

dτ
Vol(g(τ))

∣∣∣∣
τ=0

=
1

2

∫
M
gabhab

√
G.(6.14)

We now use the definition of the inner-product in (6.2) and the fact that h is an
arbitrary smooth, symmetric (0, 2) tensor to obtain the pointwise relations

gαβgγδ
(
gradgA(g)

)
αγ
hβδ = gakgblhkl(g∞)ab

√
G∞,(6.15)

gαβgγδ
(
gradgVol(g)

)
αγ
hβδ =

1

2
gabhab

√
G.(6.16)

Contracting indices and using the fact that h is arbitrary, we obtain

(6.17) gradgA(g) =

√
G∞
G

g∞, gradgVol(g) =
1

2
g.

10This may just be because I’m not clever enough to find a primitive that yields (6.1).
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7. Intrinsic fluctuations and turbulence

In this section, we formulate a model that leads us closer to a conceptual link
between the embedding problem and turbulence. As we have seen in Section 3,
the use of stochastic flows allows us to treat embeddings into all Rq in a unified
manner. We now take this idea to its natural extreme and seek a completely
intrinsic problem that shares the character of the embedding problem. There are
several other reasons – pure and applied – for considering such problems. These
are discussed at the end of this section once the model has been introduced.

7.1. The model. Given a Riemannian manifold (M, g∞), and a metric g0 such
that g0 < g∞ we seek a stochastic flow {ϕt}t≥0, ϕ0 = I of diffeomorphisms such
that the pushforwards gt := ϕ∗t g0 converge to g∞. Such diffeomorphisms do not
constitute ‘true’ changes of the metric, since they are simply gauge transformations.
However, a systematic study of gauge transformations is interesting because it leads
us towards the study of Brownian motions in the diffeomorphism group. It also
leads us to pay attention to the entropy implicit in the choice of a gauge. The
assumption that g0 < g∞ is of course inspired by Nash’s observation that short
metrics can fluctuate ‘upward’. Our purpose is to show that it is a meaningful
starting point even in a purely intrinsic setting.

Our task as in Section 2.2 is to derive a stochastic gradient descent for this
problem. In equations (2.3)–(2.4) our stochastic vector fields took values in Rq
and were completely prescribed by covariance kernels for maps M → Rq. Now
they must take values in the tangent bundle TM. While it is a somewhat subtle
problem to define Gaussian measures on vector bundles in a purely intrinsic way,
a fully satisfactory theory exists [3]. (For example, it is not obvious what the
covariance kernel must be, since we need to compare vectors v(x) and v(y) in the
tangent spaces TxM and TyM respectively.)

In fact, we will make life easier for ourselves and restrict attention to a simpler
class of vector fields – gradients of scalars. A smooth scalar Gaussian scalar field
p :M→ R is completely prescribed by its correlation kernel

(7.1) L(x, y) = E (p(x)p(y)) .

Since (M, g) is a Riemannian manifold, if L is sufficiently smooth, so is every
realization p and we obtain a well-defined vector field gradgp(x) ∈ TxM. We use
the letter p to signify that this is a pressure field and the subscript g to denote the
metric being used for the gradient.

Now let us extend this notion to an evolving family of covariance kernels and
the associated stochastic flows. As in the previous sections, in order to state the
minimization for stochastic gradient descent, we will first let P ∈ TLPos denote the
covariance kernel for the pressure field. We study the stochastic kinematics and
then choose the stochastic velocity L̇ by optimizing over P (we abuse notation and

continue to call L̇t the stochastic velocity field, though it is actually the covariance
kernel for the pressure field). Thus, consider a spatially smooth Gaussian noise

(7.2) p(x, t, dB)p(y, t, dB) = P (x, y) dt, x, y ∈M,

and the associated stochastic vector field

(7.3) X(x, t, dB) = gradgp(x, t, dB) = gij∂xjp(x, t, dB)∂xi ,

where the last formula expresses X in coordinates.
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Given a spatially smooth stochastic flow, the evolution of the metric is given in
the Itô form by [34]

(7.4) dg = LX(dB)g +
1

2
L2
X(dB)g,

where L denotes the Lie derivative. The martingale term analogous to (3.12) is
given by

(7.5) dm(P ) := LX(dB)g = Lgradgp(dB)g = 2Hessg (p(dB)) .

Here we use an identity relating the Lie derivative of the metric to the covariant
derivative (Y, Z are arbitrary smooth vector fields in TM) [27]

(7.6) LXg(Y, Z) = g(DYX,Z) + g(Y,DXZ).

Then we further simplify this identity using the fact that X = gradgp. (The fact
that X is a stochastic differential is irrelevant for this calculation; all that matters
is that it is smooth in space).

A tedious, but similar calculation, provides the Itô correction to the metric

(7.7)
1

2
L2
X(dB)g = 4 (Hessg(p(dB)))

2
.

This term is deterministic and its positivity may be seen as follows. Diagonalize
the kernel P and write p(x, dB) =

∑
k pk(x)dBk. Since Hessg is a linear opera-

tion, Hessg(p(x, dB)) =
∑
k Hessg(pk(x))dBk, and by the Itô multiplication rule

dBjdBk = δjk dt, we see that

(7.8) (Hessg(p(x, dB)))
2

=
∑
j

(Hessg(pj(x))
2
dt.

In particular, the Itô correction for the stochastic flows generated by pressure gra-
dients pushes the metric ‘upwards’ as desired. The above formula again provides a
positivity preserving map from the space of covariance kernels to metrics analogous
to (3.10). Since it involves second derivatives, we define

(7.9) ♦2P (x) := 4 (Hessg(p(x, dB)))
2
, p(x, t, dB)p(y, t, dB) = P (x, y) dt.

(We define the operation in this form, since it is clearer than when written in
coordinates).

We now observe that the energies defined in Section 6 may continue to be used
here. More precisely, as in equation (6.5) we consider the quadratic variation of the
martingale term

(7.10) E0(g, P ) = 〈dm(P ), dm(P )〉g =

∫
M
gijgkldmikdmjl

√
G

where the martingale term is now given by (7.5). In a similar manner, we may
define the energy

(7.11) E1(g, P ) = 〈g∞ − g − ♦2P, g∞ − g − ♦2P 〉g

so that the mean change in metric stays close to ∂tg = g∞ − g. In a completely
analogous manner to (6.11), we may also consider

(7.12) E2(g, P ) = 〈gradgA(g)− ♦2P, gradgA(g)− ♦2P 〉g
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Thus, choosing E = E0 +E1 or E0 +E2 we find our desired stochastic gradient
descent:

dϕ =
√
dL(7.13)

L̇ = argminP∈TPos(M,g)E(g, P )(7.14)

Observe that once L is chosen by the minimization rule (7.14), the evolution of the
metric is completely determined by the kinematic relation (7.4).

7.2. Some remarks on the model.

7.2.1. From embedding theorems to KAM theory. This model is introduced as a
‘proof of concept’ that the use of Gaussian processes to introduce fluctuations may
be used to formulate intrinsic problems of equilibration that share a conceptual
and technical similarity with Nash’s work. Of course, an important such example
is turbulence and our primary goal in introducing fluctuations in the above model
is to make it possible to formulate turbulence (as modeled by the Euler equations)
from a similar point of view.

More generally, our purpose here is to show how one can ‘move’ in a targeted
way within the diffeomorphism group with stochastic flows. This question is of
interest even in the simplest setting of the diffeomorphism groups of the circle and
tori. Despite the historical ties between the embedding problems and KAM theory,
I am unaware of constructions of circle maps that truly rely on Nash’s work. This
is another 1-D model problem which is an important test of our technique.

7.2.2. Intrinsic constructions of Brownian motion. The background to this model
is the intrinsic construction of Brownian motion on (M, g) by Eells, Elworthy and
Malliavin [24, 39, 31]. Baxendale used these ideas to define a notion of Brownian
motion in the diffeomorphism group. However, his approach requires restrictive
smoothness assumptions. It is natural to ask if it is possible to layer stochastic flows
using stochastic gradient descent to yield natural notions of Brownian motion in the
diffeomorphism group with critical regularity. While Nash’s embedding theorems
have been used for (extrinsic) constructions of Brownian motion on manifolds, it
appears not to have been recognized that the intrinsic constructions of Brownian
motion may themselves be used to shed light on the embedding theorems.

7.2.3. Geodesic flows in infinite-dimensional Lie groups. Geodesic flows on gauge
groups arise in several applications [1, 40]). These gauge groups are typically treated
from the point of view of their tangent spaces – for example, the (formal) tangent
space to the group of diffeomorphisms is the space of divergence-free vector fields.
The theory of stochastic flows [5, 34] provides a good description of Hilbert sub-
groups of these gauge groups. (A typical theorem is of the following kind: if one
considers an RKHS that is supported on C∞ divergence-free vector fields on Tn,
then the stochastic flow it generates fills out the Hilbert Lie group obtained by tak-
ing the iterated commutators of all vector fields in the RKHS). Thus, it should be
possible to formulate stochastic gradient descents within these gauge groups that
‘layer’ C∞ stochastic flows in a manner that is completely analogous to (2.3)–(2.4).

While we have focused on the diffeomorphism group for now, it is natural to
ask if the general technique introduced here cannot be used in other contexts. The
approach is again the same: we avoid the use of all explicit geometric constructions
and simply use general control theoretic principles to drive us towards a desired
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geometry. Good test cases to consider are conformal maps and symplectic trans-
formations. I have not yet studied this problem carefully and a sticking point may
be the analog of (7.8).

7.2.4. Learning a metric. The above problem is also motivated by Bayesian models
of learning. The gauge transformations ϕt should be interpreted as a process of
calibrating a metric by an intrinsic observer, i.e. an observer restricted to the
space M. Roughly, g0 corresponds to an initial guess about the ‘true’ metric g∞
and the initial kernel L0 corresponds to the possible modes of exploration by the
observer. The pushforwards gt = ϕ∗t g0 correspond to improved estimates of the
‘true’ metric g∞ in response to measurements at finer and finer scales. In the same
vein, all our models for the embedding problem of (M, g) into Rq have a Bayesian
interpretation: these correspond to learning a metric by an external observer in
Rq. It seems natural to first understand the intrinsic problem in the above setting,
since this involves minimal complexity (no codimension, scalar fluctuation fields).

Fast numerical algorithms are of great importance in machine learning. In prin-
ciple, the flows presented here may be numerically implemented by discretizing
Riemannian manifolds by metric graphs. There are no analytical subtleties in this
setting and all our choices of gradient structure and energy give rise to stochastic
gradient descent algorithms. The real question though is which of these correspond
to fast and reliable algorithms.

8. Discovering a model

8.1. Outline. The tone of this part of the notes is conversational, since it is primar-
ily a discussion of wandering that finally led to something interesting. The primary
audience here are analysts familiar with the search for critical exponents in the Eu-
ler equations [21]. However, I also include a schematic description of Nash’s 1954
proof of low-regularity embeddings for those unfamiliar with it because this proof
provides valuable insight into the nature of fluctuations. Further, it shows immedi-
ately the need for concentration estimates (though these appear in a cumbersome
way in the iterative scheme and are simpler when one has a stochastic flow).

The route to (2.3)–(2.4) involved the following ‘locally natural’ steps:

(1) Randomizing Nash 54 in discrete time along with concentration estimates.
(2) The use of heat kernels to remove the local assumption in Nash 54.
(3) The switch from an iterative scheme to stochastic flows.
(4) The treatment of smoothing as part of the unknowns.
(5) Search for a gradient flow structure.

The overall effect, however, was that my initial idea of using randomness to improve
the critical exponent morphed into a completely different class of problems.

Steps (4) and (5) took me a rather long time because I explored the use of a
gradient flow through operators (i.e. flowing Green’s functions and/or Laplacians).
This is natural from the perspective of random matrix theory, but seems compli-
cated with hindsight. Similarly, the calculations of Section 3 reveal the kinematic
advantages of using stochastic flows, so there is no reason to review it again.

What I will focus on in detail is the first two steps, since these stay closest to
h-principles for the Euler equation and are likely to be of most relevance to others.
Of particular importance is the use of an ‘auxiliary Gaussian space’ to introduce
fluctuations. This idea stems from an explicitly probabilistic interpretation of the
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Bérard-Besson-Gallot embedding and it reveals quite clearly how one can use sto-
chastic methods to construct fluctuation fields with good error estimates. This step
was important to me because it was the first point at which probabilistic methods
felt more natural than Nash’s constructions.

8.2. Randomizing Nash’s scheme: low codimension. My initial goal was to
improve the exponent α for C1,α embeddings of a closed n dimensional manifold
M into Rq when q = n + 1 using a randomization scheme. My interest in this
question was to extend the results in [17], which contain the best general bound on
the local and global exponent α for a C1,α isometric embedding of an n-dimensional
manifold M into Rn+1, q = n + 1. We say the bound is local when the manifold
has a single chart. In this case [17, Thm.1], the result is

(8.1) α =
1

1 + 2sn
, sn =

n(n+ 1)

2
.

A clever simplicial decomposition used by Nash may be combined with the local
exponent to yield α = 1/(1+2nsn) [17, Thm.2] for a closed manifold. This exponent
is determined by a balance between the iterative addition of oscillations via Nash’s
scheme and the requirement that the iterates un :M→ Rq converge in C1(M).

Let us briefly review Nash’s proof to explain why randomization is a reasonable
approach to improve the exponent. We will only consider the local bound, since
the main difficulties are contained here. Further, we assume that g ∈ C∞ and
q = n+ 2 instead of q = n+ 1 since the main issues are present in this case and the
calculations are easier.

The intuitive picture behind Nash’s proof is simple: imagine that we wanted to
embed the two-dimensional torus T2 into R3. We know that we can always immerse
T2 in R3 (this is a topological fact, which is nontrivial for a general manifold). By
rescaling R3 we can ensure that any immersion u : T2 → R3 has the property that
the length between any two points u(x) and u(y) (measured along the immersion
in R3) is strictly less than the distance between x and y (measured in T2). What
the Nash-Kuiper scheme does is to ‘inflate’ the immersion u by adding fine-scale
oscillations in a highly structured manner. Images of this process may be found
in [2, 12].

Let us make this more precise. We say that a metric g′ is short with respect to a
metric g if g′(x) < g(x) in the sense of quadratic forms; i.e. g′(x)(v, v) < g(x)(v, v)
for every x ∈M and every v ∈ TxM. This is equivalent to the fact that the geodesic
distance between any two points x and y in these two metrics is strictly ordered,
i.e. dg′(x, y) < dg(x, y) for every pair of points x, y ∈ M. In a similar manner, we
may order immersions and embeddings in Rq. An immersion u :M→ Rq induces
the metric u]e on M, where e denotes the standard metric on Rq. The starting
point of Nash’s proof is a short immersion u :M→ Rq such that u]e < g. As we
have seen in the case of T2, if there are no topological obstructions, we always have
an initial condition for the iteration.

The iteration scheme consists of an outer loop (termed stages, indexed by m)
and an inner loop (termed steps, with sn steps, indexed by k ). At the beginning
of the m-th stage we are given a short immersion um such that the metric defect
g − u]e is small. At the end of the sn steps in the m-th stage, we will obtain a
new immersion um+1 that is still short with respect to g, but has expanded um in

the sense that u]me < u]m+1e. In order to obtain convergence in C1, we need error
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estimates that ensure that um+1 is short and quantify just how much smaller than

g − u]me the new metric defect g − u]m+1e is.
The steps in Nash’s iteration involve a very clever idea. The above assumptions

allow a decomposition of the metric defect into rank-one tensors termed primitive
metrics:

(8.2) (g − u]me)(x) =

sn∑
k=1

a2k(x) νk ⊗ νk, x ∈ Q.

Here the νk are fixed unit vectors independent of x and m and Q is a fixed domain
in space (we are only solving the local problem; it is also necessary to assume that
g−u]me is small to ensure that the decomposition (8.2) is possible; these are minor
assumptions).

The k-th step in the m-th stage approximately corrects the metric defect by the
primitive metric θa2k νk ⊗ νk, where θ ∈ (0, 1) may be chosen later. Such a metric
correction is obtained by choosing v0 = um and vk = vk−1 + wk, where wk is a
‘Nash twist’ 11

(8.3)

wk(x) =

√
θ ak(x)

λk
(cos (λkx · νk) nk−1(x) + sin (λkx · νk) bk−1(x)) , k = 1, 2, . . . , sn.

Here λk is a large parameter and nk−1 and bk−1 denote the normal and binormal
vector fields to the short immersion vk−1 (we need two normal directions to intro-
duce oscillations with sines and cosines, which is why we chose q = n + 2; Kuiper
introduced a more delicate oscillation which works in codimension one [33]).

The derivative Dwk may be written as the sum Ak +Bk + Ck where

Ak =
√
θak(x) (− sin (λkx · νk) nk−1(x) + cos (λkx · νk) bk−1(x))⊗ νk,(8.4)

Bk, Ck = O(
1

λk
).

An essential aspect of the Nash twist is that ATkDvk−1 = 0. Therefore,

(8.5) (um + w1 + . . .+ wsn)
]
e = u]me+

sn∑
k=1

w]ke+O(
1

λ
).

Let us now briefly explain the error estimates and the appearance of the exponent
α. Each step introduces higher order derivatives, since the O(1/λk) term includes
the derivatives Dnk−1 and Dbk−1 which depend on ‖uk−1‖C2 . Hölder continuity
is obtained by combining Nash’s iteration with a smoothing step to control the
growth of the C2 norm [17]. The Hölder exponent is determined by the balance
between the convergence of um in C1 and divergence of um in C2. The exponent
α = 1/(1 + 2sn) arises from the fact that the steps are performed serially. If we
could apply all the Nash twists simultaneously, we would obtain α = 1/3.

We can now finally explain the role of randomization. We will try to eliminate
the steps and consider a stage-by-stage iteration. There is a clear complication – the
steps are performed serially to preserve orthogonality and ensure (8.5). However,
by adding random coefficients we hope that the cross terms vanish on average and
that this cancellation will still allow convergence.

11Of course, wk, nk and bk depend on the stage m too, but we drop m from the notation of
the steps to avoid clutter.
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To this end, we modify the scheme as follows. Index the stages by m as ear-
lier, assume um is short and C∞ and let nm and bm be the normal and binor-
mal fields to um. We choose a sequence of iid, standard normal random variables
Xm,1, . . . , Xm,sn , a scaling parameter θm ∈ (0, 1), and consider a random superpo-
sition of Nash twists
(8.6)

wm =

√
θm
λm

sn∑
k=1

sn∑
k=1

Xm,kak(x) (cos (λmx · νk) nm(x) + sin (λmx · νk) bm(x)) ,

and set um+1 = um + wm as before.
Note that equation (8.5) no longer holds. However, DwTmDum = O(1/λm) and

E
(
w]me

)
= θm(g − u]me) + O(1/λm) by construction, so that if we denote Fm =

E
(
w]me

)
− w]me we obtain

(8.7) g − u]m+1e = (1− θm)(g − u]me) + Fm +O(1/λm).

The fluctuation field Fm does not vanish, but it is a homogeneous Gaussian chaos
of degree 2 with mean zero (so estimates exist to control it uniformly).

The catch is that it is no longer true that um+1 is short with probability one, even
if um is. This is a crucial aspect of Nash’s argument (if not, one cannot continue the
iteration!). Thus, in order to iterate the scheme, we need concentration estimates
that state that um+1 is short with high probability if λm is chosen sufficiently large.
I spent a few months trying to make this work using two fundamental inequalities
for Gaussian processes:

(1) Dudley’s inequality for the supremum of Gaussian processes [23].
(2) The Borell-Ibragimov-Tsirelson-Sudakov concentration inequality [11].

These two estimates are standard tools in the theory of Gaussian processes (though
they were new to me). The basic reference is the book by Ledoux and Tala-
grand [37], though there are also more sophisticated estimates (bounds on quadratic
Gaussian chaos) that are directly relevant for this scheme, which are laid out in
Ledoux’s lecture notes [36, Sec.5].

In order to parallel Nash’s approach we need to iterate these estimates scale-by-
scale. For example, Dudley’s inequality is applied as follows. The covariance kernel
for each of the processes wm, Dwm, Am, and Bm may be computed in terms of um
and its derivatives. What one then has to do is to choose parameters λm and θm
and optimize the bound in a way that is suited to the Nash iteration. For instance,
a calculation shows that (see Appendix ??)

(8.8) E (‖Fm‖∞) ≤ Cθm ‖g − u]me‖∞ log

(
λm‖D2um‖∞
‖Dum‖∞

)
.

This bound is essentially sharp. However, when we iterate these estimates and
include the error terms, the calculations get very messy. After trying for a few
months to make this work, I ran out of steam and put the problem aside.

However, I did learn something important in this approach: Dudley’s inequality
is an entropic bound . This comes about as follows. A mean zero Gaussian process
on an arbitrary set induces a metric on the set. More precisely, if X is a set and
ϕ : X → R is a Gaussian process such that E(ϕ(x)) = 0, x ∈ X and K(x, y) =
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E(ϕ(x)ϕ(y)), then

(8.9) d2K(x, y) := det

∣∣∣∣ K(x, x) K(x, y)
K(y, x) K(y, y)

∣∣∣∣ = E (ϕ(x)− ϕ(y))
2
,

defines a metric on X. Gaussian bounds, beginning with Dudley, control the supre-
mum of ϕ in terms of the metric entropy of the metric dK . Roughly, we cover the
metric space (X, dK) with increasingly fine collections of balls and we control the
supremum of ϕ by comparison with its average on these balls.

I found Dudley’s argument, as well as the BITS inequality, fascinating. Physicists
who study soft matter think about crumpling in entropic terms, but it was never
clear to me how to formulate their ideas mathematically. Thus, despite being
overwhelmed by calculations, the fact that the idea of entropy made its appearance
in this problem – in a precise mathematical sense – was very encouraging. Nash’s
proof didn’t seem quite as invulnerable any more. The fluctuations of Gaussian
processes are completely prescribed by a covariance kernel. A good kernel – such
as that constructed from the Nash twists – makes for a tight proof. But, clever as
the Nash twist may be, it is ad hoc. Entropy, on the other hand, is as fundamental
as it gets.

8.3. The BBG embedding and heat kernel asymptotics. An important re-
sult of Bérard, Besson and Gallot [8] provides a precise understanding of the em-
bedding problem in infinite dimensions that sheds light on the embedding problem
in finite dimensions. This work is also of importance in machine learning.

The BBG embedding uses the heat kernel associated to the metric g. Let 4g be
the Laplacian associated to g, whose action on a test function ψ is given in local
coordinates by

(8.10) 4gψ(x) =
1√
G

∂

∂xi

(√
Ggij

∂ψ

∂xj

)
, G = det g.

Let kg(t;x, y) denote the resolvent of the heat kernel e−t4g . 12 SinceM is a closed
manifold, it has an eigenfunction expansion

(8.11) kg(t;x, y) =

∞∑
i=0

e−λitϕi(x)ϕi(y),

where {ϕi}∞i=0 is a complete basis for L2(M, g). 13 The operator kg is trace-class
and

(8.12) Zg(t) := Tr(e−t4g ) =

∫
M
kg(t;x, x) dvolg(x) =

∞∑
i=0

e−λit.

The BBG embedding is the map ut :M→ l2 given by

(8.13) ut(x) =
√

2(4π)n/4t(n+2)/4{e−λjt/2ϕj(x)}∞j=1.

The zero-th eigenfunction is constant, which is why we only consider j ≥ 1.
Let e∞ denote the canonical inner product on l2: for ψ,ψ′ ∈ l2, e∞(ψ,ψ′) =∑∞
j=1 ψjψ

′
j . The basic result of Bérard, Besson and Gallot [8, Thm.5] is the follow-

ing description of the pullback metric u]te∞.

12Here we use the convention of [8] so that the formulas are the same as in [8]. In most other

places, we use the probabilists convention e−t4g/2 which differs by a factor of 2.
13This notation means we consider the volume form dx induced by the metric g.
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(1) For each t > 0 the map ut :M→ l2 is an embedding.
(2) The mapping ut is asymptotically isometric in the sense that

(8.14) u]te∞ = g +
t

3

(
1

2
Scal(g)g − Ric(g)

)
+O(t2), t→ 0.

Here Scal(g) and Ric(g) denote the scalar and Ricci curvature of g respectively.
In order to facilitate direct comparison with [8], let us write the formulas in

terms of the map Φt :M→ l2 defined by

(8.15) Φt(x) = {e−λjt/2ϕj(x)}∞j=1.

The proof of part (1) is soft: it uses only the fact that {ϕj(x)}∞j=1 is a basis for

l2 (modulo constants). Thus, it separates points and Φt(x) = Φt(y) if and only if
x = y. The proof of part (2) relies on classical heat kernel asymptotics. The key
calculation is the following: if v ∈ TxM , then by (8.15)

(8.16) Φ]te∞(x)(v, v) = ‖dΦt(x)v‖2l2 =
∑
j≥1

e−λjt |dϕj(x)v|2 .

We use (8.11) to rewrite the last term above in the form

(8.17) Φ]te∞(x)(v, v) = (♦kg(t))(x)vivj .

Here is where I saw the linear operator ♦ for the first time (compare equations (3.10)
and (8.17)). Bérard, Besson and Gallot use different notation; the use of ♦ prevents
confusion with the use of d for stochastic differentials, while sticking with standard
LATEX symbols.

The formula (8.14) is obtained by combining the classical Minakshisundaram-
Pleijel asymptotics for the heat kernel kg with (8.17). These calculations are
straightforward, but they are quite interesting since we begin to see the interplay
between geodesics, Ricci curvature, and (implicitly) Brownian motion.

While the BBG embedding is infinite-dimensional and it is only asymptotically
isometric, it has the appealing feature of being more directly connected to the
geometry of the manifold than Nash’s scheme. In particular, the appearance of
the scalar and Ricci curvatures in (8.17) gives us hope that there may be ‘typical’
embeddings of manifolds even in finite dimension. I did not find anything truly
probabilistic in the literature, but there are many papers – pure and applied – that
show quite clearly that the BBG embedding is of fundamental importance. For
example, an attempt to construct canonical C∞ embeddings beginning with the
BBG embedding is considered in [48]. There is also a large literature on the use
of heat kernel embeddings in machine learning. For example, it is the BBG em-
bedding that underlies so-called diffusion geometry for various pattern recognition
appliations. A mathematical view of this world may be found in [32]; there are
many similar papers in applied and computational harmonic analysis. While none
of the above literature is directly relevant to our goals, it does suggest again the
importance of diffusion and entropy in the embedding problem.

Let us now return to embeddings in finite dimensions and Nash 54. For someone
with my tastes, it is more natural to think of Brownian motion rather than heat
kernels; that is, I’d like to switch from an implicitly probabilistic viewpoint to
an explicitly probabilistic viewpoint. So what I attempted to do next is to stick
with the general framework of Nash 54, but to use the BBG embedding instead of
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the Nash twists and simplicial decomposition to build fluctuation fields with more
transparent estimates.

Thus, let us put ourselves back in the Nash-Kuiper setup, further reducing to
codimension one. We assume that we have a short immersion um : M → Rn+1,
with u]me < g. Let gm = g − u]me denote the metric defect and let 4gm and kgm
denote the Laplacian and heat-kernel associated to the metric defect gm. Let us
also use the somewhat cumbersome notation {λmj }j≥0 and {ϕmj }j≥0 to denote the
eigenvalues and eigenfunctions of 4gm .

We use the BBG embedding to improve our earlier guess for the fluctuation
field (8.6) as follows. Fix a smoothing parameter tm and define the scalar random
field ψm :M→ R

(8.18) ψm(x) =
√

2(4π)n/4t(n+2)/4
m

∞∑
j=1

Xj,me
−λm

j tm/2ϕmj (x),

where Xj,m are iid standard Gaussian random variables. The scaling factors in
(8.18) are precisely those of the BBG embedding (see (8.13)).

We use the scalar random field ψm and the normal vector field nm to um to
define a vector-valued random field wm :M→ Rn+1 in the natural way:

(8.19) wm(x) = ψm(x)nm(x), x ∈M.

This fluctuation field should be compared with (8.6). What’s going on here is that
by using the iid random variables, we have found an ‘auxiliary’ l2 Gaussian space
of fluctuations (i.e. an approximate infinite dimensional embedding) and we have
combined it with the normal to construct a ‘physical’ space correction akin to the
Nash-Kuiper construction.

Let us check this. The spatial derivatives of wm are given by

(8.20) Dwm = nm ⊗Dψm + ψmDnm.

By construction, the first term on the right hand side of (8.20) is orthogonal to
Dum. The second term should be thought of as a small scalar multiplied by an

extrinsic curvature (ψm is small if tm is small, because of the prefactor t
(n+1)/4
m

in (8.18) and Dudley’s inequality). Therefore, with e denoting the standard inner
product on Rn+1, and using the fact that nm is a unit vector, we find that w]me is
given in coordinates by

(8.21)
(
w]me

)
ij

:=
∂wαm
∂xi

∂wαm
∂xj

=
∂ψm
∂xi

∂ψm
∂xj

+ ψ2
m

∂nαm
∂xi

∂nαm
∂xj

.

Similarly, computing u]m+1e in coordinates we find

(8.22)
(
u]m+1e

)
ij

=
(
u]me

)
ij

+
(
w]me

)
ij

+ ψm(x)

(
∂nαm
∂xi

∂uαm
∂xj

+
∂nαm
∂xj

∂uαm
∂xi

)
.

These computations should be compared with (8.5) and (8.6). The (small) smooth-
ing parameter tm plays roughly the same role as the (large) oscillation parameter
λm. In particular, the definition (8.18) shows that ψm has mean zero, so that
conditional on um

(8.23) E
(
u]m+1e

)
ij

=
(
u]me

)
ij

+ E
(
w]me

)
ij
.
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Now using (8.18), (8.19) and (8.22) and choosing tm small we find that

E
(
w]me

)
ij

= (gm)ij +
tm
3

(
1

2
Scal(gm)gm − Ric(gm)

)
(8.24)

+ct(n+2)/2
m kgm(tm;x, x)

∂nαm
∂xi

∂nαm
∂xj

+O(t2m),

where c is a universal constant.
In summary, we see that while the BBG embedding is infinite-dimensional, view-

ing it as an embedding into Gaussian space allows us to develop a random Nash-
Kuiper scheme in codimension one. This scheme removes the ad hoc nature of the
Nash twist or Kuiper’s correction and provides a clearer geometric understanding
of the error terms in terms of intrinsic and extrinsic curvature.

There is still a price to pay: we need concentration estimates to show that um+1

is short. Nevertheless, at this point it is quite clear that it is possible with some
technical effort to improve the exponents in [17].

What I found more tantalizing is the possibility that there is a deeper structure
in the problem that was intrinsically probabilistic. Since its much simpler to deal
with Brownian motion rather than random walks, I decided to switch to stochastic
flows. As soon as one looks at [42] through this lens, the kinematic advantages
of stochastic flows becomes immediately apparent. However, it is still subtle to
understand how to evolve the smoothing operator. Nash includes an evolution
equation, but it struck me as very cumbersome, and certainly not as natural as a
gradient flow. Given Otto’s work, it now becomes a matter of finding an infinite-
dimensional Riemannian geometry that is the analog of the space of probability
measures in [45]. A natural analog is the space of metrics Met(M) used by the
physicists. However, this is not quite right in an extrinsic setting, because of the
codimension. After some exploration, the geometry of the space of Gaussian kernels
began to feel like the natural candidate.
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