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Overview

These lecture notes provide an introduction to the theory of dynamical systems.
They form the first half of a two semester graduate sequence (AM 219-220) at
Brown University. The goals of these lectures is:

1. To cover as much standard theory as possible, balancing rigorous analysis
with concrete calculations on important examples.

2. To illustrate the utility of the dynamicist’s viewpoint in classical and mod-
ern applications.

Many of the introductory topics in dynamical systems are covered, but some
important topics have been omitted. The most serious gap in my view is the
omission of a substantive discussion of bifurcation theory. An elementary in-
troduction to bifurcation theory was provided in the classroom, largely follow-
ing [13]. However, these lecture notes do not include a proof of the center man-
ifold theorem, the Hopf bifurcation theorem and related exercises that demon-
strate the richness of bifurcation theory. 1 Some standard topics related to the
analysis of two-dimensional phase portraits, such as the Poincaré-Bendixson
theorem and the analysis of relaxation oscillations in the Van der Pol system
have also been omitted. These examples are fun, especially if one’s goal is to use
phase plane analysis in applications, but there are many textbook presentations
of these ideas, in particular the excellent books [10, 13].

My choice of topics was fundamentally dictated by a desire to break new
ground in applications. Dynamicists of my generation grew up with books such
as [7] that stress the bifurcation of vector fields. These studies in turn arose from
older investigations of nonlinear oscillations in biological and physical systems.
While several of these applications retain their vitality, the use of dynamical
ideas in algorithms, learning theory, and optimization strike me as fertile new
ground for investigation.

Ideally, I would have liked to have covered both bifurcation theory and al-
gorithms. But when one is faced with finite time (cover as much as possible in
two semesters!) an emphasis on low-dimensional systems is quite limiting. This
is the main reason for introducing somewhat sophisticated ideas such as ergodic
theory, gradient flows and Hamiltonian systems relatively early in the course.

1The center manifold theorem does follow from the invariant manifold theorem proved in
Chapter 7, but the Hopf bifurcation theorem does not.
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The last chapter on dynamics and algorithms provides a preview of an interplay
between geometric structure (Riemannian and symplectic) and fast numerical
algorithms that will be treated in depth in Spring 2020. These topics touch
on several areas of mathematics and illustrate Vapnik’s maxim that nothing is
quite as applicable as a good theory.

The notes were transcribed by a student each week based on my handwritten
notes. They were then edited again for consistency of style and accuracy. I am
deeply grateful to the students in Fall 2020 for participating in this effort. I hope
this exposition will be useful to a new generation of students with interests in
computer science, control theory, optimization and statistical physics.



Chapter 1

Existence and uniqueness
theorems for ordinary
differential equations

The main reference for this chapter is Arnold’s book [1]. The main result is
Picard’s theorem on the existence and uniqueness of solutions to the differential
equation

ẋ = f(x) (1.0.1)

with initial condition x(0) = x0. Several analytical techniques will be introduced
to study this question. These include contraction mappings, mollification, and
compactness.

1.1 Contraction mappings on a metric space

Definition 1. A set M is a metric space if it is equipped with a function
d : M ×M → [0,∞) such that

1. d(x, y) = d(y, x).

2. d(x, y) = 0 ⇐⇒ x = y.

3. d(x, y) ≤ d(x, z) + d(y, z) for all triplets x, y, z ∈M (triangle inequality).

Definition 2. The metric spaceM is complete if every Cauchy sequence {xn}∞n=1

has a limit in M .

Definition 3 (Contraction Mapping). A map A : M → M is a contraction if
there exists a constant λ, 0 < λ < 1, such that

d(A(x), A(y)) ≤ λd(x, y), x, y ∈M. (1.1.1)

7



8 CHAPTER 1. WELL-POSEDNESS THEORY

Definition 4. A point x ∈M is a fixed point of the map A if A(x) = x.

Theorem 5 (Contraction Mapping Theorem).

1. A contraction mapping A : M →M of a complete metric space into itself
has a unique fixed point.

2. Given any point x ∈ M the sequence of iterates {An(x)}∞n=0 converges to
the fixed point.

Proof. First note that if a fixed point exists it must be unique. Indeed, if x and
y satisfy A(x) = x,A(y) = y, then

d(x, y) = d(A(x), A(y)) ≤ λd(x, y)

which shows that d(x, y) = 0. (The equality holds by the definition of a fixed
point; the inequality holds by the definition of a contraction mapping. )

Now choose any point x ∈M and consider the sequence of iterates {An(x)}∞n=0.
For brevity, let xn = An(x) = A ◦ · · · ◦A(x) denote n-fold iteration. Then

d(xn, xn+1) = d(A(xn−1), A(xn))

≤ λd(xn−1, xn).

Proceeding inductively, we see that

d(xn, xn+1) ≤ λnd(x0, x1), n ≥ 1.

Since 0 < λ < 1, the series

∞∑
n=0

λn =
1

1− λ
<∞,

and it follows that {xn}∞n=0 is a Cauchy sequence. Since M is complete, the
limit exists and is the desired fixed point.

Remark 6. On the homework, you are asked to verify the Cauchy sequence
property from definitions.

1.2 A Global Picard Theorem

Definition 7. A function f : M →M is an L-Lipschitz function on the metric
space (M,ρ) if there exists a constant L such that

ρ(f(x), f(y)) ≤ Lρ(x, y), x, y ∈M. (1.2.1)
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We will mainly use this notion for functions f : Rn → Rn. But strictly
speaking the notion of Lipschitz functions is part of metric space theory, not
calculus. For vector fields f : Rn → Rn equation (1.2.1) reduces to

|f(x)− f(y)| ≤ L|x− y|, x, y ∈ Rn. (1.2.2)

The notation here is |v| :=
√
v2

1 + · · ·+ v2
n for v ∈ Rn. The norm of a matrix

A : Rn → Rn is defined by

‖A‖ = sup
|x|=1

|A(x)|.

In order to apply the contraction mapping theorem to establish the existence
of solutions to equation (1.0.1) we will first rewrite it as an integral equation and
then apply the contraction mapping theorem. In order to explain the setup of
the contraction mapping theorem, we must recall some undergraduate analysis.

Let T > 0 be fixed and consider the space

M = {x : [0, T ]→ Rn | x(t)is continuous}.

We equip the space M with the norm

||x||∞ := max
0≤t≤T

|x(t)|.

A slightly weaker notion would be

||x||∞ := sup
0≤t≤T

|x(t)|,

but since x(t) is continuous, sup |x(t)| = max |x(t)| over the interval 0 ≤ t ≤ T .
The functional analytic fact we need is that the space (M, || · ||∞) is a com-

plete metric space. This follows from Weierstrass’ theorem, which states that
a uniformly convergent sequence of continuous functions has a limit that is a
continuous function. The critical assumption here is uniform convergence. This
prevents counterexamples such as the sequence xn(t) = tn, 0 ≤ t ≤ 1.

In order to illustrate the main idea in Picard’s theorem we will first prove
it under the assumption that the vector field f is L-Lipschitz for all x, y ∈ Rn.
This is a strong assumption, because smooth functions that grow sufficiently fast
at infinity (say f(x) = x2 on the line) are locally, but not globally, Lipschitz.

However, the main estimate in Picard’s theorem is most transparent under
this assumption, so we will begin with this idea. The argument may then be
modified to obtain the general local existence and uniqueness theorem. The
main ideas in the proof are as follows.

1. Rewrite equation (1.0.1) as the integral equation

x(t) = x(0) +

∫ t

0

f(x(s))ds. (1.2.3)
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2. For fixed x0 and T , we consider the space

Mx0,T = {x : [0, T ]→ Rn |x is continuous, x(0) = x0 },

equipped with the ‖ · ‖∞ norm. We then show that the map A : Mx0,T →
Mx0,T defined by

(A(x))(t) = x0 +

∫ t

0

f(x(s))ds

is a contraction mapping on this space for T < 1/L.

The critical estimate is this: given two continuous functions x, y ∈Mx0,T we
have

A(x)(t)−A(y)(t) =

∫ t

0

(f(x(s))− f(y(s)))ds.

Therefore, taking absolute values

|A(x)(t)−A(y)(t)| =
∣∣∣∣∫ t

0

(f(x(s))− f(y(s)))ds

∣∣∣∣
≤
∫ t

0

|f(x(s))− f(y(s))|ds

≤ L
∫ t

0

|x(s)− y(s)|ds

≤ L
∫ T

0

|x(s)− y(s)|ds

≤ LT ||x− y||∞.

Since the bound on the RHS is uniform in t, we may take the supremum over t
on the LHS to obtain the fundamental estimate

||A(x)−A(y)||∞ ≤ LT ||x− y||∞.

In particular, choosing T = 1
2L we have

||A(x)−A(y)||∞ ≤
1

2
||x− y||∞. (1.2.4)

We have thus obtained the following version of Picard’s theorem.

Theorem 8 (Petit Picard). Assume that f : Rn → Rn is L-Lipschitz. Then the
integral equation (1.2.3) has a unique solution in the space Mx0,T with T = 1

2L .

Proof of Picard’s theorem. Apply the contraction mapping theorem, noting the
estimate (1.2.4) and the fact that Mx0,T is a complete metric space with this
norm.
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Corollary 1 (Differentiability of the solution). The solution to the integral
equation (1.2.3) is differentiable at all t ∈ [0, T ] and solves the differential equa-
tion (1.0.1). This is written x ∈ C1([0, T ];Rn).

Proof. Fix t ∈ (0, T ) so that for sufficiently small h we have

1

h
(x(t+ h)− x(t)) =

1

h

∫ t+h

t

f(x(s)) ds.

Now compare this difference with f(x(t)) (which is what we’d like the time
derivative to be), obtaining the estimate∣∣∣∣ 1h (x(t+ h)− x(t))− f(x(t))

∣∣∣∣ ≤ 1

h

∫ t+h

t

|f(x(s))− f(x(t))| ds(1.2.5)

≤ L|x(t+ h)− x(t)| ≤ L‖f‖∞h.

We now let h → 0 to see that equation (1.0.1) holds at each t ∈ (0, T ). At the
endpoints t = 0 and t = T , the above argument may be modified with h > 0
and h < 0 to see that x(t) is differentiable from the left or right respectively.

Corollary 2 (Continuation). Assume f : Rn → Rn is L-Lipschitz. Then for
every x0 ∈ Rn there is a unique Lipchitz function x : (−∞,∞) → Rn with
x(0) = x0 such that

x(t) = x0 +

∫ t

0

f(x(s))ds, t ∈ (−∞,∞).

Proof. It follows immediately from the proof of Theorem 8 that by flipping
t → −t, we obtain a solution on the interval [−T, 0]. Now “restart” the time
clock at t = T and t = −T to obtain a solution on [−2T, 2T ]. We can do this
because the Lipschitz constant does not depend on x0 or x(T ) or x(−T ). Now
keep going to get a solution on (−∞,∞).

Remark 9. This is called a continuation argument. It can also be applied to
the local Picard theorem to extend solutions to a maximal interval of existence.

Remark 10. The above results constitute a well-posedness theory for a differ-
ential equation. The implicit ‘philosohpy’ here is that the initial value problem
ẋ = f(x) was derived within the context of an application. The purpose of
the rigorous argument is to provide a criterion (smoothness of the vector field)
under which the model is consistent. The point of Picard’s theorem is that a
relatively simple hypothesis on smoothness is all that one needs to have a good
model. This is why ODE theory works in practice.

1.3 Local vs. Global Existence

We rarely apply Picard’s theorem in the version above. Usually our function f
is smoother than Lipschitz and usually it is not globally Lipschitz. Here is an
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example of a smooth vector field for which the solution blows up in finite time.
Consider the ODE on the line

ẋ = x2.

We may solve this equation explicitly by separating variables and integrating∫ x(t)

x0

dx

x2
= t =⇒ − 1

x(t)
+

1

x0
= t

=⇒ x(t) =
x0

1− x0t

The solution blows up at t∗ = 1
x0

(more precisely, limt→t∗ x(t) = +∞).
This example is typical. We should not expect the global Lipschitz condition

to hold in general. The best we can hope for is local existence. It is easy to fix
this gap. We first show that smoothness implies the Lipschitz condition used
in Theorem 8. We then reduce the case of local existence to Theorem 8 using
bump functions. First let us show that differentiability implies the Lipschitz
condition.

Theorem 11. Suppose U ⊂ Rn is open and f : U → Rn is C1 on U . Suppose
V ⊂ U is compact and convex. Then f is L-Lipschitz on V with

L = max
x∈V
‖Df(x)‖.

(Here ‖A‖ is the norm sup|v|=1 |Av|).

Remark 12. The notation and terminology here is as follows. A function is
said to be C1 if it is differentiable with a continuous derivative. The derivative
of f at x is a bounded linear mapping Df(x) : Rn → Rn whose action on a
vector v ∈ Rn is defined by the limit

Df(x)v := lim
h→0

f(x+ hv)− f(x)

h
.

In the more general geometric setting of differentiable manifolds, the derivative
is a linear operator between the tangent spaces TxV and Tf(x)Rn (which have
been identified with Rn above. If you find these abstractions confusing, think
for now of the derivative as an n× n matrix with entries ∂fi

∂xj
(i indexes rows, j

indexes columns).

Proof. Consider two points x, y ∈ V . Let x(t) = (1− t)x+ ty, 0 ≤ t ≤ 1 be the
line segment joining these points. By the fundamental theorem of calculus

f(y)− f(x) =

∫ 1

0

df(x(t))

dt
dt

=

∫ 1

0

Df(x(t))
dx

dt
dt (chain rule)

=

(∫ 1

0

Df(x(t))dt

)
(y − x)
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Figure 1.3.1: The convex set V ⊂ U .

Now take absolute values to obtain

|f(x)− f(y)| ≤
(∫ 1

0

‖Df(x(t))‖dt
)
|x− y|

≤ L|x− y|

since x(t) ∈ V (because V is convex) and L = supx∈V ‖Df(x)‖.

An immediate corollary of this theorem is that the differential equation
(1.0.1) has a local solution when f is C1. We will prove this theorem by reduc-
ing it to the Petit Picard theorem using the technique of bump functions. This
is an important technique that merits a digression.

1.4 Mollification and the heat kernel

1.4.1 Mollification with bump functions

A fundamental technique in analysis is mollification (or smoothing). We will
use this technique at several places, including the proof of Peano’s theorem,
the extension of the global Picard theorem to local existence, and the proof of
invariant manifold theorems.

Definition 13. A mollifier is a function ψ : Rn → R with the following prop-
erties.

1. ψ(x) ≥ 0 for all x ∈ Rn.

2. ψ is C∞.

3.
∫
Rn ψ(x) dx = 1.

In the first homework, you are asked to construct such functions with the
additional property that ψ is compactly supported (that is ψ vanishes outside
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a large enough box in Rn). These are called bump functions. We do not make
this assumption above, since there are natural mollifiers, such as the heat kernel
discussed below, which are not compactly supported.

The main technique for smoothing is convolution with a rescaled mollifier.
The convolution of two integrable functions f, g : Rn → R is defined by

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y)dy =

∫
Rn
f(y)g(x− y)dy. (1.4.1)

Assume given a mollifier ψ. Then for any ε > 0, the rescaled mollifier

ψε(x) :=
1

εn
ψ
(x
ε

)
, (1.4.2)

remains a mollifier. The factor ε−n is included to ensure that
∫
Rn ψε = 1.

Given an integrable function f : Rn → R and a mollifier ψ, we define the
mollification

fε(x) = (f ∗ ψε)(x). (1.4.3)

Intuitively, this rescaling allows us to smooth a function by replacing it with
averages over regions of size ε.

Lemma 1. Assume f is integrable. The function fε is C∞ for every ε > 0.
For every multi-index α, we have

‖∂αfε‖∞ ≤
1

εn|α|
‖∂αψ‖L1‖f‖∞. (1.4.4)

Remark 14. A multi-index α = (α1, . . . , αm) is a collection of positive integers.
The notation used here is

∂αx fε(x) := ∂α1
x1
· · · ∂αmxn fε(x), |α| =

m∑
j=1

αj , ‖g‖L1 :=

∫
Rn
|g(x)| dx.

Proof. Since

fε(x) =

∫
Rn
ψε(x− y)f(y) dy,

we may formally differentiate under the integral sign to obtain

∂xjfε(x) =

∫
Rn
∂xjψε(x− y)f(y) dy.

Now take absolute values and use (1.4.2) to obtain the estimate

‖∂xjfε‖∞ ≤
1

εn
‖∂xjψ‖L1‖f‖∞.

Proceeding inductively, we find as above that formally

∂αx fε(x) =

∫
Rn
∂αxψε(x− y)f(y) dy,
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and taking absolute values yields equation (1.4.4).
All that remains is to justify the interchange of limits implicit in differenti-

ating under the integral sign. This may be done with finite differences as in the
proof of Corollary 1.

The pointwise convergence of fε(x) to f(x) is a little more delicate and a
stronger hypothesis is necessary.

Lemma 2. Assume f : Rn → R is continuous and integrable. Then limε→0 fε(x) =
f(x) at every x ∈ Rn.

Proof. Since
∫
Rn ψε = 1, we have the identity

fε(x)− f(x) =

∫
Rn
ψε(y) (f(x− y)− f(x)) dy.

Now take absolute values and use the fact that ψε ≥ 0 to obtain the estimate

|fε(x)− f(x)| ≤
∫
Rn
ψε(y) |f(x− y)− f(x)| dy.

In order to see the estimate that follows, assume that ψε is a bump function
with compact support. Then the domain of the above integral is restricted to a
ball with radius O(ε) centered at x. Thus,

|fε(x)− f(x)| ≤ max
|y−x|<Cε

|f(y)− f(x)|.

Since f is continuous, this quantity vanishes in the limit ε→ 0.
If one doesn’t assume the mollifier has compact support, a little more care

is needed. This case arises when we consider the heat function. It is left as an
exercise for the reader.

An important theme in mollifcation is that while the derivatives of fε diverge
as ε → 0, it is still the case that fε satisfies all the estimates we impose on f .
Examples of such uniform estimates are contained in the lemmata below.

Lemma 3. Assume that f : Rn → R satisfies ‖f‖∞ < ∞. Then the mollifica-
tions satisfy the uniform estimates

‖fε‖∞ ≤ ‖f‖∞, ε > 0. (1.4.5)

Proof. We use the definition (1.4.3) and the positivity of the mollifier to obtain

|fε(x)| =
∣∣∣∣∫

Rn
ψε(x− y)f(y)dy

∣∣∣∣ ≤ ‖f‖∞ ∫
Rn
ψε(x− y)dy = ‖f‖∞.

The right hand side is independent of x. Taking the supremum over x completes
the proof.
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A variant of the above argument is used to establish equicontinuity of the
mollifications.

Definition 15. Assume ω : [0,∞)→ [0,∞) is a monotone increasing function
such that limr→0 ω(r) = 0. A function f : Rn → R is said to have modulus of
continuity ω if

|f(x)− f(y)| ≤ ω(|x− y|), x, y ∈ Rn. (1.4.6)

Lemma 4. Suppose f : Rn → Rn has modulus of continuity ω. Then the
mollifications satisfy the uniform estimate

|fε(x)− fε(y)| ≤ ω(|x− y|), ∀ε > 0. (1.4.7)

Proof. Fix two points x and y in Rn and let z denote the dummy variable of
integration. We then have

|fε(x)− fε(y)| =
∣∣∣∣∫

Rn
ψε(y)(f(x− z)− f(y − z))dz

∣∣∣∣
≤ ω(|x− y|)

∫
Rn
ψε(z) dz = ω(|x− y|).

1.4.2 The heat kernel

Another fundamental example of a mollifier is the heat kernel. The heat kernel
does not have compact support, but it provides concrete formulas and physical
intuition that is valuable.

Definition 16. The heat kernel on Rn is the fundamental solution to the partial
differential equation

∂tu =
1

2
4u, x ∈ Rn, t > 0, (1.4.8)

where 4 denotes the Laplacian
∑n
j=1 ∂

2
xj . The fundamental solution pt(x; y)

denotes the solution to (1.4.8) with a singular (Dirac delta) initial condition at
x = y. It is given by the formula

pt(x; y) = gt(x− y), gt(x) =
1

(2πt)n/2
e−|x|

2/2t. (1.4.9)

The graph of gt is the well-known bell curve with width
√
t. As t ↓ 0, gt(x)

concentrates at a Dirac delta at 0.
It is not necessary to mollify with the heat kernel, but it is useful to do so,

since it provides a family of smooth approximations that is easily visualized and
is easy to simulate. It is easily checked that the lemmas above continue to hold
with the heat kernel.
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1.5 Picard’s theorem: the local version

We may now finally state and prove the complete version of Picard’s theorem.

Theorem 17 (Picard’s existence theorem). Let U ⊂ Rn be an open set. Assume
f : U → Rn is C1. Then for every x0 ∈ U there exists T (x0) > 0 and a C1 map
x : [−T, T ]→ U such that

ẋ = f(x(t)), t ∈ [−T, T ]

and x(0) = x0.

We will prove this theorem by extending the vector field f to all of Rn in
a manner that Theorem 8 and its corollaries apply. This theorem provides a
foundation for phase portraits.

Remark 18. The theorem is not sharp. Examples and counterexamples are
considered in the homework.

1.5.1 Smooth extensions of a function

Bump functions allow us to reduce the analysis on open sets contained within
Rn to analysis on the entire space Rn. This allows us to obtain the local Picard
theorem from the glocal Picard theorem. A similar idea will be used in proofs
of the invariant manifold theorems. 1

In the following examples, we consider a function defined on an open set
U ⊂ Rn and a compact set V ⊂ U . Our goal will be to extend a function
defined on V to a function defined on all of Rn.

Definition 19. Given a measurable set G ∈ Rn its indicator function is the
function 1G : Rn → R defined by

1G(x) =

{
1, x ∈ G
0, x 6∈ G.

Given a smooth function f : U → Rn the obvious extension of its restriction
to V , f |V , is simply

fext(x)
?
=

{
f(x), x ∈ V
0, x 6∈ V

The problem is that this extension is not smooth (i.e. as smooth as f).
Another class of extensions is obtained by using a smooth function ϕ(x) such

that

ϕ(x) ≡ 1, x ∈ V
ϕ(x) ≡ 0, x 6∈ U.

Such bump functions are constructed in the first homework.

1This seems counterintuitive. The point is that working on the ‘standard space’ Rn prevents
technical annoyances caused by restrictions on the domain of the function, so global really is
simpler than local!
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1.5.2 Proof of Picard’s theorem

Assuming the existence of bump functions, we may consider the vector field

fext(x) =

{
f(x)ϕ(x), x ∈ U
0, x 6∈ U

(1.5.1)

The function fext is as smooth as f . This may be seen by applying the
product rule to f(x)ϕ(x)) to obtain

Dfext = Dfϕ(x) + f(x)⊗Dϕ(x)

= Df(x), when x ∈ V.

The final term on the first line is the matrix with entries fi(x) ∂ϕ∂xj (x)). We also

see that

fext = f(x), x ∈ V.

Finally, since fext vanishes outside a compact set it is globally Lipschitz.

Proof of Theorem 17. Let V ⊂ U be a closed convex set containing the initial
point x0. Choose a bump function ϕ that is identically one on V and vanishes
outside a second compact set contained within U . Let fext be the vector field
defined in equation (1.5.1) and compare the integral equations

x(t) = x0 +

∫ t

0

f(x(s))ds (1.2.3)

and

xext(t) = x0 +

∫ t

0

fext(xext(s))ds. (1.5.2)

Note that

1. f is defined on U and fext is defined on Rn and they agree on the set
V ⊂ U .

2. f(x) = fext(x) provided x ∈ V .

3. Equation (1.5.2) has a global C1 solution by Corollary 1 and Corollary 2.

But then it is to immediate that xext(t) is a solution to equation (1.2.3) as long
as xext(t) ∈ V . Let T± be the first exit times for the positive and negative time
intervals respectively

T+ = inf
t>0
{xext(t) is not in V }, T− = − inf

t<0
{xext(t) is not in V }.

Finally, choose T (x0) = min(T−, T+).
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1.6 Peano’s theorem

In this section we investigate what happens when f is not Lipschitz. For the
sake of simplicity, we will assume that f is a bounded and uniformly continuous
function from Rn → Rn. In fact, continuity of f on an open set U is all that
is required, but it is considerably easier to illustrate the main idea when f is
globally defined, globally bounded and uniformly continuous.

Recall that f is said to be uniformly continuous if for every ε > 0 there exists
δ(ε) > 0 such that |f(x)− f(y)| < ε whenever |x− y| < δ(ε). The point here
is that δ does not depend on the points x and y. For example, an L-Lipschitz
function is uniformly continuous with δ = ε

L .

Theorem 20 (Peano). Assume f : Rn → Rn is uniformly continuous and
bounded. Then, for every x0 ∈ Rn there exists a C1 function x : (−∞,∞)→ Rn
that satisfies the differential equation

ẋ = f(x), t ∈ (−∞,∞),

and the initial condition x(0) = x0.

Remark 21. We will establish existence of solutions to the integral equation

x(t) = x(0) +

∫ t

0

f(x(s)) ds.

As in Corollary 1, once we have established the existence of solutions to the
integral equation, a little additional work shows that ẋ = f(x).

Remark 22. Though Peano’s theorem is not as directly useful to us as Pi-
card’s theorem, the proof of this theorem illustrates a general technique for
the well-posedness of differential equations (including functional, stochastic and
partial differential equations). In each case, we separate the problems of exis-
tence, uniqueness and regularity of solutions. First, by replacing the differential
equation with its integral formulation, we obtain a more forgiving notion of so-
lution (these are called weak solutions in SDE and PDE theory). Second, the
use of compactness theorems in function spaces, along with uniform estimates,
is a general method for establishing existence. Picard’s theorem provides exis-
tence and uniqueness together. This is atypical; for many nonlinear differential
equations, especially in PDE theory, it is relatively straightforward to establish
existence through the above technique, but far harder to establish uniqueness.
Finally, once one has established the existence of weak solutions, it is necessary
to establish their smoothness (or lack thereof) to evaluate the consistency of the
model we began with. This involves a study of the regularity of solutions.

Proof. We will first prove existence for t ∈ [0, 1], and then use a continuation
argument to extend the result to the whole real line as we did for Picard’s
theorem. None of the steps in the proof will depend explicitly on x0. The main
abstract idea in this proof is the use of the Arzela-Ascoli compactness theorem
along with an approximation scheme. We separate the proofs of these steps for
clarity.
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Step 1. Approximation. Fix a mollifier ψ and let fε = f ∗ ψε denote the molli-
fications defined in Section 1.4. Lemmas 1– 4 establish the following properties
of the family {fε}ε>0.

1. fε(x) is a C∞ function of x.

2. Uniform boundedness: ||fε||∞ ≤ ‖f‖∞ for every ε > 0.

3. Equicontinuity: |fε(x)− fε(y)| ≤ ω(|x− y|) for all x, y ∈ Rn.

Since fε is C∞, by Picard’s theorem the integral equation

xε(t) = x0 +

∫ t

0

fε(xε(s)) ds (1.6.1)

has a unique solution for t ∈ [0, 1]. We now need to take the limit ε→ 0. This
requires a new idea beyond Picard’s theorem.

Step 2. Compactness. . The Arzela-Ascoli theorem provides the following cri-
terion for compactness of a sequence of functions in C([0, 1]) (i.e. the space
of continuous functions on [0,1] equipped with the uniform norm ||g||∞ =
maxt∈[0,1] |g(t)|).

Given a sequence {gn}∞n=1 ⊂ C([0, 1]), there exists a subsequence that con-
verges in C([0, 1]) if:

(i) {gn}∞n=1 is uniformly bounded (i.e. supn∈N ||gn|| <∞)

(ii) {gn}∞n=1 is equicontinuous. That is, for every ε > 0 there exist δ = δ(ε)
such that supn≥1 |gn(x)− gn(y)| < ε whenever |x− y| < δ. In other words,
each gn is uniformly continuous, and the modulus of continuity is indepen-
dent of n.

We now show that the family {xε(t)}ε>0 has these properties.

(i) Since we assumed that ‖f‖∞ <∞, Lemma 3 tells us that ||fε||∞ ≤ ‖f‖∞.
But then for every t ∈ [0, 1]

|xε(t)| ≤ |x0|+
∫ t

0

|fε(xε)ds ≤ |x0|+ ‖f‖∞t ≤ |x0|+ ‖f‖∞.

It follows that supε>0 ||xε||∞ ≤ |x0|+ ‖f‖∞.

(ii) In a similar manner, for any s, t ∈ [0, 1] we have

|xε(t)− xε(s)| =
∣∣∣∣∫ t

s

fε(xε)dτ

∣∣∣∣ ≤ ‖f‖∞|t− s|
It follows that for all ε, η > 0 |xε(t) − xε(s)| < η whenever |t − s| < η

M ;
thus {xε}ε>0 is equicontinuous.
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By the Arzela-Ascoli theorem, there exists a convergent subsequence {xεj}∞j=1.
We denote the limit of this subsequence, by x(t).

Step 3. Passage to the limit. All that is left to show is that x is a solution to

x(t) = x0 +

∫ t

0

f(x(s)) ds. (1.6.2)

It is in this step that we need Lemma 4. Now

x(t) = lim
j→∞

xεj (t) = x0 + lim
j→∞

∫ t

0

fεj (xεj (s))ds

= x0 + lim
j→∞

∫ t

0

[
fεj (xεj (s))− fεj (x(s)) + fεj (x(s))

]
ds

= x0 + lim
j→∞

∫ t

0

[
fεj (xεj (s))− fεj (x(s))

]
ds+ lim

j→∞

∫ t

0

fεj (x(s))ds

provided we can establish the existence of the two limits in the last line. We
consider these terms in turn.

Since ‖fε‖∞ ≤ ‖f‖∞ < ∞ for all ε > 0, by the Dominated Convergence
Theorem (DCT) and Lemma 2,

lim
j→∞

∫ t

0

fεj (x(s))ds =

∫ t

0

lim
j→∞

fεj (x(s))ds =

∫ t

0

f(x(s))ds.

For the other limit, by Lemma 4∣∣fεj (xεj (s))− fεj (x(s))
∣∣ ≤ ω(|xεj (s)− x(s)|).

But then another application of the DCT yields:

lim
j→∞

∫ t

0

∣∣fεj (xεj (s))− fεj (x(s))
∣∣ ds ≤ lim

j→∞

∫ t

0

ω(|xεj (s)− x(s)|)ds

=

∫ t

0

lim
j→∞

ω(|xεj (s)− x(s)|)ds = 0.

These three steps show that the integral equation (1.6.2) holds for t ∈ [0, 1].
We may repeat this argument on each time interval [k, k + 1], k ∈ Z. Thus,
equation (1.6.2) holds for t ∈ (−∞,∞).

In order to prove that x(t) solves the differential equation ẋ = f(x) we
modify equation (1.2.5) as follows. We use the modulus of continuity ω to
obtain

1

h

∫ t+h

t

|f(x(s))− f(x(t))| ds ≤ ω( max
s∈[t,t+h]

|x(s)− x(t)|) ≤ ω(‖f‖∞h).

This vanishes in the limit h→ 0 and we see that ẋ = f(x(t)) as desired.
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Remark 23. If you haven’t seen the DCT used, that’s fine. You can justify
the interchange of limits using the standard criterion for the Riemann integral.
(Roughly, if fn → f uniformly in C([0, 1]) then limn→∞

∫
fn =

∫
limn→∞ fn).

You could also choose to ignore these parts of the proof and focus on other
aspects of it, returning to these arguments when your understanding of analysis
is stronger.

1.7 Exercises

1. Gronwall’s inequality : If T > 0, c ≥ 0, and f, g : [0, T ] → [0,∞) are
continuous, and f satisfies the integral inequality

f(t) ≤ c+

∫ t

0

g(s)f(s) ds, t ∈ [0, T ],

then show that

f(t) ≤ c exp

(∫ t

0

g(s) ds

)
, t ∈ [0, T ].

2. Complete the proof of the contraction mapping principle, by showing that
the sequence {xn}∞n=0 defined by xn = An(x0), n ≥ 1 is a Cauchy sequence.

3(a). Consider the differential equation ẋ = f(x) with x ∈ R and

f(x) =

{
0, x = 0,
x log |x|, x 6= 0.

Does Picard’s theorem apply? Is there a unique solution when x0 = 0?

3(b). Find a function f(x), x ∈ R that is not Lipschitz at 0, but for which the
initial value problem ẋ = f(x) with x(0) = 0 has a unique solution.

4. Continuous dependence on parameters. Let x(t;x0, µ) denote the solution
to the initial value problem ẋ = f(x, µ), x(0) = x0 with a Ck vector-field
f : Rn × R→ Rn and x0 ∈ Rn. Show that x(t;x0, µ) is a Ck function of µ.

5. The standard construction of bump functions goes as follows. Consider the
function

ϕ(x) =

{
e−1/x, x > 0,
0, x ≤ 0.

(a) Show that this function is infinitely differentiable at zero. That is, show
that all derivatives of e−1/x on the region x > 0 vanish as x→ 0.

(b) Given an interval [a, b] show that there is a C∞ function ϕδ that is iden-
tically equal to 1 on [a, b] but vanishes when x ≤ a− δ and x ≥ b+ δ for
any δ > 0.

(c) Extend this idea to Rn, constructing a bump function that is identically
equal to one in a box, but vanishes outside a transition layer of width δ



1.8. SOLUTIONS TO EXERCISES 23

6. Consider the initial value problem ẋ = f(x), x(0) = x0 with a bounded and
continuous vector field f : Rn → Rn and x0 ∈ Rn, and t ∈ [0, T ] for some fixed
T > 0.

The forward Euler scheme is an approximation method for this differential
equation of the following form: the approximation x(N)(t) is a Lipschitz function
such that (i) x(N)(0) = x0; (ii) x(N)(t) is piecewise linear with slope f(x(N)(nh))
on the intervals [nh, (n+ 1)h), n = 0, 1, . . . , N − 1, h = T/N .

Prove that as N →∞ a subsequence converges in C([0, T ];Rn) to a Lipschitz
function x(t) that solves the initial value problem, thus establishing another
proof of Peano’s theorem.

1.8 Solutions to exercises

1. Gronwall’s inequality : If T > 0, c ≥ 0, and f, g : [0, T ] → [0,∞) are continuous,
and f satisfies the integral inequality

f(t) ≤ c+

∫ t

0

g(s)f(s) ds, t ∈ [0, T ],

then show that

f(t) ≤ c exp

(∫ t

0

g(s) ds

)
, t ∈ [0, T ].

Proof. Fix ε > 0 and let hε denote the solution to the differential equation

ḣε = gh, h(0) = c+ ε.

The solution to this equation is

hε(t) = (c+ ε) exp

(∫ t

0

g(s) ds

)
.

We will show that the set Sε = {t ∈ [0, T ] |f(t) ≥ hε(t)} is empty. First,
it is clear that Sε is closed. Therefore, its complement is open. Moreover, the
complement includes a maximal, open interval about the origin of the form [0, τ ]
because f(0) = c < c+ ε = hε(0). (“Open” here means “relatively open”).

We claim that τ = T . Indeed, since since f(t) < hε(t) for t ∈ [0, τ ], if τ < T
we have

f(τ) ≤ c+

∫ τ

0

g(s)f(s) ds < c+ ε+

∫ t

0

g(s)hε(s) ds = hε(τ).

This contradicts the definition of τ . Since ε > 0 is arbitrary, we find

f(t) ≤ c exp

(∫ t

0

g(s) ds

)
, t ∈ [0, T ].
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2. Complete the proof of the contraction mapping principle, by showing that the

sequence {xn}∞n=0 defined by xn = An(x0), n ≥ 1 is a Cauchy sequence.

Proof. Recall that A defines a contraction mapping on the metric space (M,ρ)
with constant λ, 0 < λ < 1. This assumption allowed us to obtain the estimate

ρ(xn, xn+1) = ρ(An(x0), An+1(x0)) ≤ λnρ(x0, x1).

Let n and p be two positive integers; without loss of generality we may suppose
that n < p. We use the above estimate inductively to obtain

ρ(xn, xp) ≤
p−1∑
m=n

ρ(xm, xm+1) ≤

(
p−1∑
m=n

λm

)
ρ(x0, x1) ≤ λn

1− λ
ρ(x0, x1).

Since 0 < λ < 1, for any ε > 0 we may choose n so large that the right hand
side is less than ε.

3(a). Consider the differential equation ẋ = f(x) with x ∈ R and

f(x) =

{
0, x = 0,
x log |x|, x 6= 0.

Does Picard’s theorem apply? Is there a unique solution when x0 = 0?

3(b). Find a function f(x), x ∈ R that is not Lipschitz at 0, but for which the initial

value problem ẋ = f(x) with x(0) = 0 has a unique solution.

Proof. (a) Picard’s theorem does not apply because f is not Lipschitz at 0. On
the other hand, the solution is unique. This can be seen by explicit integration.
We first assume x0 > 0, separate variables, substitute y = log x and integrate
both sides to obtain

t =

∫ x(t)

x0

dx′

x′ log x′
=

∫ y(t)

y0

dy′

y′
= log

(
y(t)

y(0)

)
.

Now solve for y(t) and then x(t) = ey(t) to obtain

x(t) = e(log x0)et = (x0)e
t

, x0 > 0.

There is a similar solution formula for x0 < 0.

x(t) = −e(log |x0|)et .

Both formulas are defined for t ∈ (−∞,∞) and we see that x(t)→ 0 as t→ −∞.
Uniqueness of solutions originating at x0 = 0 is obtained from this formula

as folllows: if there is a solution x(t) with x0 = 0 such that x(t) is not zero for
all time, then there exists a time t1 > 0 such that x(t) = x1 6= 0. Either x1 > 0
or x1 < 0. If x1 > 0 the solution formula above shows that

x(t) = (x1)e
t−t1

.



1.8. SOLUTIONS TO EXERCISES 25

Similarly, if x1 < 0. In particular, x(0) 6= 0 contradicting our assumption.
(b) The explicit solution formula above is nice, but the underlying principle that
guarantees uniqueness is this: the solution to ẋ = f(x) with x(0) = 0 is unique
if
∫ ε

0
dx/f(x) is divergent for every ε > 0.

Thus to find an example or counterexample, one only has to choose a function
such that f(0) = 0 and 0 <

∫ ε
0
dx/f(x) is divergent for every ε > 0. The function

f(x) = x log x is an example, but there are infinitely many choices.

4. Continuous dependence on parameters. Let x(t;x0, µ) denote the solution to the

initial value problem ẋ = f(x, µ), x(0) = x0 with a Ck vector-field f : Rn × R → Rn

and x0 ∈ Rn. Show that x(t;x0, µ) is a Ck function of µ.

Proof. The proof is very similar to the proof that the flow defines a diffeomor-
phism. First, we formally obtain a linear differential equation for the vector

y(t)
?
=
∂x(t;µ)

∂µ
.

Then we show that the solution y(t) is indeed the derivative by working from
the definitions (this is why there is a question mark in the equation above).

First some bookkeeping: Picard’s theorem guarantees local existence of C1

solutions to the differential equation ẋ = f(x, ν), x(0) = x0. Since f is at least
C1 in both x and ν, we may choose a neighborhood V of x0, a neighborhood
[µ − δ, µ + δ] for the parameter ν, and a time T such that there is a unique
solution to this differential equation for all x0 ∈ V , for all t ∈ [0, T ] and all ν
in the range [µ − δ, µ + δ] (we changed notation a bit here, so that we can do
all the computations at a fixed value µ of the parameter). This allows us to say
that the ‘tube’ of trajectories

K = {x(ν, t) : t ∈ [0, t], ν ∈ [µ− δ, µ+ δ]},

is a compact set. When f ∈ Ck it follows that the first k derivatives of f in x
and µ satisfy the bound

sup
z∈K,ν∈[µ−δ,µ+δ]

|D(l)
x f(z; ν)|, |∂(l)

ν f(z; ν)| ≤ C, 0 ≤ l ≤ k.

These bounds will be used to justify interchanges of limits below.
Now let us turn to the main ideas. We differentiate the equation ẋ = f(x, µ)

with respect to µ, use the chain rule, and denote A(t) = Df(x(t;µ)) and b(t) =
∂f(x(t;µ), µ)/∂µ to obtain the differential equation

ẏ = A(t)y + b(t), y(0) = 0,

or equivalently the integral equation2

y(t) =

∫ t

0

A(s)y(s) ds+

∫ t

0

b(s) ds.

2Let S(t; s) denote the fundamental matrix for this differential equation, i.e. the unique
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Let us now show that y(t) is indeed the derivative of x(t;µ) with respect
to the parameter µ. For brevity, let xµ(t) denote x(t;µ) and denote f(x, µ) by
fµ(x). We compare the solutions xµ+h(t) and xµ(t) to obtain the identity

(xµ+h(t)− xµ(t)) =

∫ t

0

(f(xµ+h(s);µ+ h))− f(xµ(s);µ)) ds. (1.8.1)

By Taylor’s remainder theorem and our a priori bound on the range of xν(t) for
t ∈ [0, T ] and ν ∈ [µ− δ, µ+ δ], there is a constant C such that

|fµ+h(xµ+h(s))− fµ(xµ(s))− hA(s) (xµ+h(s)− xµ(s))− hb(s)| ≤ Ch2,

where C is uniform over the range s ∈ [−T, T ], |h| ≤ δ. It follows that we have
the a priori estimate∣∣∣∣xµ+h(t)− xµ(t)

h

∣∣∣∣∫ t

0

‖A(s)‖
∣∣∣∣xµ+h(t)− xµ(t)

h

∣∣∣∣ ds+

∫ t

0

|b(s)| ds+ Cht, t ∈ [0, T ].

As usual, let ‖A‖∞ = sups∈[0,T ] ‖A(s)‖ and ‖b‖∞ be defined similarly. Then we
may apply Gronwall’s inequality to deduce that

1

h
|xµ+h(t)− xµ(t)| ≤ (‖b‖∞ + CδT ) e‖A‖∞T .

The point here is that the bound on the right is uniform in h and t. This
allows us to return to the identity (1.8.1), divide by h, and use the Taylor series
and the dominated convergence theorem to pass to the limit under the integral,
obtaining

∂xµ(t)

∂µ
=

∫ t

0

(
A(s)

∂xµ(s)

∂µ
+ b(s)

)
ds. (1.8.2)

Since y(s) is the unique solution to this equation, the proof that xµ(t) is C1 in
µ is complete.

In summary, the argument has three parts. In the first, we identify a candi-
date equation for the derivative and establish uniqueness for it. In the second,
we use the identity (1.8.1) and Gronwall’s inequality to establish an a priori

solution to the matrix valued differential equation

d

dt
S(t; s) = A(t)S(t; s), S(s; s) = I, t ≥ s.

Then the solution to the differential equation for y(t) is

y(t) =

∫ t

0
S(t; s)b(s) ds.

We won’t need this general solution, but it is useful to understand the difference between
the fundamental solution for linear constant coefficient equations, and linear non-autonomous
systems.
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bound on the finite differences that is uniform for t ∈ [0, T ] and the parameter
range ν ∈ [µ− δ, µ+ δ]. In the last step, we pass to the limit h→ 0 and we use
the a priori bounds to justify the interchange of limits.

The extension of these ideas to arbitrary k does not require much more than
some careful book-keeping for derivatives. Let us denote the higher derivatives
of the solution by

y(l) =
∂l

∂µ
xµ(t), 2 ≤ l ≤ k.

The structure of the differential equation for y(l) obtained by differentiating the
equation above has the form

d

dt
y(l) = A(t)y(l) + b(l)(t), y(l)(0) = 0,

where A is exactly as above and b(l) is a polynomial in the first l derivatives of
f with respect to x and the first l − 1 derivatives of x with respect to µ (i.e.
y, y(1), . . . , y(l−1)). The precise form of this expression is largely irrelevant; what
matters again is that it is bounded for t ∈ [0, T ]. It immediately follows that
there is a unique solution y(l)(t) for t ∈ [0, T ] for 0 ≤ l ≤ k. A somewhat tedious
finite-difference argument as above is now required to complete the proof that
y(l)(t) is indeed the l-th derivative of the solution x(t;µ) with respect to µ.

5. The standard construction of bump functions goes as follows. Consider the function

ϕ(x) =

{
e−1/x, x > 0,
0, x ≤ 0.

(a) Show that this function is infinitely differentiable at zero. That is, show that all
derivatives of e−1/x on the region x > 0 vanish as x→ 0.

(b) Given an interval [a, b] show that there is a C∞ function ϕδ that is identically
equal to 1 on [a, b] but vanishes when x ≤ a− δ and x ≥ b+ δ for any δ > 0.

(c) Extend this idea to Rn, constructing a bump function that is identically equal
to one in a box, but vanishes outside a transition layer of width δ

Proof. (a) Let us compute the first two of derivatives of ϕ(x) in the region x > 0.
By the chain rule

ϕ′ =
2

x2
ϕ := q1(x)ϕ, ϕ′′ =

4

x4
ϕ− 4

x3
ϕ := q2(x)ϕ.

Proceeding in this manner, we see that ϕ(n), the n-th derivative of ϕ, is of the
form qn(x)ϕ where qn(x) = 2nx−2n + O(x−2n+1) as x → 0. The exponential
grows faster than any polynomial at infinity; thus, limx→0 ϕ

(n)(x) = 0.

(b) We first construct a C∞ function ψ(x) such that

ψ(x) > 0, |x| < 1, ψ(x) = 0, |x| ≥ 1,

∫
R
ψ(x) dx = 1. (1.8.3)
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To construct such a function, let us first modify the example of (a) a bit. For
any a ∈ R, let ϕa(x) = e−1/(x−a) in the region x > a and ϕa(x) = 0 for x ≤ a.
Since ϕa(x) is just a shifted version of ϕ, it is C∞. Similarly, introduce the
decreasing function ϕ̃a(x) = e1/(x−a) for x < a and ϕ̃a(x) = 0 vanishes for
x ≥ 0. This function is the reflection of ϕa(x) about the point x = a and it is
also C∞. Next let

ψ(x) = Cϕ1(x)ϕ̃−1(x),

and choose the constant C so that
∫
R ψ(x) dx = 1.

Once this bump function has been constructed parts (b) and (c) of this
question may be solved by mollification. First (b). For any θ > 0 let

ψθ(x) =
1

θ
ψ
(x
θ

)
.

This scaling factor ensures that ψθ(x) is positive only on an interval of size 2θ
and that its integral remains unity. Now given the interval [a, b] and δ > 0
consider the indicator function 1[a−δ/2,b+δ/2], choose any value of θ < δ/4 and
then consider the mollification

h(x) = ψθ(x) ? 1[a−δ/2,b+δ/2](x) :=

∫ b+δ/2

a−δ/2
ψθ(x− y) dy.

Since θ < δ/4, when x ∈ [a, b], the support of ψθ(x− ·) is contained within the
domain of integration and the integral is 1. On the other hand, when x < a− δ
the support of ψθ(x − ·) is disjoint from the domain of integration and the
integral vanishes.

(c) The same idea can be extended to Rn. First, we construct an n-dimensional
bump function supported in the cube [−1, 1]n by considering the product

ψ(n)(x) := ψ(x1)ψ(x2) · · ·ψ(xn).

Then ∫
Rn
ψ(n)(x) dx =

n∏
j=1

∫
R
ψ(xj) dxj = 1.

As in the previous example, we may rescale the domain of integration to the
cube [−θ, θ]n and normalize accordingly, setting

ψ
(n)
θ (x) =

1

θ
ψ(n)

(x
θ

)
.

Given a closed box K = [a1, b1]× [a2, b2]× . . . [an, bn] and a positive number
η > 0 define the η-thickened box Kη = [a1−η, b1 +η]× [a2−η, b2 +η]× . . . [an−
η, bn + η]. Then as in the previous example, for every θ < δ/2 the function

h(n)(x) = ψ
(n)
θ ? 1Kδ/2(x)

is identically one on the box K and vanishes outside the box Kδ.
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6. Consider the initial value problem ẋ = f(x), x(0) = x0 with a continuous vector
field f : Rn → Rn and x0 ∈ Rn, and t ∈ [0, T ] for some fixed T > 0.

The forward Euler scheme is an approximation method for this differential equation
of the following form: the approximation x(N)(t) is a Lipschitz function such that
(i) x(N)(0) = x0; (ii) x(N)(t) is piecewise linear with slope f(nh) on the intervals
[nh, (n+ 1)h)‘′, n = 0, 1, . . . , N − 1, h = T/N .

Prove that as N →∞ this scheme converges in C([0, T ];Rn) to a Lipschitz function

x(t) that solves the initial value problem, thus establishing another proof of Peano’s

theorem.

Proof. The approximation scheme satisfies the integral equation

x(N)(t)− x0 =

∫ t

0

fN (s) ds,

where fN (s) denotes the piecewise constant function that takes the value f(x(N)(nh))
on the interval [nh, (n+ 1)h). As a consequence:

1. |x(N)(t)− x(N)(s)| ≤ ‖f‖∞||t− s|, 0 ≤ s ≤ t < T .

2. supt∈[0,T ] |x(N)(t)| ≤ |x0|+ T‖f‖∞.

Thus, the sequence x(N) is precompact in C([0, T ];Rn). By the Arzela-Ascoli
theorem, we may assume that a subsequence x(Nk) is uniformly convergent
to a limit denoted x(t). Moreover, since f is continuous, we also see that the
piecewise constant functions fNk

(
x(Nk)(t)

)
converge uniformly to the composed

function f ◦x ∈ C([0, T ];Rn). Thus, we may take limits in the integral equation
above to find

x(t)− x0 =

∫ t

0

f(x(s)) ds.
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Chapter 2

Phase portraits and the
Flow

In this chapter we introduce the basics of phase portraits as well as a rigorous
definition of the flow. Phase portraits are simple geometric caricatures that
capture the essence of the flow. Of course, we can only draw pictures in 1,2
and (occasionally) 3 dimensions, but the use of such geometric intuition greatly
facilitates the study of dynamical systems.

2.1 A first glance at phase portraits

The simplest solutions to differential equations are fixed points. Given f : Rn →
Rn these are the set of points a ∈ Rn such that f(a) = 0. Fixed points are also
termed equilibria or critical points and the solution curves are often called orbits
or trajectories. Note that uniqueness of solutions always means that a trajectory
can never contain a fixed point unless the trajectory consists of solely the fixed
point.

One dimensional phase portraits are almost trivial. Suppose f : R → R,
such that f is C1. Given the graph of f , we first determine its zeros. These
are our fixed points. If we start at (i.e. if we pick x0 to be ) any a such that
f(a) = 0, we stay there forever.

Next, in the interval between zeros, f(x) > 0 or f(x) < 0. This means that
x(t) is either strictly increasing or strictly decreasing, except that sometimes
one has to be more careful, such as for tangencies. These ideas are illustrated
in Figure 2.1.1.

These pictures should be intuitive. Note though that it is because of Picard’s
Theorem that we can say that the trajectories can never pass through zeros.
2D phase portraits have a lot more complexity as can be seen by a glance at
Figure 2.1.2. We will build more intuition for these phase portraits by first
studying explicitly solvable linear systems and then interpreting these solution
formulas geometrically in Section 2.3 below.

31



32 CHAPTER 2. PHASE PORTRAITS AND THE FLOW

~f w V\;\TlN /1v ;tr O olvvu L,~ 

p~ fr)/ hrtvJI'> . (At,vl'&..e w~ 
• , I I 

Jvr~ ti~ ' II }) > . '2:--1) (A"'\ 

3"!) 
' 

1-D 
pwf'fUvJ< OH~ ~IIA,</1w> sf -/--v-: v1·uJ1 . 

--7 /JZ /2J 
J 

f~ rv~ /.AJ~ 

V'J (..,-\ I V w,., f ,_·,. C , . I' , 

£;e;/O S 

-----

I 

<-- -
I 
b > 

tr~ , i 
-Jr~)=- o 

~J (A 

;x [-&) ::::- 0v 

f {x\ 3>J o 

X{ t \ w 

i 
.iw 

w~ll s~ 
J 

{t - Xo 

1()-1-wJ-
) (9 ~. t. 

I'\, 

,:]~ 
k rr~Q/\/\ . 

Jfo. )-:;- 0 Xo ::::::-- a. I 

t e [- (JO / (JO ) . 

i rv.fvvv~ lJwe.J_,,yi, ~s 

'x 

Figure 2.1.1: Phase portraits in 1D

/ 
i 1-- C:O 12 ot Pi c,wvls 

7hQJ: 

+r°(}· u.1<>1/\ w f"l-e,vU f fw. ft.. u,vo.s . 

c2o p~ t~+((»h 
UWf (@(,Jg ' /-}-{ft e, 

(, Iv le>+-- vw,HG 

ovv .R./ ~~>I t__s 

9~/-0 ro ~ ·e, 

Hb7l--. 

Figure 2.1.2: Some phase portraits in 2D

2.2 Linear autonomous equations

Let Mn denote the space of n × n real matrices. Assume given A ∈ Mn and
consider the linear ODE

ẋ = Ax, x ∈ Rn. (2.2.1)

The function f(x) = Ax is globally Lipschitz because

|f(x)− f(y)| = |Ax−Ay| = |A(x− y)| ≤ ||A|||x− y|.

Thus, the initial value problem with the initial condition x(0) = x0 has a unique
solution. Moreover, the solution is given by the formula

x(t) = etAx0. (2.2.2)

The matrix exponential is discussed in greater detail below. For now, note that
equation (2.2.5) shows that the formula (2.2.2) provides a solution to (2.2.1).
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2.2.1 The matrix exponential

Let us study the exponential of a matrix more carefully 1. We define it through
the infinite series

eM :=

∞∑
m=0

Mm

m!
. (2.2.3)

Convergence of the series is established as follows. First, we note the estimate

||Mm|| ≤ ||M ||m, ||M || = sup
|x|=1

|Mx|, x ∈ Rn.

This estimate allows us to bound the finite sums in the series (2.2.3) as follows:

P∑
m=0

Mm

m!
≤

P∑
m=0

||M ||m

m!
<
∞∑
m=0

||M ||m

m!
= e||M || <∞. (2.2.4)

Thus the series (2.2.3) has an infinite radius of convergence and the derivative
of eM may be computed by differentiating term by term. Therefore,

d

dt
etA =

d

dt

∞∑
m=0

tmAm

m!
=

∞∑
m=1

mtm−1Am

m!
=

( ∞∑
m=0

tmAm

m!

)
A = AetA. (2.2.5)

It was necessary to establish this formula from scratch, because the matrix
exponential has some important differences with the exponential of a scalar. In
particular, eA+B 6= eAeB except in the special situation where A and B are
matrices that commute with each other (i.e. AB = BA).

The infinite sum (2.2.3) serves as a useful definition of the matrix exponen-
tial. However, in order to compute the exponential, we diagonalize A or (if A is
not diagonalizable consider its Jordan decomposition). For simplicity, we will
focus on the case where A is diagonalizable. We may then write

A = UΛU−1 (2.2.6)

where Λ is a diagonal matrix of the eigenvalues of A and U contains the eigen-
vectors of A in the same order as the eigenvalues on the diagonal of Λ. Equa-
tion (2.2.6) yields

A2 = UΛU−1UΛU−1 = UΛ2U−1,

and proceeding inductively we find

Am = UΛmU−1, m = 1, 2, . . .

Using the infinite series (2.2.3) again we find that

etA = UetΛU−1. (2.2.7)

1We use the phrases “exponential of a matrix” and “matrix exponential” to mean the same
thing.
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The matrix etΛ is a diagonal matrix with entries

etΛ =

e
tλ1

. . .

etλn

 (2.2.8)

It is this matrix that determines the behavior of etA as t→∞ 2.
Both U and Λ may be complex even though A is real. However, the complex

eigenvalues always appear in pairs of complex conjugates, and etA is always real
as is clear from the infinite series (2.2.3). For a given eigenvalue λi, we have
three possibilities for asymptotic behavior. If Re(λi) < 0, then |etλi | → 0 as
t → ∞. If Re(λi) > 0, then |etλi | → ∞ as t → ∞. And finally if Re(λi) = 0,
then |etλi | = 1 for all values of t.

2.2.2 Linear non-autonomous systems

In general, we call a differential equation of the form ẋ = f(x, t) non-autonomous
because f depends explicitly on t, rather than only depending on it via x(t).
Any non-autonomous system can be made autonomous by adding t as a new
variable. We define the ordered pair x̃ = (x, t) and rewrite the differential
equation as follows {

ẋ = f(x, t)
ṫ = 1

}
⇐⇒ ˙̃x = f̃(x̃) (2.2.9)

In this setup, f̃ : Rn+1 → Rn+1 is defined by x̃ 7→
(
f(x, t)

1

)
. This is a valid

construction, but it is not very satisfactory since time plays a special role in
dynamical systems. Linear nonautonomous systems arise when we examine the
linearization about a solution to the equation ẋ = f(x).

2.3 Linear systems in 2D

Let us now use the solution formula(2.2.2) to draw the phase portraits of some
two-dimensional systems.

Example 1. A =

(
−1 0
0 −2

)
.

For any initial condition x0 =

(
a
b

)

etAx0 = ae−t
(

1
0

)
+ be−2t

(
0
1

)
. (2.3.1)

2The following notational convention is used here. Empty terms in a matrix are assumed
to be zero.
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A= (-1 D \ 
0 -2 ) 

-I 

0 

0 

A :c:: U 0 

0 -2, 

Figure 2.3.1: Example 1 and Example 2. The double arrows correspond to
the eigenvalue −2 and denote a strongly stable direction. This idea will be
reconsidered when studying invariant manifolds.

Both terms decay as t → ∞ and x(t) → 0 as t → ∞. Since the second term
decays much faster than the first, all trajectories with a 6= 0 are asymptotic to
the x-axis as t→∞.

Example 2. A = U

(
−1 0
0 −2

)
U−1 where U consists of two linearly indepen-

dent column vectors u1, u2.

The phase portrait of Example 1 is linearly transformed into the phase por-
trait of this example through equation (2.2.7). The critical point in both these
examples is called a stable node.

Example 3. A =

(
−1 0
0 1

)
.

This critical point is called a saddle point or simply a saddle. See Fig-
ure 2.3.2.

Example 4. A =

(
0 1
−1 0

)
In this example, A is not a diagonal matrix, so we need to compute the

eigenvalues. The characteristic polynomial is det(λI − A) =

∣∣∣∣λ −1
1 λ

∣∣∣∣ = λ2 + 1,

which means the eigenvalues are λ = ±i. The real parts of both eigenvalues are
0, so that |etλ| = 1 for all t. We may compute etA directly using the infinite
series (2.2.3) or compute the eigenvectors to find that

etA =

(
cos t sin t
− sin t cos t

)
. (2.3.2)

This critical point is called a center. See Figure 2.3.2.
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A= (-1 D \ 
0 -2 ) 

-I 

0 

0 

Figure 2.3.2: Example 3 and Example 4.

Example 5. A =

(
α β
−β α

)
This example is closely related system to Example 4. The characteristic

polynomial is (λ − α)2 + β2 and the eigenvalues are λ = α ± iβ. For α < 0,
the diagram is a stable spiral since the trajectories are spiralling inward to the
critical point. The diagram for α > 0 is an unstable spiral. If α = 0, the critical
point is a center. See Figure 2.3.3.

C>( > 0 

c< > 0 

Figure 2.3.3: Example 3 and Example 4.

2.4 Existence of a Lipschitz flow

In Chapter 1, we established well-posedness of the initial value problem{
ẋ = f(x)
x(0) = x0

(2.4.1)

The main idea of the flow is to focus not on the initial value problem for a fixed
initial condition, but to think simultaneously about the totality of solutions in
phase space. The examples in the previous section illustrate the utility of this
viewpoint. In this section, we will establish the existence of a flow rigorously.
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We first switch to notation that is more convenient for the geometric view-
point. When discussing equation (2.4.1) we use x0 to denote the initial condition
and the notation x(t;x0) to denote the solution with initial condition x0. When
discussing the flow it is more convenient to write x instead of x0 for the initial
condition and ϕt(x) for the solution with this initial condition. The initial value
problem (2.4.1) is then rewritten as{

∂
∂tϕt(x) = f(ϕt(x)),

ϕ0(x) = x.
(2.4.2)

As in Picard’s theorem we will first establish the existence and uniquess of
the flow map under a global Lipschitz condition in order to focus attention on
the main new ideas. We will then establish more refined results.

Theorem 24. Assume f : Rn → Rn is L-Lipschitz. Then there exists a family
of maps ϕ : Rn × R→ R, (x, t) 7→ ϕt(x) such that

1. Equation (2.4.2) holds for all x ∈ Rn and t ∈ R.

2. The flow maps form a 1-parameter group of transformation of Rn → Rn
satisfying

ϕs(ϕt(x)) = ϕt(ϕs(x)) = ϕt+s(x), s, t ∈ R. (2.4.3)

3. The maps ϕt are bi-Lipschitz homeomorphisms of Rn. That is, ϕt and its
inverse ϕ−t are Lipschitz maps of Rn into itself satisfying the estimate

|ϕt(x)− ϕt(y)| ≤ eL|t| |x− y| , x, y ∈ Rn. (2.4.4)

Proof. The first two assertions of the theorem are consequences of Theorem 8.
The third assertion is seen as follows. We compare the solution with two different
initial conditions

ϕt(x)− ϕt(y) = x− y +

∫ t

0

(f(ϕs(x))− f(ϕs(y)) ds. (2.4.5)

Assume t > 0 to be concrete. The argument for t < 0 is very similar. We take
absolute values and use the Lipschitz condition to obtain

|ϕt(x)− ϕt(y)| ≤ |x− y|+ L

∫ t

0

|ϕs(x)− ϕs(y)| dy. (2.4.6)

The inequality (2.4.4) follows from Gronwall’s inequality.

2.5 Existence of a smooth flow

Definition 25. A Ck diffeomorphism of an open set U ⊂ Rn is a Ck map
ϕ : U → U such that ϕ is one-one, onto and has a Ck inverse ϕ−1.
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Theorem 26. Assume f : Rn → Rn is Ck and supx∈Rn ‖Df(x)‖ = L < ∞.
Then there exists a family of maps ϕ : Rn × R→ R, (x, t) 7→ ϕt(x) such that

1. Equation (2.4.2) holds for all x ∈ Rn and t ∈ R.

2. The flow maps form a 1-parameter group of transformation of Rn → Rn
satisfying

ϕs(ϕt(x)) = ϕt(ϕs(x)) = ϕt+s(x), s, t ∈ R. (2.5.1)

3. For each t ∈ R, the map ϕt is a Ck diffeomorphism of Rn.

The difference between Theorem 24 and Theorem 26 lies only in the last
assertion concerning the smoothness of the map. A simple argument with Gron-
wall’s inequality sufficed for Theorem 24. But we need a new idea to understand
the smoothness of the flow in the initial conditions.

The main issue is this: how does one compute the derivative of the flow
with respect to the initial conditions? Since the only information we have on
the flow is that it satisfies equation (2.4.2), we differentiate the initial value
problem (2.4.1) to get the equation of variations{

∂
∂tDϕt(x) = Df(ϕt(x))Dϕt(x)

Dϕ0(x) = I
(2.5.2)

Recall that Df(x) is the n×n matrix with entries defined by (Df)ij = ∂fi
∂fj

. This

is a linear equation for the matrix Dϕt(x) and it is helpful to introduce notation
that makes this transparent. Fix x and let B(t) = Dϕt(x), A(t) = Df(ϕt(x)),
we can rewrite equation (2.5.2) to clearly display its character:

dB

dt
= A(t)B, B(0) = I. (2.5.3)

By the definition of A(t), we see that supt ||A(t)|| ≤ L < ∞, which means the
right hand side of equation (2.5.3) is Lipschitz in B and therefore has a unique
global solution. Thus, B(t) is a candidate for Dϕt(x), and to prove Theorem 26
we must show that

1. The solution B(t) to equation (2.5.3) is invertible.

2. The solution B(t) is the derivative Dϕt(x).

The proofs of these assertions are quite different. The first statement is proven
by deriving an equation for det(B(t)). The second assertion must be justified
from first principles (i.e. starting from the definition of the derivative).

Lemma 5. Suppose the matrix B(t) solves the linear equation Ḃ(t) = A(t)B.
Then det(B) solves the linear equation

d

dt
det(B) = Tr(A) det(B), (2.5.4)
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. In particular, we have

detB(t) = e
∫ t
0

Tr(A(s))ds detB(0), (2.5.5)

so that B(t) is invertible if and only if B(0) is.

Remark 27. The trace of a square matrix A, defined by Tr(A) =
∑n
i=1Aii, is

the sum of the entries along the main diagonal of A.

Remark 28. To get a sense of why the above lemma is tricky, consider 2 × 2

matrices. Let B =

(
b11 b12

b21 b22

)
; then det(B) = b11b22 − b12b21, and correspond-

ingly we have ˙det(B) = ḃ11b22 + b11ḃ22 − ḃ12b21 − b12ḃ21. We could supposedly
solve for this by substituting in the derivatives of each bij , but this is clearly
tedious.

Proof. First we note that the derivatives of the determinant can be computed
at the identity, i.e. if B = I, then det(B + εM) = det(I + εM) for any ε > 0
and we can expand in ε using the formula for the determinant.

Let Sn denote the permutation group on n symbols and recall that the
determinant of an n× n matrix X is

det(X) =
∑
σ∈Sn

(−1)σX1σ1
X2σ2

...Xnσn , (2.5.6)

where (−1)σ denotes the sign of the permutation. Note also that

(I + εM)ij = δij + εmij = εmij , if i 6= j.

Here δij is the Kronecker delta.
We only need to worry about terms in the sum (2.5.6) that are O(ε) as

ε→ 0, since these terms will dominate the equation. For this, we only need to
consider the identity permutation in the sum, since any σ ∈ Sn that is not the
identity will yield terms that are O(ε2). Consider for example the permutation
that only switches columns 1 and 2; then the resulting term is:

(δ12 + εm12)(δ21 + εm21)(δ33 + εm33)...(δnn + εmnn) = ε2m12m21(1 + εm33)...
(2.5.7)

Since this is O(ε2), we can disregard it and all similar terms as ε→ 0.
Thus, the determinant of I + εM can be expressed solely as the product of

the terms along its diagonal, with an O(ε) error term:

det(I + εM) = (1 + εm11)...(1 + εmnn) +O(ε2). (2.5.8)

Taking the derivative of the above with respect to ε and evaluating it at ε = 0,
we find that

d

dε
det(I + εM)

∣∣∣∣
ε=0

= m11 +m22 + ...+mnn = Tr(M). (2.5.9)
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This calculation proves Lemma 5 when B = I.
Let us now reduce the general case to this case. Assume t is such that B(t)

is invertible (this is certainly true for t in a neighborhood of 0 since B(0) = I.
Rewrite the Ḃ = AB as ḂB−1 = A. Fixing t and B(t), consider detB(t+s); we
can write it as detB(t+ s)B−1(t)B(t) = det(B(t+ s)B−1(t)) · detB(t), where
B(t+ s)B−1(t) as a function of s. Note

B(t+ s)B−1(t)
∣∣
s=0

= I,

and
d

ds
B(t+ s)B−1(t)

∣∣∣∣
s=0

= A.

Then by the previous calculation, we find that

d

ds
det(B(t+ s)B−1(t))

∣∣∣∣
s=0

= Tr(A).

Separating variables and integrating, we find

detB(t) =
(
e
∫ t
0

Tr(A(s))ds
)

detB0 (2.5.10)

= e
∫ t
0

Tr(A(s))ds when B0 = I. (2.5.11)

We now use a continuation argument to see that this identity holds for the entire
interval of existence of solutions.

Lemma 6. Assume that f satisfies the hypothesis of Theorem 26 with k = 1.
Then for every t ∈ R, the flow is differentiable and

Dϕt(x) = B(t), (2.5.12)

where B(t) is the unique solution to equation (2.5.3).

Proof. Fix an initial point x ∈ Rn as well as a tangent vector v ∈ Rn. We must
show that

lim
h→0

∣∣∣∣ 1h (ϕt(x+ hv)− ϕt(x))−B(t)v

∣∣∣∣ = 0. (2.5.13)

We know that ϕt(x) and B(t) solve the integral equations

ϕt(x+ hv)− ϕt(x) = hv +

∫ t

0

(f(ϕs(x+ hv))− f(ϕs(x))) ds,(2.5.14)

B(t)v = v +

∫ t

0

Df(ϕs(x))B(s)v ds. (2.5.15)

Now take the difference between these terms and use Taylor’s remainder theorem
and the dominated convergence theorem (as used in Corollary 1) to complete
the proof of the lemma.
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Proof of Theorem 26. Lemma 6 suffices to establish Theorem 26 in the situation
when k = 1.

The underlying principles generalize to arbitrary k. We first derive a differ-
ential equation analogous to (2.5.3) for the kth derivative; we then show that
the k-th derivative satisfies the equation from first principles. Since the second
step is a calculus exercise not essentially different from Lemma (6), we won’t
prove it. We further simplify matters by sketching the proof in R to provide the
main idea - in Rn the higher (say kth) derivatives have k indices and require
careful bookkeeping, but the character of the equation for the kth derivative is
very similar to the one in R.

To this end, assume f : R→ R is Ck and consider the initial value problem{
∂
∂tϕt(x) = f(ϕt(x))

ϕ0(x) = x.
(2.5.16)

We denote the derivatives of v by f ′, f ′′, and f (p) for the pth derivatives with
respect to x; the same notation will be used for ϕt(x). Then taking the derivative
with respect to x of (1.8.22) yields:{

∂
∂tϕ
′
t(x) = f ′(ϕt(x))ϕ′t(x)

ϕ′0(x) = 1
(2.5.17)

We have already studied this problem in the form Ḃ = A(t)B, B(0) = I for
x ∈ Rn, where B(t) = ϕ′t(x) and A(t) = f ′(ϕt(x)). Differentiating in x once
again, we obtain the following:

∂

∂t
ϕ′′t (x) = f ′(ϕt(x))ϕ′′t (x) + f ′′(ϕt(x))(ϕ′t(x))2. (2.5.18)

LetB2(t) = ϕ′′t (x) andA2(t) = f ′′(ϕt(x)). Then we can rewrite equation (2.5.18)
as the nonhomogeneous linear equation

dB2

dt
= A(t)B2 +A2(t)B2 (2.5.19)

Equation (2.5.19) can be solved using the variation of constants formula for
linear equations

B2(t) = e
∫ t
0
A(s)dsB2(0) +

∫ t

0

e
∫ t
s
A(r)drA2(s)B2(s)ds (2.5.20)

=

∫ t

0

e
∫ t
s
A(r)drA2(s)B2(s)ds. (2.5.21)

because ϕt(0) = x implies that B2(0) = 0.
Since f is Ck (where k ≥ 2), we have A2(s) = f ′′(ϕs(x)), and correspond-

ingly sup0≤s≤t |A2(s)| = sup0≤s≤t |f ′′(ϕs(x))| < ∞. Moreover, the terms A(s)
and B(s) have already been controlled on that same interval of existence by the
first derivative f ′(ϕs(x)). Thu,s B2(t) is well-defined.

As with the first derivative Dϕt(x), this is the critical step to concluding
that D2ϕt(x) is well-defined. For higher-order derivatives the algebra gets pro-
gressively messier, but the underlying principles are the same:
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1. Derive a differential equation for Dkϕt(x), and observe that it has the
form d

dtBk = A(t)Bk(t) +N(A, ...Ak, B, ...Bk−1), where the A-terms in N
involve the first k derivatives of f and the B-terms in N involve the first
k− 1 derivatives of ϕt(x). This gives a linear non-autonomous differential
equation which can be solved by the variation of constants formula.

2. Show that Bk is indeed the kth derivative of ϕt in x by using finite differ-
ences and passing to the limit as in Lemma 6.

2.6 Asymptotic behavior

A central theme in dynamical systems is to decompose the flow into a ‘few
pieces that matter’. We have seen examples of this above: for linear systems,
what matters are critical points and the stable, unstable and center eigenspaces.
This idea will be extended to nonlinear systems through the use of invariant
manifolds. Similarly, phase portraits are an impressionistic sketch of the global
dynamics which contain a great deal of information.

In this section, we consider the more abstract idea that the asymptotic
behavior of a dynamical system is captured by invariant sets. A fundamental
example of an invariant set is the ω-limit set defined below. In order to prevent
technicalities, we make the following standing assumptions in this section.

1. The phase space U is an open set in Rn.

2. ϕt : U → U is a C1 flow defined for t ∈ (−∞,∞).

Definition 29. A set A ⊆ U is positively invariant if ϕt(A) = A for all t ≥ 0.
Similarly, a set is negatively invariant if ϕt(A) = A for all t ≤ 0. A set is
invariant if it is positively and negatively invariant.

Remark 30. The concept of positive invariance requires only that the flow
is defined only for t ≥ 0. An invariant set may exist even under the weaker
assumption that the flow is defined for all initial conditions only for t ≥ 0 (since
this does not preclude global existence for certain special initial conditions).
Thus, our standing assumption on existence of solutions is a little stronger than
necessary. However, it is simpler at the first pass to focus on the concept of
invariant sets without worrying about global (in time) existence of the flow.
When the invariant set is compact, we may always modify the vector field with
bump function so that the assumptions of this section apply.

Definition 31. Suppose B ⊆ U . The ω-limit set of B is

ω(B) = {y ∈ U | ∃ tn →∞, xn ∈ B such that ϕtn(xn)→ y}. (2.6.1)

When B = {x} we write ω(x) instead of ω({x}).
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Definition 32. (Positive orbit). The positive orbit γ+(x) of x is

γ+(x) = {y | y = ϕt(x) for some t ≥ 0}. (2.6.2)

Remark 33. When the flow is defined for t ≤ 0 the analogous notions to
the ω-limit set and positive orbit are the α-limit set and negative orbit γ−(x)
respectively.

Let us now establish some fundamental properties of these sets.

Lemma 7. ω(x) = ω(γ+(x)).

Proof. Clearly, ω(x) ⊆ ω(γ+(x)) since B ⊆ B′ implies ω(B) ⊆ ω(B′). On the
other hand, if y ∈ ω(γ+(x)), then there is {tn}∞n=1 and {xn}∞n=1 ⊆ γ+(x) with
ϕtn(xn) → y. But, xn = ϕxn(x) for some sn ≥ 0 since xn ∈ γ+(x). Thus,
ϕtn+sn(x)→ y implies that y ∈ ω(x).

Lemma 8.

ω(B) =
⋂
t≥0

⋃
s≥t

ϕt(B). (2.6.3)

Proof. This is on HW 2. The proof involves checking that ω(B) as defined in
Definition 2.6.1 is contained in, and contains, the set on the right hand side
above. A full proof will be added in with solutions to HW 2.

Theorem 34. ω(B) is closed and invariant.

Proof. ω(B) is closed by Lemma 8, since an arbitrary intersection of closed sets
is closed. Suppose y ∈ B and choose t ∈ R. We know that there is a sequence
tn →∞ and xn ∈ B such that ϕtn(x)→ y. Since the flow is continuous,

lim
n→∞

ϕtn+t(xn) = lim
n→∞

ϕt (ϕtn(xn)) = ϕt

(
lim
n→∞

ϕtn(xn)
)

= ϕt(y).

Thus, y ∈ B implies that ϕt(y) ∈ ω(B) for every t ∈ R.

Remark 35. Note that the proof of Lemma 8 requires only that the flow be
defined only for t ≥ 0. If only this hypothesis holds, the above argument
shows that ω(B) is closed and positively invariant. In many instances, as in
Theorem 43 this is enough to show that ω(B) is invariant.

Theorem 36. Suppose that ϕt : U → U is defined for all t ≥ 0. Assume B ⊆ U
is connected and that ω(B) is compact. Then, ω(B) is connected.

Proof. For brevity let A = ω(B). The intuitive idea here is this. Suppose ω(B)
had two disjoint parts, say A1 and A2. Then both these sets would need to
be closed, thus compact, and we could separate these sets with two disjoint
open sets as depicted in Figure 2.6.1. The image of a connected set under a
continuous map is connected, thus ϕt(B) is always connected. But then since
both A1 and A2 are part of ω(B), we must have points that hop between O1
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Figure 2.6.1: A1, A2 separated by open sets O1, O2

and O2 and we may thus obtain a limit point outside A1 and A2. The existence
of such a limit point contradicts the assumption that ω(B) is disconnected. Let
us now make this precise by establishing the existence of such limit points under
the assumption that ω(B) is disconnected.

First, recall that a set A is disconnected if and only if we can find open sets
O1 and O2 such that

O1 ∩O2 = ∅
A1 := A ∩O1 6= ∅
A2 := A ∩O2 6= ∅,

and A ⊆ O1 ∪ O2. This formalises the picture above, with A = ω(B). Since
A = ω(B) is compact, we may choose O1 and O2 to be bounded.

Since A1 and A2 are part of the ω-limit set ω(B), for any sufficiently large
T , there exist s, t ≥ T such that

ϕs(B) ∩O1 6= ∅ and ϕt(B) ∩O2 6= ∅.

Without loss of generality, suppose t ≥ s (relabel the sets otherwise). Since
B is connected, so are the sets ϕs(B) and ϕt(B). Since O1 and O2 are disjoint,
by continuity there must exist τ ∈ [s, t] and y ∈ ϕτ (B) such that y ∈ ∂O1.
(Intuitively, we’re picking a time in between when points travel from O1 to O2.)

Now label the above values of s,t, as T s1,t1, T1 respectively, and similarly
define y1 and τ1. Now choose T2 > max{s1, t1} and repeat the above argument.
Proceeding inductively we obtain a sequence of times τn →∞ and points yn ∈
∂O1 such that yn = ϕτn(xn) for some xn ∈ B. But then, yn ∈ ω(B) by
definition. This contradicts the assumption that ω(B) ⊆ O1 ∪O2.



Chapter 3

Gradient Flows

In this chapter and the next, we will consider two fundamental examples of
flows: gradient flows and Hamiltonian systems. We will work on Rn and R2n

respectively assuming conditions that guarantee global existence of solutions.
Later, we will refine these ideas to gradient flows on Riemannian manifolds and
Hamiltonian flows on symplectic manifolds.

3.1 The fundamental estimate for gradient flows

We assume given a C2 function V : Rn → R such that the sublevel sets

Ka := {x ∈ Rn |V (x) ≤ a} (3.1.1)

are compact for all a ∈ (−∞,∞). This function will be called the potential , the
energy , or the cost function in different contexts.

Remark 37. Compactness of the sublevel sets always holds if |V (x)| → ∞ as
|x| → ∞. This is sometimes called a coercivity condition.

An intuitive picture of gradient flow is depicted in Figure 3.1.1.
The gradient flow with potential V is defined by the equation

ẋ = −∇V (x), x ∈ Rn. (3.1.2)

The vector field ∇V is given in coordinates by

ẋi = − ∂V
∂xi

, 1 ≤ i ≤ n. (3.1.3)

The intuition of a gradient flow is that ‘trajectories flow downhill’. This
follows from the following

Theorem 38 (Fundamental estimate for gradient flows). Assume V (x) ∈ C2

and its sublevel sets are compact. Then the flow

∂ϕt(x)

∂t
= −∇V (ϕt(x)), ϕ0(x) = x, (3.1.4)

45
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Figure 3.1.1: Gradient flow in Rn

is defined for all t ≥ 0 and remains within the compact set KV (x0).

Proof. Since V ∈ C2 the vector field ∇V is C1 and by Picard’s Theorem the
solution is defined for a time interval [0, T (x0)] with T (x0) > 0. We evaluate
the potential along the trajectory, setting

v(t) := V (ϕt(x)). (3.1.5)

Then by the chain rule and (3.1.4) we obtain

v̇ = ∇V · ∂
∂t
ϕt(x)

= −∇V · ∇V = −|∇V |2.

Thus,

v(t) = v(0)−
∫ t

0

|∇V (ϕs(x))|2ds, (3.1.6)

at least for t ∈ [0, T (x0)]. In particular, v(t) ≤ v(0), so that ϕT (x0) ∈ Ka. But
then we may again use Picard’s theorem and extend the solution to [T, 2T ] since
the time of existence guaranteed by Picard’s theorem is uniform on a compact
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set. This ensures that the solution is defined for t ∈ [0,∞) and that v(t) ≤ v(0)
on this interval with equality if and only if ∇V (x0) = 0.

3.2 Linearization of gradient flows

The equation of variations for an arbitrary vector field was discussed in Sec-
tion 2.5; see in particular, equations (2.5.2) and (2.5.3). When the vector field
f(x) = −∇V (x) the equation of variations takes the form

Ḃ = A(t)B, B(0) = I, (3.2.1)

where these matrices are related to the flow ϕt(x) and potential V (x) through

B(t) = Dxϕt(x), A(t) = D2V (ϕt(x)). (3.2.2)

Here the Hessian D2V (x) is the real symmetric matrix with components

(D2V )ij =
∂2V

∂xi∂xj
.

Since V ∈ C2 the partial derivatives commute, i.e.

∂2V

∂xi∂xj
=

∂2V

∂xj∂xi
.

This means that A(t) is a symmetric matrix 1. In particular, the linearization
at a critical point x∗ is always of the form

u̇ = Au, where A = D2V (x∗).

Since A is real and symmetric, its eigenvalues are real and it admits a diagonal-
ization A = QΛQT with an orthogonal matrix Q (i.e. QT = Q−1) and

Λ =



λ1

. . .

λk
λk+1

. . .

λn


.

Definition 39. (Nondegenerate Critical Point). We say that a critical point
of a gradient flow is nondegenerate if 0 is not an eigenvalue of A.

Definition 40. (Morse function). A C2 function V : Rn → R all of whose
critical points are nondegenerate is called a Morse function.

1We’ll denote this by A ∈ Symm(n).
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Definition 41. (Morse index). The index, or Morse index, of a non-degenerate
critical point is:

#(positive eigenvalues)−#(negative eigenvalues).

Example 6. (Positive Morse index) The matrix(
+1 0
0 +1

)
has a Morse index of +2.

Example 7. (Zero Morse index) The matrix(
+1 0
0 −1

)
has a Morse index of 0.

Example 8. (Negative Morse index) The matrix(
−1 0
0 −1

)
has a Morse index of −2.

The phase portraits associated with the above three examples are shown in
Figure 3.2.1.

Figure 3.2.1: Phase portraits labelled with Morse indices

3.3 Asymptotic behavior

Theorem 42. A gradient flow cannot contain a periodic orbit.
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Proof. Suppose γ(t) is a periodic orbit with period T , that is: γ(t + T ) = γ(t)
and T > 0 is T = inf

s>0
{γ(s) = γ(0)}. We evaluate v(t) = V (γ(t)) along the

orbit. As before, v(t) = v(0)−
∫ t

0
|∇V (γ(s))|2ds. Thus,

v(0) = v(T ) = v(0)−
∫ T

0

|∇V (γ(s))|2ds < V (0)

since ∇V (x) = 0 if and only if x is a critical point.

Let us now ask the more general question: what happens to ϕt(x) as t→∞?

Theorem 43 (La Salle invariance principle). Assume V : Rn → R is C2 and
has compact sublevel sets. Then, for any x ∈ Rn, v∗ = lim

t↑∞
V (ϕt(x)) exists and

ω(x) ⊆ {y |V (y) = v∗,∇V (y) = 0}.

Proof. If x is a critical point there is nothing to prove. Thus, assume x is not a
critical point. The proof of Theorem 38 shows that v(t) = V (ϕt(x)) is strictly
decreasing and that ϕt(x) is contained within a compact set. Thus, v(t) is
strictly decreasing and bounded below so that v∗ = limt→∞ v(t) exists.

Let us first show that ω(x) ⊂ K∗ where

K∗ = {y ∈ Rn |V (y) = v∗}.

Let {tn}∞n=1 be any sequence such that tn → ∞. Then, {xn} := {ϕtn(x)} is
a precompact sequence since it is contained in Kv(0) which is compact. Thus,
there exists a subsequence xnj → x∗. But

lim
j→∞

V (xnj ) = lim
j→∞

v(tnj ) = v∗.

Thus, limj→∞ xnj must lie within K∗ as asserted. (Every subsequence has the
same limit for a decreasing sequence).

Let us next show that ∇V (x∗) = 0 if x∗ ∈ ω(x). To this end, we first note
that ω(x) is a closed subset of a compact set, thus it is compact. Theorem 34
and Remark 35 shows that ω(x) is compact and positively invariant. Thus,
ϕt(x∗) ∈ ω(x) for every t > 0 and by the first part of the proof

V (ϕt(x∗)) = V (x∗), t ≥ 0.

On the other hand, by Theorem 38,

V (x∗)− V (ϕt(x∗)) =

∫ t

0

|∇V (ϕs(x∗))|2 ds.

The left hand side vanishes, which means that∫ t

0

|∇V (ϕs(x∗))|2 ds = 0, t ≥ 0,

which shows that ∇V (x∗) = 0.
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Remark 44. A sharper conclusion holds for Morse functions. If V is Morse
with compact sublevel sets then ω(x) always consists of a single critical point.
You are asked to prove this statement in the second homework. When V is
not Morse, it may have flat regions as shown in Figure 3.3.1. Such degenrate
functions are common in gradient flows in optimization.

Figure 3.3.1: K∗ in the flat part of the potential

3.4 Exercises

1. Suppose ẋ = f(x), x ∈ Rn, f ∈ C1, x(0) = x0. Do not assume that
supx∈Rn ‖Df(x)‖ < ∞. Let I(x0) denote the maximal open interval that in-
cludes 0 on which the solution x : I(x0) → Rn is defined. If I(x0) = (−∞, β)
with β <∞, is it necessary that limt→β |x(t)| = +∞? Prove or disprove.

2. Show that Definition 31 for ω(B) is equivalent to

ω(B) = ∩t≥0∪s≥tϕs(B).

Here ϕt(B) is the image of the set B under the flow ϕt and A denotes the closure
of a set A.

3. Suppose f : Rn → Rn is a C1 vector field all of whose critical points are
non-degenerate. Show that:

(a) Each critical point is isolated.

(b) The number of critical points is countable.

(c) The set of critical points cannot have an accumulation point within any
bounded set in Rn.

4. Suppose V : Rn → R is a Morse function with compact sublevel sets. Con-
sider the gradient flow

ẋ = −∇V (x).

Show that ω(x) for any x ∈ Rn must be a single critical point.

5. We will discuss periodic orbits and circle maps when we study Hamiltonian
systems. This question involves an elementary flow that will help build intuition
for flows on the circle.
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Consider the vector field on the circle θ̇ = ω − sin θ where ω is a parameter.
Show that the flow is periodic when ω > 1. Let T (ω) denote the period of the
orbit. Show that:

(a) T (ω) is well-defined. That is, the period does not depend on the initial
condition.

(b) Compute the limit limω→1 T (ω)
√
ω − 1.

(Part (b) is a tricky integral. Use the residue theorem if you know it, feel free
to use a computer package if you don’t.)

6. Lyapunov functions Assume given a global flow on Rn defined by ẋ = f(x).
A function V : Rn → R is a Lyapunov function for the flow if V satisfies the
inequality

∇V · f(x) ≤ 0, x ∈ Rn.

(a) Construct a linear system ẋ = Ax that is not a gradient flow, but which
has a Lyapunov function.

(b) Assume that V is a Lyapunov function with compact sublevel sets. Show
that La Salle’s invariance principle holds for flows with a Lyapunov func-
tion in the following form: if ω(x) is non-empty and compact then

ω(x) ⊂ {y ∈ Rn |∇V · f(y) = 0}.

3.5 Solutions to exercises

1. Suppose ẋ = f(x), x ∈ Rn, f ∈ C1, x(0) = x0. Do not assume that supx∈Rn ‖Df(x)‖ <
∞. Let I(x0) denote the maximal open interval that includes 0 on which the solution

x : I(x0) → Rn is defined. If I(x0) = (−∞, β) with β < ∞, is it necessary that

limt→β |x(t)| = +∞? Prove or disprove.

Proof. It is necessary that limt→β |x(t)| = +∞. If not, there exists a subse-
quence {tn}∞n=1 such that limn→∞ tn = β and limn→∞ x(tn) = a where a ∈ Rn.
Since f ∈ C1, there is ε > 0 and a time T (a, ε) > 0 such that there is a
well-defined solution ϕs(y) for all initial conditions y in the ball B(a, ε) for all
s ∈ (−T, T ). 2

Choose N so that β−tn < T and x(tn) ∈ B(a, ε) for n ≥ N . By the existence
and uniqueness of solutions with initial conditions in B(a, ε), it follows that the
solution ϕs(x(tn)) is defined for s ∈ (−T, T ). Using uniqueness again, this
solution must agree with the solution x(t) on the time interval t ∈ [tn, β). But
then we see that the interval of existence for x(t) may be extended to tn+T > β,
contradicting the definition of β.

2B(a, ε) denotes the ball centered at a with radius ε.
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2. Show that the above definition of ω(B) is equivalent to

ω(B) = ∩t≥0∪s≥tϕs(B).

Here ϕt(B) is the image of the set B under the flow ϕt and A denotes the closure of

a set A.

Proof. We use the following notation. Let

At = ∪s≥tϕs(B), A∞ = ∩t≥0At.

We must show that ω(B) = A∞. This means that we must establish the inclu-
sions

A∞ ⊂ ω(B) and ω(B) ⊂ A∞.

1. Suppose y ∈ A∞. Consider the sequence of integers n = 1, 2, . . . and choose
a sequence εn such that εn → 0. Since y ∈ An for every n, there is a tn ≥ n
and xn such that |y − ϕtn(xn)| < ε. In particular,

lim
n→∞

ϕtn(xn) = y,

showing that y ∈ ω(B).

2. Now suppose y ∈ ω(B). By the definition of ω(B), for every sequence εn
such that εn → 0, there exists a sequence tn → ∞ and xn ∈ B such that
|ϕtn(xn)− y| < εn. The points ϕtn(xn) lie in Atn . Therefore, the distance

dist(y,Atn) < εn,

where the distance between a point y and a closed set K is defined by

dist(y,K) = inf
x∈A
|y − x|.

It follows that
dist(y,A∞) < εn,

for every n, so that dist(y,A∞) = 0. Since A∞ is a closed set, y ∈ A∞.

3. Suppose f : Rn → Rn is a C1 vector field all of whose critical points are non-
degenerate. Show that:

(a) Each critical point is isolated.

(b) The number of critical points is countable.

(c) The set of critical points cannot have an accumulation point within any bounded
set in Rn.

Proof. (a) Assume x∗ is a non-degenerate critical point. By definition this means
that f(x∗) = 0 and Df(x∗) is invertible. By the inverse function theorem, there
exists ε∗ > 0 such that f is a diffeomorphism of B(0, ε) onto its image for all
ε < ε∗. Since f(x∗) = 0 this ensures that for ε < ε∗ the image f(B(0, ε)) is an
open neighborhood of 0 and that f takes the value 0 only once in B(0, ε).
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(b) A set S of isolated points in Rn is always countable. Here is one proof of
this statement.

Each point x in S can be contained within a ball B(x, ε(x)) such that no
other points of S lie within B(x, ε(x)). Since the rational points Qn are dense in
Rn we may choose a unique point q(x) ∈ Qn as the label for x ∈ S. This gives
a one-to-one map from S → Qn which is countable. Thus, S can be labeled by
a countable subset of a countable set, which makes it countable.

(c) Suppose there exists a sequence of critical points {xn}∞n=1 with a limit x =
limn→∞ xn. By the continuity of f , f(x) = limn→∞f(xn) = 0. Thus, x is a
critical point. But then x cannot be non-degenerate, since this would contradict
part (a). So x is degenrate, which contradicts our assumption that all critical
points of f are non-degenerate.

4. Suppose V : Rn → R is a Morse function with compact sublevel sets. Consider the
gradient flow

ẋ = −∇V (x).

Show that ω(x) for any x ∈ Rn must be a single critical point.

Proof. Since V is Morse, by problem (3), its critical points are isolated. On the
other hand, we know that ω(x) is connected. A connected subset of a set of
isolated points must be a single point.

5. We will discuss periodic orbits and circle maps when we study Hamiltonian systems.
This question involves an elementary flow that will help build intuition for flows on
the circle.

Consider the vector field on the circle θ̇ = ω− sin θ where ω is a parameter. Show
that the flow is periodic when ω > 1. Let T (ω) denote the period of the orbit. Show
that:

(a) T (ω) is well-defined. That is, the period does not depend on the initial condition.

(b) Compute the limit limω→1 T (ω)
√
ω − 1.

(Part (b) is a tricky integral. Use the residue theorem if you know it, feel free to use

a computer package if you don’t.)

Proof. (a) We identify the circle with R mod 2π. We separate variables and
integrate from θ0 to θ0 + 2π to find the time taken for an orbit starting at θ0 to
loop around once:

T :=

∫ θ0+2π

θ0

dθ

ω − sin θ
=

∫ 2π

0

dθ

ω − sin θ
,

where the second equality follows from the periodicity of sin θ. Thus, the time
period is independent of θ0.
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(b) The integral may be computed using Cauchy’s integral formula (also known
as the residue calculus) or the substitution u = tan θ/2. We make the substi-
tution z = eiθ to convert the integral over the interval [0, 2π] into a contour
integral. Then

dz

iz
= dθ, sin θ =

1

2i
(eiθ − e−iθ) =

1

2iz
(z2 − 1),

and we may rewrite∫ 2π

0

dθ

ω − sin θ
= 2

∮
|z|=1

dz

−z2 + 2iωz + 1
.

The denominator of the integrand may be factorized by the quadratic formula.
We write

−z2 + 2iωz + 1 = −(z − ω−)(z − ω+), ω± = i
(
ω ±

√
ω2 − 1

)
.

Of these roots, only ω− lies within the unit disk. Thus, by Cauchy’s integral
formula

2

∮
|z|=1

dz

−z2 + 2iωz + 1
= −2

∮
|z|=1

dz

(z − ω−)(z − ω+)
= − 4πi

ω−ω+
=

2π√
ω2 − 1

.

The time period diverges as ω → 1. The rate of divergence is computed as
follows

lim
ω↓1

√
ω − 1T (ω) = lim

ω↓1

√
ω − 1

2π√
ω2 − 1

=
√

2π.

6. Lyapunov functions Assume given a global flow on Rn defined by ẋ = f(x). A
function V : Rn → R is a Lyapunov function for the flow if V satisfies the inequality

∇V · f(x) ≤ 0, x ∈ Rn.

(a) Construct a linear system ẋ = Ax that is not a gradient flow, but which has a
Lyapunov function.

(b) Show that La Salle’s invariance principle holds for flows with a Lyapunov func-
tion in the following form: if ω(x) is non-empty and compact then

ω(x) ⊂ {y ∈ Rn |∇V · f(y) = 0}.

(This is very similar to the proof done in class).

Proof. (a) If Ax = −∇V (x), then V (x) must be quadratic and A must be
symmetric. Thus, to find a flow that is not a gradient flow, it is sufficient to
consider a non-symmetric matrix. We choose

A0 =

(
0 1
−1 0

)
, A1 =

(
−1 0
0 −1

)
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and we set

A = A0 +A1, V (x) =
1

2
xTAx =

1

2
xTA1x.

The intuition here is that the first linear transformation A0 gives rise to a
rotation (which is definitely not a gradient flow), whereas the second matrix A1

gives rise to a decay. These effects are orthogonal in the sense that

−∇V (x) ·Ax = xTAT1 Ax = −|A1x|2 ≤ 0,

with strict inequality unless x = 0.

(b) We consider the value v(t) := V (x(t)) of the Lyapunov function along the
solution x(t). Then v(t) is a decreasing function of time. If y ∈ ω(x) then there
is a sequence tn →∞ such that x(tn)→ y and we find that limn→∞ V (x(tn)) =
V (y). But since v(t) is a decreasing function it is also true that

lim
t→∞

V (x(t)) = V (y) := v∗.

Thus, ω(x) ⊂ {y |V (y) = v∗ }. Finally, since ω(x) is assumed compact, it is
invariant. Use y ∈ ω(x) as the initial condition for ẋ = f(x) to see that
∇V · f(y) = 0 (if not, V would decrease strictly on the solution beginning
at y, contradicting the fact that V is constant on ω(x).).
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Chapter 4

Hamiltonian Systems

This chapter provides an introduction to Hamiltonian systems. We begin with
examples in one dimension. We then turn to the general structure of Hamil-
tonian systems. The main references for this chapter are [3, Ch.2] and [12,
Ch.1].

4.1 One dimensional Hamiltonian systems

4.1.1 A solution formula

Consider a particle on the line with unit mass subject to the effect of a smooth
potential V : R→ R. The equation of motion is given by Newton’s law

ẍ = −V ′(x). (4.1.1)

Equation (4.1.1) is a second order equation for one variable and it may be
rewritten as the system

ẋ = y (4.1.2)

ẏ = −V ′(x) (4.1.3)

One of Newton’s fundamental observations is the principle of conservation of
energy. Define the Hamiltonian

H(x, y) =
1

2
y2 + V (x), (4.1.4)

consider a solution to (4.1.2) and observe that

d

dt
H(x(t), y(t)) =

∂H

∂x
ẋ+

∂H

∂y
ẏ

= V ′(x)ẋ+ yẏ

= y(V ′(x)− V ′(x)) = 0.

57
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The Hamiltonian is the sum of the kinetic energy and potential energy in the
system. Conservation of energy allows us to solve (4.1.1) almost explicitly.
Suppose that at t = 0, H(x0, y0) = E is known. Then

1

2
ẋ2 + V (x) = E (4.1.5)

for the interval of existence of the solution. We solve for the velocity to obtain

ẋ = ±
√

2(E − V (x)).

We further separate variables and integrate to obtain the solution in an implicit
form ∫ x(t)

x0

ds√
2(E − V (s)

= t

Of course, we’d like to actually express x as a function of t, not t = t(x).
Nevertheless, this formula already tells us a great deal about the phase portrait.

4.1.2 Examples

Here are some examples of physical systems that may be solved by the above
method.

1. The simple harmonic oscillator

V (x) =
1

2
x2. (4.1.6)

The equation of motion is ẍ = −x, which is exactly solvable.

2. A qualitatively similar model which is not exactly solvable is

V (x) =
1

2
x2 +

1

4
x4. (4.1.7)

3. The simple pendulum has potential

V (x) = 1− cosx. (4.1.8)

Figure 4.1.1 illustrates the physical context. The equation of motion

mlθ̈ = −mg sin θ (4.1.9)

is obtained by balancing forces. The left hand side is mass times acceler-
ation. This equation may be rewritten

θ̈ = −ω2 sin θ (4.1.10)

where ω2 = g/l. If we choose units of time so that ω = 1 and relabel the
angle θ by x for consistency with our previous notation, we obtain the
equation ẍ = − sinx, as in (4.1.1).
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Figure 4.1.1: V (θ) = mgl(1− cos θ), where m, g, l are physical constants.

4.1.3 Phase portraits

The geometric method for plotting the phase portrait of 1-D Hamiltonian sys-
tems is as follows.

1. Sketch the graph of V (x).

2. Use the formula y =
√

2(E − V (t)) to determine trajectories for different
energy levels.

Examples of such phase portraits are shown below.
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Figure 4.1.2: V (x) = 1
2x

2.
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Figure 4.1.3: V (x) = 1
2x

2 + 1
4x

4. Note the qualitative similarity with Fig-
ure 4.1.2.
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Figure 4.1.4: V (x) = 1
2x

2 − 1
4x

4. Compare the effect of the minus sign with
Figure 4.1.3.
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Figure 4.1.5: The simple pendulum. V (x) = 1− cosx.
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Figure 4.1.6: Phase portrait of the simple pendulum on S1 × R.
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Figure 4.1.7: Modes of oscillation of a simple pendulum. The separatrix corre-
sponds to a critical orbit that takes infinite time to turn once through an angle
of 2π. In case 1 and case 3, a periodic cycle takes finite time.
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4.2 The symplectic form

We now turn to the general theory of Hamiltonian systems. The state space S
will be a subset of R2n and we denote points in R2n by z = (x, y), x, y ∈ Rn.
We assume given a C2 Hamiltonian H : U → R. Let Im denotes the m × m
identity.

Definition 45. The (standard) symplectic matrix J is the 2n× 2n matrix

J =

(
0 In
−In 0

)
. (4.2.1)

We will also use the term symplectic form to refer to this matrix, since J
defines a quadratic form on R2n defined by

ω(z1, z2) = zT1 Jz2, z1, z2 ∈ R2n. (4.2.2)

The symplectic form is skew-symmetric, ω(z1, z2) = −ω(z2, z1).

Lemma 9. J2 = −I2n
Proof.

J2 =

(
0 In
−In 0

)(
0 In
−In 0

)
=

(
−In 0

0 −In

)
= −I2n (4.2.3)

The state space U in combination with the symplectic matrix J is an example
of a symplectic manifold . We write such manifolds in the form (U, J) when it
is necessary to make the symplectic matrix explicit. The Hamiltonian flow
associated to H on the symplectic manifold (U, J) is

ż = J∇zH. (4.2.4)

Equation (4.2.4) is equivalent to

ẋ = ∇yH (4.2.5)

ẏ = −∇xH. (4.2.6)

We use the following notation for derivatives in these equations:

∇zH =
(∂H
∂z1

, . . . ,
∂H

∂z2n

)
=
( ∂H
∂x1

, ...,
∂H

∂xn
,
∂H

∂y1
, ...,

∂H

∂yn

)
= (∇xH,∇yH).

Hamiltonian systems have a structure that is complementary to gradient flows.
In both cases, it is first necessary to understand the underlying structure in
the state spaces Rn and R2n equipped with the standard metric and standard
symplectic form respectively. Once the flows have been understood in this set-
ting, the full power of the theory can be realized by studying these flows in
their natural geometric setting. A brief comparison of these ideas is presented
in Table 4.1.
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Gradient flows Hamiltonian flows
Euclidean Euclidean

V : Rn → R H : R2n → R
ẋ = −∇V (x) ż = −J∇zH

Riemannian manifold Symplectic manifold

V : (Mn, g)→ R H : (M2n, ω)→ R
ẋ = −gradgV (x) ω(ż, v) = dH(v), v ∈ Tz(M).

Table 4.1: A comparison of gradient and Hamiltonian flows. The gradient
operator is defined using the Riemannian metric g to convert the 1-form dV
into a vector. Similarly, a Hamiltonian vector field is obtained by using the
symplectic form ω to convert the 1-form dH into a vector.

4.3 Symplectic diffeomorphisms

Definition 46. The symplectic group Sp(n) is the set of real matrices S ∈Mn

that satisfy
STJS = J. (4.3.1)

The group operation is matrix multiplication.

The above definition should be contrasted with the more familiar example
of the orthogonal group.

Definition 47. The orthogonal group O(n) is the set of real matrices Q ∈Mn

that satisfy
QTQ = I. (4.3.2)

The group operation is matrix multiplication.

Both O(n) and Sp(n) are examples of the classical groups [15]. The underly-
ing idea in the definition of the classical groups is the classification of the linear
transformations of Rm that preserve a natural quadratic form. These forms are
the Euclidean inner product (for O(n), m = n) and the symplectic form (for
Sp(n), m = 2n).

Let us check the group axioms for Sp(n). First, it is clear that I ∈ Sp(n).
Second, if S ∈ Sp(n), we note that det(S) is either plus or minus one, since
det(J) = 1, so that equation (4.3.1) implies det(S)2 = 1. Therefore, S−1 exists.
Now multiply equation (4.3.1) on the right and left by S−T and S−1 to obtain

J = S−TJS−1, S−T := (S−1)T .

Similarly, if S1 and S2 satisfy (4.3.1) so does the product S1S2 since

(S1S2)TJS1S2 = ST2 S
T
1 JS1S2 = ST2 JS2 = J.
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Definition 48. Assume U ⊂ R2n is an open set. A diffeomorphism ϕ : U → U
is symplectic if Dϕ(z) ∈ Sp(n) for each z ∈ U .

It is helpful to contrast this definition with the notion of isometries of Rn.
A diffeomorphism ϕ : Rn → Rn is an isometry if Dϕ(x) ∈ O(n) for every
x ∈ Rn. This definition and terminology reflects the fact that an isometry
preserves lengths. It turns out that any C1 isometry of Rn must be an affine
transformation of the form ϕ(x) = Qx + c, Q ∈ O(n), c ∈ Rn. We often
say for this reason that ‘isometries are rigid’, which means that there isn’t a
great deal of choice in isometries 1. By contrast, there are many symplectic
diffeomorphisms.

Theorem 49. The flow map ϕt defined by the Hamiltonian system (4.2.4) is
a symplectic diffeomorphism for all t in the interval of existence. Conversely,
every one parameter family of symplectic diffeomorphisms ϕt with ϕ0(z) = z is
generated by a Hamiltonian vector field.

Proof. 1. Fix z ∈ U and write the equation of variations for the Hamiltonian
flow (4.2.4) around the trajectory ϕt(z) as

Ḃ = JSB, B(t) := Dϕt(z), S := D2H(ϕt(z)), B(0) = I. (4.3.3)

We must show that B(t) ∈ Sp(n) for all t in the interval of existence. By the
product rule

d

dt
(BTJB) = ḂTJB +BTJḂ.

We then substitute (4.3.3) to find

d

dt
(BTJB) = BT

(
STJTJ + J2S

)
B = 0,

because
S = D2H(ϕt(z)) = ST , J2 = −I2n, JJT = −J2.

Since BT (0)JB(0) = J it follows that BT (t)JB(t) = J for all t in the interval
of existence.

2. Conversely, let us suppose that ϕt(z) is a symplectic diffeomorphism.
Consider the vector field

v(z) = JT
d

dt
ϕt(z)

∣∣∣∣
t=0

.

The reader should now show, using the definition of Sp(n), that this implies
v(z) = ∇zH(z) for some function H : U → R. (Hint: Use the classical calculus
criterion to determine when a function is a gradient).

1This requires a proof, but you can gain an intuitive feel for such rigidity by trying to
construct a diffeomorphism of R2 that is a smoothing of a piecewise linear map whose deriva-
tive takes two distinct values Q1 and Q2 in the left and right half planes respectively. These
derivatives must agree on the y-axis.
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Corollary 3 (Liouville’s theorem). Hamiltonian flows on U ⊂ R2n preserve
2n-dimensional volume.

Proof. Theorem 49 shows that the Hamiltonian flow ϕt is a symplectic diffeo-
morphism. Thus, det(Dϕt(z)) = det(Dϕ0(z)) = 1.

4.4 Linearization at critical points

This section illustrates the special nature of critical points in Hamiltonian sys-
tems in two-dimensional flows. The general structure is considered in the home-
work. We know that the linearization at a critical point z∗ for the differential
equation ż = f(z) is u̇ = Df(z∗)u. (We use z instead of x because we are going
to apply this idea to Hamiltonian systems.)

Now, suppose f(z) = J∇zH. In coordinates,

fi(z) = Jik
∂H

∂zk
, 1 ≤ i ≤ 2n,

where we sum over repeated indices. Then

(Df(z))ij =
∂

∂zj
fi = Jik

∂2H

∂zj∂zk

Let us first examine the implications of this structure on the eigenvalues for the
2× 2 case. Consider a Hamiltonian of the form

H(x, y) =
1

2
y2 + V (x), (4.4.1)

with the linearization

B :=

(
∂2H
∂x∂y

∂2H
∂y2

−∂
2H
∂x2

∂2H
∂x∂y

)
=

(
0 1

−V ′′(x∗) 0

)
,

at a fixed point (x, y) = (x∗, 0). The eigenvalues of B are

λ = ±
√
−V ′′(x∗) (4.4.2)

There are two distinct cases to consider, as illustrated in Figure 4.4.1.

1. V has a local minimum so that V ′′(x∗) = ω2, for some ω ∈ R. Then
λ = ±iω is purely imaginary, implying the critical point is a center.

2. V has a local maximum. Say V ′′(x∗) = −θ2 for some θ ∈ R. Then λ = ±θ
is real, implying the critical point is a saddle.
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Figure 4.4.1: V has a minimum or maximum.

4.5 Lagrange’s Equations

We have encountered Newton’s laws in the form F = ma, or

miẍi = −∇xiV (x)

for the N-body problem. We used the conservation of energy to define

H(x, y) = T︸︷︷︸
kinetic energy

+ V︸︷︷︸
potential energy

For example, T = 1
2

∑N
i=1mi|ẋi|2 for the N-body problem. Let us consider a

different approach to deriving the equations of motion introduced by Lagrange.
Define the Lagrangian

L :Rn × Rn → R
(x, ẋ) 7−→ L(x, ẋ) := T (ẋ)− V (x)

We define the action of a path x : [0, 1]→ Rn as follows:

S[x] =

∫ 1

0

L(x, ẋ)dt (4.5.1)

We view S as a function from C1[0, 1]→ Rn.
The principle of least action says that the path that minimizes the action,

subject to the boundary conditions

x(0) = x0 x(1) = x1,

where satisfies the ODE

∂

∂t

∂L

∂ẋi
=
∂L

∂xi
, 1 ≤ i ≤ n.

These equations are known as Lagrange’s equation or the Euler-Lagrange equa-
tions 2.

2The variation in terminology depends on the context. In classical mechanics, the term
Lagrange’s equations is used more often. When studying partial differential equations, for
example the equations for minimal surfaces, the terminology Euler-Lagrange equations is
more common.
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When L = 1
2

∑N
i=1mi|ẋi|2 − V (x), we find

∂

∂t
(miẋi) = − ∂

∂xi
V (x), or miẍi = − ∂V

∂xi

which is Newton’s law.

Let us establish the principle of least action. To this end, we need to adapt the
calculus criterion for finding a max or min of a function to infinite-dimensional
spaces of functions. We incorporate the boundary conditions and define the

X =
{
x ∈ C1([0, 1];Rn)

∣∣ x(0) = x0, x(1) = x1

}
and define the action as in equation (4.5.1). We compute the derivative of S at
the ‘point’ x in the direction of the vector η as follows. What these ‘points’ mean
here is the following. The ‘point’ x inX is a function with values x(t) at t ∈ [0, 1].
The ‘vector’ η is a sufficiently smooth function η such that η(0) = η(1) = 0.
The boundary conditions are introduced to ensure that xε(t) = x(t) + εη(t) is a
fuction in the space X for all ε.

These notions allows us to reduce the computations of derivatives to the
standard calculus of functions on the line. We compute

d

dε
S[xε] =

d

dε

∫ 1

0

L(x+ εη, ẋ+ εη̇)dt =

n∑
i=1

∫ 1

0

( ∂L
∂xi

ηi +
∂L

∂ẋi
η̇i

)
dt.

Note that in the last equality, the argument of L is (x + εη, ẋ + εη̇). At an
extremum

0 =
d

dε
S[xε]

∣∣∣∣
ε=0

=

n∑
i=1

∫ 1

0

(
∂L

∂xi
ηi +

∂L

∂ẋi
η̇i

)
)dt

=

n∑
i=1

∫ 1

0

(
∂L

∂xi
− d

dt

∂L

∂ẋi

)
ηidt,

where we integrated by parts to get the last equality. Since η is arbitrary,
we may choose it to be a non-negative bump function localized at any point
t0 ∈ (0, 1). Then varying this point, we see that in fact

d

dt

∂L

∂ẋi
=
∂L

∂xi
, 1 ≤ i ≤ n.

These are Lagrange’s equations.

Remark 50. The main advantage of Lagrange’s method is that it “automates”
the derivation of the equations of motion, avoiding the computation of a force
balance at each point. Typical examples of such Lagrangians arise when one
considers mechanical linkages, as shown in Figure 4.5.1.
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Figure 4.5.1: A planar linkage with free rotation at the joints and fixed rod
lengths. A schematic for a submanifold of Rm.

This is especially important when the space variable x lies in a manifoldM
that is not Rn. In such examples, the admissible positions form a submanifold of
a Euclidean spaces, defined as the solution set to the constraint equations. This
is shown schematically in Figure 4.5.1, where M = {x ∈ Rm|constraints hold}
and TxM = tangent space.

Example 9. The kinetic and potential energy for the simple pendulum are

T =
1

2
m(lθ̇)2, V = mgl(1− cos θ).

The Lagrangian is defined on the tangent bundle TS1 ≡ S1 × R.

4.6 Riemannian Metrics and Geodesic Flow

One of the most important applications of the principle of least action is to
the derivation of the equations of geodesic flow on a Riemannian manifold.
The complete definition of an abstract manifold requires a little more point-set
topology (and time) than we possess at present. For these reasons, we will define
n dimensional smooth manifolds as subsets of Euclidean space defined by

M = {x ∈ Rm |g(x) = 0},

where g : Rm → Rm−n is a C∞ function such that Dg(x) has rank m−n at each
x ∈M. Given such a subset, we may define the tangent and normal vectors to
M with vector calculus in the usual way. 3

3A theorem of Whitney allows us to reduce the study of n-dimensional abstract manifolds
to this setting provided m ≥ 2n, so this definition involves no loss of generality, even if it has
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We will develop intuition for manifolds by working with examples. Rieman-
nian and symplectic manifolds are manifolds equipped with additional structure.
In this section, this additional structure is that of a metric.

Definition 51. A Riemannian metric g is a positive definite bilinear form on
TxM, x ∈M. The length of a vector is defined by

|v|2g = g(x)(v, v), x ∈M, v ∈ TxM. (4.6.1)

For simplicity, we first work with metrics on U ⊂ Rn. Denote by Pn the space
of n× n positive definite matrices. Then a metric is simply a map g : U → Pn.
We assume the map g is as smooth as needed for the calculations that follow.
An important example is the following.

Example 10 (The Poincaré metric on the upper half-plane).

U = {y > 0
∣∣(x, y) ∈ R2.}

g(x, y) =
1

y2

(
1 0
0 1

)
.

Definition 52. A geodesic between x0 and x1 in (U, g) is an extremum of the
action

Sg[x] :=
1

2

∫ 1

0

ẋT g(x)x dt

where x = x(t) and ẋ = ẋ(t).

Remark 53. We do not define the geodesic as being the path of shortest dis-
tance between two points on the manifold. In most cases of interest, the ex-
tremum is a minimum, but the definition and the computation that follows, uses
only a first-order variation (to find an extremum), not a second-order variation
(to determine if the extremum is a maximum or a minimum).

The Lagrangian for geodesics is

L(x, ẋ) =
1

2
ẋT g(x)ẋ =

1

2
ẋiẋjgij(x),

where we adopt the Einstein summation convention of summing over repeated
indices. The equations of geodesic flow are

d

dt

∂L

∂ẋk
=

∂L

∂xk
, 1 ≤ k ≤ n.

Let’s compute these equations explicitly. On the left hand side

∂L

∂ẋk
=

1

2

( ∂ẋi
∂xk

ẋjgij + ẋi
∂ẋj
∂xk

)
=

1

2

(
ẋjδikgij + ẋiδjkgij

)
=

1

2
(ẋjgjk, ẋigik) = ẋjgjk,

certain conceptual limitations. It is possible to develop many properties of manifolds using
this working definition. The interested reader is referred to [8].
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where we relabeled the dummy index i by j in the last equation. Next, for
brevity, let gij,k :=

∂gij
∂xk

. Then

∂L

∂xk
=

1

2
gij,kẋiẋj . (4.6.2)

Combining the above equations, we see that Lagrange’s equations are

d

dt
(ẋjgjk) =

1

2
gij,kẋiẋj ,

The term within brackets on the left hand side is

gjkẍj + gjk,iẋiẋj = gjkẍj +
1

2
(gjk,i + gik,j)ẋiẋj ,

so that equation (4.6.2) may be rewritten as

gjkẍj = −1

2
(gjk,i + gik,j − gij,k)ẋiẋj . (4.6.3)

This is a complete prescription of the equation of motions. In what follows,
we introduce terminology from differential geometry, so that the equations may
be written in the standard form in which they appear in books on differential
geometry.

The components of the inverse of the metric g−1 are denoted glm. They may
be used to ‘contract’ terms, such as

glkgjkẍj = δlj ẍj = ẍl (4.6.4)

The spatial derivatives of the metric reflect the role of curvature. These com-
putations are organized by introducing the Christoffel symbols

Γijk =
1

2
(gik,j + gjk,i − gij,k), Γlij = glk Γijk. (4.6.5)

We multiply equation (4.6.4) on the left with glm to obtain the equations for
geodesics

ẍl + Γlij ẋiẋj = 0, 1 ≤ j ≤ n. (4.6.6)

These calculations may be found in [12, Ch. 1]. In the homework, you are asked
to solve these equations for the Poincaré half-plane.
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Figure 4.6.1: The role of curvature in geodesic flow is a generalization of the

centripetal acceleration a = v2

r for a particle traveling at constant speed on a
circle of radius r.

4.7 Kepler’s problem

The purpose of this section is to illustrate the role of symmetries and explicit
calculations in the resolution of a historically important problem in dynamical
systems: the derivation of Kepler’s laws of planetary motion from Newton’s laws
of motion and Newton’s law of gravitation.

The 2-body problem is the Newtonian system

{
m1ẍ1 −∇x1V (x1, x2)
m2ẍ2 −∇x2

V (x1, x2)
(4.7.1)

where x1, x2 ∈ R3 and V (x1, x2) = − m1m2

|x1−x2| is the gravitational potential.

Figure 4.7.1: The center of mass in the two-body problem
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4.7.1 Reduction to a central field

The two-body problem has conservation laws that allows a significant reduction
in complexity. These are listed in the lemmas below.

Lemma 10. The velocity of the center of mass is independent of time.

Proof. Let r = |x1 − x2|, so that V (x1, x2) = m1m2

r . We then compute

∇x1
r =

x1 − x2

r
= − (x2 − x1)

r
= ∇x2

r (4.7.2)

Let z = m1x1+m2x2

m1+m2
, then

z̈ =
m1ẍ1 +m2ẍ2

m1 +m2
= 0

since ∇x1V = −∇x2V by (4.7.2).

Lemma 11. The center of mass may be assumed to be at the origin for all
time.

Proof. Equations (4.7.1) are invariant under the following changes of reference
frame 4. Fix a vector c ∈ R3 and a rotation Q ∈ O(3) and change variables to

y = Qx+ ct, x ∈ R3, t ∈ R. (4.7.3)

Since Q is an orthogonal matrix we find that

|y1 − y2| = |Q(x1 − x2)| = |x1 − x2|. (4.7.4)

Now let us check that Newton’s law continues to hold in the same manner as it
did in the x-frame. We compute

m1ÿ = Qm1ẍ1 + cẗ (4.7.5)

= −m1Q∇x1
V (4.7.6)

= −m1Q
(x1 − x2)

r3
(4.7.7)

= −m1
y1 − y2

r3
(4.7.8)

Since ż is constant by Lemma 10, we may choose c so that

m1ẏ1 +m2ẏ2

m1 +m2
= Qż + C = 0.

4This is called Galilean invariance.
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Remark 54. Lemma 10 and Lemma 11 allow us to reduce to the two-body
problem to a one-body problem. By choosing a frame in which z = 0, we use
the conservation law

m1x1 +m2x2 = 0 (4.7.9)

to solve for x2 in terms of x1. Eliminating x2 from the equation of motion for
x1 we find

ẍ1 = −m2

(
(m1 +m2)

m2

)
x1

|x1|3
.

This is a vector equation in R3 that may be simplified further by additional
conservation laws.

Lemma 12. The angular momentum m1x1 × ẋ1is conserved.

Here x1 × ẋ1 is the cross product in R3. See Figure 4.7.2.

Figure 4.7.2: The angular momentum.

Proof.
d

dt
(x1 × ẋ1) = ẋ1 × ẋ1 + x1 × ẍ1 = −x1 × x1

|x|3
= 0.

4.7.2 Motion in a central field

Let us briefly recall vector calculus with polar coordinates. A point x = (x, y) ∈
R2 may also be written

x = rer

where the basis vectors are shown in Figure 4.7.3. As ϕ varies, the basis vectors
change and it is easy to check that

∂ϕer = eϕ, ∂ϕeϕ = −er.

The velocity and acceleration are given by

ẋ = ṙer + rϕ̇eϕ, (4.7.10)
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Figure 4.7.3: Basis vectors in polar coordinates.

ẍ =
(
r̈ − rϕ̇2

)
er + (rϕ̈+ 2ṙϕ̇) eϕ. (4.7.11)

These equations are obtained by differentiating the basis vectors with respect
to ϕ and applying the chain rule.

Definition 55. Assume U : (0,∞) → R is a potential. Let x ∈ R2, r = |x|.
The equation of motion of a particle in the central field defined by U is

ẍ = −∇U(|x|). (4.7.12)

The right hand side simplifies considerably in polar coordinates, since

∇U(|x|) = U ′(r)∇r = U ′(r)er.

The left hand side has been computed in equation (4.7.11) and balancing the
radial and angular directions we find the system of equations

r̈ − rϕ̇2 = −∂U
∂r

, (4.7.13)

rϕ̈+ 2ṙϕ̇ = 0. (4.7.14)

Equation (4.7.14) may be integrated to obtain the conservation law

ϕ̇ =
M

r2
, (4.7.15)

where M is the angular momentum 5 The value of the constant M is determined
by the initial conditions. Once it is known, we define the effective potential
energy

V (r) = U(r) +
M2

2r2
(4.7.16)

5This is nothing but Lemma 12 in disguise. Indeed, observe that

rϕ̈ + 2ṙϕ̇ = 0

is equivalent to
d

dt
log(ϕ̇ṙ2) = 0.
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and observe that equation (4.7.13) takes the form

r̈ = −∂V
∂r

. (4.7.17)

At this stage we have reduced the two-body problems to the techniques of
Section 4.1. Let us first analyze this problem qualitatively, before turning to a
more precise analysis.

Figure 4.7.4 illustrates the qualitative nature of the r-orbits for a potential
energy U(r) that grows at infinity. Figure 4.7.5 illustrates the qualitative nature
of the r-orbits for the gravitational potential. In this setting, the potential
energy U(r) does not grow at infinity and we see a separation between periodic
r-orbits and orbits that asymptote to infinity.

Figure 4.7.4: Periodic r-orbits in a central field.

When considering the gravitational potential, we have used the fact that M2

r2

dominates as r → 0. Further, since 1
2 ṙ+ V (r) = E, ṙ ∼

√
2E when E > 0 since

V (r)→ 0 as r →∞.

Figure 4.7.4 and Figure 4.7.5 provide solutions r(t) that are periodic function
of time. However, our system is two dimensional and this does not suffice to
establish that the orbit of the particle is closed. This is more subtle. To this
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Figure 4.7.5: Periodic r-orbits in the gravitational field.

end, we express ϕ as a function of r writing

dϕ

dr
=
dϕ

dr

dr

dt
=
M

r2

1√
2(E − V (r))

.

This equation follows from the equations

ṙ =
√

2(E − V (r)), ϕ̇ =
M

r2
.

Thus, we may integrate to obtain ϕ as a function of r. Let’s first get a feel for
this qualitatively. Figure 4.7.6 plots the particle position in space for a periodic
r-orbit. As r increases from rmin to rmax, ϕ increases monotonically via

ϕ(r) =

∫ r

rmin

M

s2

1√
2(E − V (s))

ds (4.7.18)

The angle between sucessive pericenters and apocenters is given by the integral

Φ =

∫ rmax

rmin

M

r2

1√
2(E − V (r))

dr (4.7.19)

Whether the orbit is closed or not depends on whether Φ
2π is rational or

irrational. This idea is illustrated in Figure 4.7.7.
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Figure 4.7.6: Orbits in physical space

Theorem 56. The only central force law in which all orbits are closed is:

U = ar2, a ≥ 0 (4.7.20)

U = −k
r
, k ≥ 0 (4.7.21)

Remark 57. The suprising fact here is that we are not assuming Newton’s law
of gravitation. What we assume is that the orbits are closed (Kepler’s law).
This implies Newton’s law. Note, however, that we do assume Newton’s law
of motion (F = ma) An interesting question here is “how did Newton come
up with the law of gravitation?”. Kepler’s calculations based on Tycho Brahe’s
observations seems to be the essential clue. A more detailed discussion of these
ideas may be found in [3, Ch. 2.8].

4.8 Exercises

1. We say that a matrix A with real entries is Hamiltonian if JA is symmetric.

(a) Show that the sum and commutator of two Hamiltonian matrices are also
Hamiltonian matrices.

(b) Compute the dimension of the space of Hamiltonian matrices.

(c) Show that if λ ∈ C is an eigenvalue of a Hamiltonian matrix A, then so is
−λ, λ∗ and −λ∗.
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Figure 4.7.7: Periodic and quasi-periodic motions in a central field.

2. Recall that the symplectic group Sp(2n) is the group of matrices with real
entries defined by the relation:

MTJM = J.

Show that {etA}t∈R is symplectic if A is Hamiltonian. Conversely, given a
smooth path M(t) ∈ Sp(2n) with M(0) = I2n, show that Ṁ(0) is a Hamiltonian
matrix.

3. Consider the equation of the simple pendulum:

θ̈ + sin θ = 0.

A critical energy level separates small oscillations with extrema in (−π, π) from
large ‘whirling’ oscillations. Determine explicitly the solution on the critical
energy level as a function of t.

4. Circle maps. Consider the map f : [0, 1) → [0, 1) defined by f(x) = (x+ α)
mod 1 where α ∈ [0, 1). Let the sequence {xn}, denote the orbit of a point x0,
i.e. x1 = f(x0), x2 = f(x1), etc.

(a) Prove that every orbit is periodic if and only if α is rational.

(b) If α is irrational, prove that the orbit {xn} is dense in [0, 1).

5. Geodesics as paths of least action. Assume given a smooth metric g on Rn
(i.e. g(x) is a symmetric, positive definite matrix) that varies smoothly with x.
Denote the length of a vector in this metric by |v|g :=

√
g(v, v). The length of

a smooth curve γ : [a, b]→ Rn is the function of γ defined by

L(γ) =

∫ b

a

|γ̇| dt.
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The action of this path is the function

E(γ) =
1

2

∫ b

a

|γ̇|2 dt.

(Its conventional to use E instead of A because the action is the kinetic energy
of a particle moving in the metric g in this case).

(a) Show that L(γ) is unchanged under a reparametrization of the curve γ.

(b) Show that minimizing the action of a parametrized curve is the same as
minimizing the length, if one makes the additional assumption that the
speed |γ̇|g is held constant.

6. Geodesics in the upper half plane. Let H = {(x, y) ∈ R2|y > 0}. Let g be the

hyperbolic metric g = y−2I, where I denotes the identity matrix.

(a) Show that the geodesics are circular arcs perpendicular to the x-axis.

(b) Compute the distance between two points (x1, y1) and (x2, y2).

4.9 Solutions to exercises

1. We say that a matrix A with real entries is Hamiltonian if JA is symmetric.

(a) Show that the sum and commutator of two Hamiltonian matrices are also Hamil-
tonian matrices.

(b) Compute the dimension of the space of Hamiltonian matrices.

(c) Show that if λ ∈ C is an eigenvalue of a Hamiltonian matrix A, then so is −λ,
λ∗ and −λ∗.

Proof. (a) Suppose A and B are Hamiltonian matrices. Then (JA)T = JA and
(JB)T = JB. We then compute

(J(A+B))T = (A+B)TJT = ATJT +BTJT = JA+ JB,

since (JA)T = JA. The commutator is [A,B] = AB −BA. We then compute

J([A,B])T = BTATJT −ATBTJT = BT (JA)T −AT (JB)T

= BTJA−ATJB = −(JB)TA+ (JA)TB = JAB − JBA = J [B,A].

(b) The dimension of the space of real symmetric matrices is n(n+ 1)/2. If
A is Hamiltonian, we may write JA = S or A = J−1S where S is symmetric.
Thus, the dimension of the space of Hamiltonian matrices is also n(n+ 1)/2.

(c) The condition (JA)T = JA is equivalent to AT = JAJ since JT = J−1.
Therefore, the characteristic polynomial satisfies the identity

det(λI−A) = det(λI−AT ) = det(λI−JAJ) = det(λJ−2−A) = det(−λI−A),
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where we used the identities det(J) = 1, J−1 = −J and J2 = −I. It follows
that λ is a zero if and only if −λ is a zero. Further, since A is real, the complex
conjugate λ is a zero if and only if λ is.

2. Recall that the symplectic group Sp(2n) is the group of matrices with real entries
defined by the relation:

MTJM = J.

Show that {etA}t∈R is symplectic if A is Hamiltonian. Conversely, given a smooth

path M(t) ∈ Sp(2n) with M(0) = I2n, show that Ṁ(0) is a Hamiltonian matrix.

Proof. (a) Suppose A is Hamiltonian and consider M(t) = etA. We use the
definition of the matrix exponential to find that

Ṁ = AM = MA.

In order to show that M(t) ∈ Sp(2n) we observe that MTJM = J at t = 0 and

d

dt
M tJM = ṀTJM +MTJṀ = MT

(
ATJ + JA

)
M.

Since A is Hamiltonian

JA = (JA)T = ATJT = −ATJ.

Thus, the term within the brackets vanishes and MTJM = J for all t.
(b) Conversely, if M(t) ∈ Sp(2n) and M(0) = I at t = 0, writing A = Ṁ(0)

the calculation above shows that JA = (JA)T .

3. Consider the equation of the simple pendulum:

θ̈ + sin θ = 0.

A critical energy level separates small oscillations with extrema in (−π, π) from large

‘whirling’ oscillations. Determine explicitly the solution on the critical energy level as

a function of t.

Proof. The Hamiltonian for the simple pendulum is

H(θ, θ̇) =
1

2
θ̇2 + 1− cos θ.

Let E denote the value of the Hamiltonian on the critical energy level. This is
the energy of the critical point θ = π, θ̇ = 0. Therefore, E = 2. On other points
on this energy level, we have the conservation law

1

2
θ̇2 = E − (1− cos θ) = 1 + cos θ.
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We use the trigonometric identity

cos θ = 2 cos2 θ

2
− 1,

separate variables and take square-roots to obtain the identity∫
dθ

2 cos θ2
= t.

The LHS may be further reduced to the standard integral∫
dϕ

cosϕ
, with ϕ =

1

2
θ.

We use a table of integrals to find∫
dϕ

cosϕ
= ln |secx+ tanx| = 2 tanh−1

(
tan

ϕ

2

)
.

Thus, we have found the implicit solution formula

t− t0 = 2 tanh−1 tan
θ

4
,

where the initial time t0 plays the role of the arbitrary constant of integration.
We invert the above equation to obtain

θ = 4 tan−1

(
tanh

t− t0
2

)
.

Here we use the branch of tan−1 that maps (−∞,∞) to (−π/2, π/2). Thus, as
t→ ±∞ we have θ(t)→ ±π as desired.

4. Circle maps. Consider the map f : [0, 1) → [0, 1) defined by f(x) = (x + α)
mod 1 where α ∈ [0, 1). Let the sequence {xn}, denote the orbit of a point x0, i.e.
x1 = f(x0), x2 = f(x1), etc.

(a) Prove that every orbit is periodic if and only if α is rational.

(b) If α is irrational, prove that the orbit {xn} is dense in [0, 1).

Proof. (a) Given x0 ∈ [0, 1], let z0 = x0 and let zn+1 = zn + α denote a ‘lift’ of
the sequence xn into the covering space R. The orbit of x0 has period q if and
only if zq−z0 is an integer, say p, and zk−z0 is not an integer for 1 ≤ k ≤ q−1.
But zq = z0 + qα (this is where it is simpler to work on R). Therefore, qα = p,
or α = p/q.

(b) Now suppose that α is irrational. Since all orbits are rigid translations
of the orbit of x0 = 0, let us suppose that x0 = 0. It is enough to show that
for each ε > 0 there is an integer q such that |xq − x0| < ε. As in part (a), we
work with the lifts {zk}∞k=0 and it is enough to show that for each ε > 0 there
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are integers p and q such that |zq − p| < ε. But zq = qα, so what we must show
is that there are integers p and q such that∣∣∣∣α− p

q

∣∣∣∣ < ε

q
.

This follows from the Euclidean algorithm. The continued fraction expansion
of an irrational number provides a sequence of integers (pn, qn) such that∣∣∣∣α− pn

qn

∣∣∣∣ < 1

q2
n

.

A proof of the Euclidean algorithm may be found in Ch.3 of Arnold’s book
on the Geometric Theory of Ordinary Differential Equations. Part (b) may also
be proved by assuming Weyl’s equidistribution theorem if one wants to avoid
number theory altogether.

5. Geodesics as paths of least action. Assume given a smooth metric g on Rn (i.e.
g(x) is a symmetric, positive definite matrix) that varies smoothly with x. Denote the
length of a vector in this metric by |v|g :=

√
g(v, v). The length of a smooth curve

γ : [a, b]→ Rn is the function of γ defined by

L(γ) =

∫ b

a

|γ̇| dt.

The action of this path is the function

E(γ) =
1

2

∫ b

a

|γ̇|2 dt.

(Its conventional to use E instead of A because the action is the kinetic energy of a
particle moving in the metric g in this case).

(a) Show that L(γ) is unchanged under a reparametrization of the curve γ.

(b) Show that minimizing the action of a parametrized curve is the same as mini-
mizing the length, if one makes the additional assumption that the speed |γ̇|g
is held constant.

Proof. (a) Assume that ϕ : [a, b] → [a, b] is a C1 strictly increasing map. Let
t = ϕ(s), η(s) = γ(ϕ(s)) and let η′ = dη/ds. We use the chain rule to obtain∫ b

a

|η′(s)| ds =

∫ b

a

|γ′(t)|
∣∣∣∣ dtds
∣∣∣∣ ds =

∫ b

a

|γ′(t)| dt,

since ϕ′(s) > 0.
(b) For brevity, let us denote the two Lagrangians in this problem by

L0 = |γ̇|, L1 =
1

2
L2

0 =
1

2
|γ̇|2.
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Then the Euler-Lagrange equations involve the derivatives

∂L1

∂xi
= L0

(
∂L1

∂xi

)
,

∂L1

∂ẋi
= L0

(
∂L1

∂ẋi

)
.

In particular, when we assume that the parametrization is chosen so that L0 is
held constant in time, we find that

d

dt

(
∂L1

∂ẋi

)
= L0

d

dt

(
∂L0

∂ẋi

)
+
dL0

dt

∂L0

∂ẋi
= L0

d

dt

(
∂L0

∂ẋi

)
,

and the Euler-Lagrange equations have the same solutions.

6. Geodesics in the upper half plane. Let H = {(x, y) ∈ R2|y > 0}. Let g be the
hyperbolic metric g = y−2I, where I denotes the identity matrix.

(a) Show that the geodesics are circular arcs perpendicular to the x-axis.

(b) Compute the distance between two points (x1, y1) and (x2, y2).

Proof. There are two ways to do this problem. The slick solution (which we will
consider in lecture) uses the invariance of the metric under Möbius transforma-
tions. However, in this problem, we do not assume that these invariances are
known: our goal is to discover the exact solution for geodesics by following the
procedure outlined in lecture. First, we derive the equation for geodesics using
Lagrange’s equation. Then we solve these equations explicitly using what we
know about Hamiltonian systems.
1. Equations for geodesics. The Lagrangian in this problem is

L(x, ẋ, y, ẏ) =
1

2y2

(
ẋ2 + ẏ2

)
.

Therefore,

∂L

∂x
= 0,

∂L

∂y
= − 1

y3

(
ẋ2 + ẏ2

)
,

∂L

∂ẋ
=

ẋ

y2
,

∂L

∂ẏ
=

ẏ

y2
.

Thus, Lagrange’s equations are

d

dt

(
ẋ

y2

)
= 0,

d

dt

(
ẏ

y2

)
= − 1

y3

(
ẋ2 + ẏ2

)
.

2. Integration of the equations of motion. The equation for ẋ implies immedi-
ately that ẋ = ay2 for a constant a. The equation for ẏ may be rewritten in the
form

ÿ

y
− ẏ2

y2
= − ẋ

2

y2
.

This equation may be simplified by observing that the LHS is the second deriva-
tive of ln y. Thus, let u = ln y and use ẋ = ay2 to rewrite the above equation in
the form

ü = −a2e2u. (4.9.1)
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When a = 0, we find that x(t) = x(0) and u(t) = u0+ct. Therefore, y(t) = y0e
ct

and the geodesic is a vertical line in the upper-half plane. It is possible to use
this fact alone, along with the invariance of the metric under Möbius transfor-
mations, to compute all geodesics. However, we will integrate equation (4.9.1)
directly by studying the case a 6= 0. Thus, assume in what follows that a 6= 0.

Equation (4.9.1) is a 1-D Hamiltonian system with a potential V (u) =
a2/2e2u. We have the conservation law

1

2
u̇2 +

a2

2
e2u = E,

as well as the integral formula

t =

∫
du√

2(E − V (u))
. (4.9.2)

Plotting the graph of V (u) we see that for a given energy level, u(t)→ −∞ as
t→ ±∞ with a maximum value umax determined by

E = V (umax) =
a2

2
e2umax .

Let us now return to the earlier variables using this insight. Set

ymax = eumax , v = u− umax, s = ev =
y

ymax
.

Then equation (4.9.2) can be simplified to

aymaxt =

∫
1

s

ds√
1− s2

.

The indefinite integral on the right hand side can be computed using a standard
trigonometric substitution. Set s = sin θ, so that∫

1

s

ds√
1− s2

=

∫
dθ

sin θ
= ln | tan

θ

2
|,

using a table of integrals.
3. Parametrized geodesics. We then undo the various changes of variables

to obtain the formula
y(t) = ymaxsech(aymaxt).

Substituting this relation in the conservation law ẋ = ay2, we find after another
integration that

x(t)− x0 = ymax tanh(aymaxt).

These equations for (x(t), y(t)) parametrize a semicircle of radius ymax centered
at (x0, 0). The origin in time is chosen so that when t = 0, (x0, y0) lies at the tip
of the semicircle. As t→ ±∞ it approaches the boundary points (x0± ymax, 0).
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4. The distance between two points. Suppose (x1, y1) and (x2, y2) lie on
the geodesic semicircle with radius ymax centered at (0, 0). It will be enough to
assume that one of the points is (0, ymax). Since the geodesic distance is not
independent on the parametrization of time, we choose aymax = 1, so that the
geodesics are

x(t) = ymax tanh t, y(t) = ymaxsecht. (4.9.3)

Then the Lagrangian evaluated along the geodesic is

L(x, ẋ, y, ẏ) =
1

y2
(ẋ2 + ẏ2) = 1,

using the identities

ẋ = sech2t, ẏ = −sech t tanh t, sech2 t+ tanh2 = 1.

Therefore, the geodesic distance between (x1, y1) and (0, ymax) is simply∫ t

0

√
L(x, ẋ, y, ẏ) dt.

But this is simply the time taken to get from (0, ymax) to (x1, y1) which is
obtained by inverting equation (4.9.3)

t = cosh−1 ymax

y1
.
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Chapter 5

Ergodicity and Mixing

The primary source for this chapter is [2, Ch.3].

5.1 Weyl’s equidistribution theorem

In this section S1 = R/Z. A circle map is a homeomorphism of S1. The
simplest class of circle maps are the rigid rotations. Given α ∈ R define the
rotation Rα : S1 → S1 by

x→ x+ α (mod 1) (5.1.1)

The following theorem about rotations was proven in the homework.

Theorem 58 (Jacobi, 1835). Suppose α 6∈ Q. Then the orbit {Rnα(x)}∞n=0 is
dense in S1 for every x ∈ S1.

This theorem is related to Hamiltonian systems in the following way. Let ω1

and ω2 be fixed positive numbers and consider the Hamiltonian H : R4 → R,

H(x, y) =
ω1

2
(x2

1 + y2
1) +

ω2

2
(x2

2 + y2
2).

Then the equations of motion are

ẋ1 = ω1y1, ẋ2 = ω2y2,

ẏ1 = −ω1x1, ẏ2 = −ω2y2.

This is a system of two uncoupled simple harmonic oscillators. Let r2
i = x2

i +y2
i ,

i = 1, 2, denote the radii of individual orbits. The radii are conserved and
the dynamics is determined by the evolution of the angles θ1, θ2 defined by
(xi, yi) = ri(cos θi, sin θi). Then we obtain the evolution equation

θ̇1 = ω1, θ̇2 = ω2,

and all trajectories lie on an invariant torus within R4.
An important idea developed in the 1920’s was the extension of Jacobi’s

theorem to ergodic theorems. Let us illustrate this idea with examples.

91
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Theorem 59 (Weyl). Suppose α 6∈ Q. For every x ∈ S1 and every interval
I ⊂ S1 we have

lim
n→∞

1

n
#{0 ≤ k ≤ n− 1|Rα(x) ∈ I} = |I|. (5.1.2)

Remark 60. Here |I| denotes the length of I. An equivalent formulation of
Weyl’s theorem is as follows. Suppose f : S1 → R is Riemann integrable. Then,

lim
n→∞

1

n

n−1∑
k=0

f(Rkα(x)) =

∫
S1

f(s)ds. (5.1.3)

This is an example of an ergodic theorem. The left hand side is a time average
and the right hand side is a spatial average. The equivalence between the
formulations (5.1.2) and (5.1.3) is as follows. First, by setting f(x) = 1I(x)
in (5.1.3), we recover (5.1.2). Conversely, every Riemann integrable function
can be approximated with step functions, so that (5.1.2) implies (5.1.3). This
approximation argument is presented in the proof.

Proof. 1. We first prove equation (5.1.2) for trigonometric functions. Suppose

f(x) = e2πimx, m ∈ Z.

Then we compute

f(Rα(x)) = e2πim(x+α) = e2πimxe2πimα,

and by induction

f(R(k)
α (x)) = e2πimxe2πimαk.

For brevity, let z = z(α) = e2πimα. Then the left hand side of equation (5.1.3)
is

1

n

n−1∑
k=0

f(x)zk =
f(x)

n
(1 + z + z2 + · · ·+ zn−1) =

f(x)

n

zn − 1

z − 1
.

Now, z = e2πimα 6= 1 unless m = 0, since α 6∈ Q. Thus, when m 6= 0,

lim
n→∞

1

n

n−1∑
k=0

f(R(k)
α (x)) = 0.

The right hand side of (5.1.3) for this case is∫ 1

0

e2πm(s+α)ds =
e2πimα

2πim
(e2πim − 1) = 0.

Thus, equation (5.1.3) holds for m 6= 0. When m = 0, both right and left hand
sides are identically 1 so it holds in this case too.
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2. Suppose f(x) =
∑
m∈Z cme

2πimx where only finitely man cm are non-
zero. The theorem holds by step 1 and linearity of the left and right hand
sides. Since every continuous function on S1 can be uniformly approximated by
polynomials, and the Taylor expansions of e2πmx is globally covergent, we may
uniformly approximate any continuous function by trigonometric polynomials.
Thus, equation (5.1.3) holds for every continuous function.

3. For any ε > 0 we choose piecewise linear continuous functions f± that
approximate 1I(x) from above and below and differ from f only on interval of
size ε. Specifically, suppose I = (a, b) and choose

f−(x) =
(x− a)

ε
1(a,a+ε)(x) + 1(a+ε,b−ε)(x) +

b− x
ε

1(b−ε,b)(x), (5.1.4)

f+(x) =
(a− x)

ε
1(a−ε,a)(x) + 1(a,b)(x) +

x− b
ε

1(b,b+ε)(x). (5.1.5)

Therefore, for any x ∈ S1,∫ 1

0

f−(s)ds = lim
n→∞

1

n

n−1∑
k=0

f−(Rkα(x)) ≤ lim inf
n→∞

1

n

n−1∑
k=0

1I(R
k
α(x))

≤ lim sup
n→∞

1

n

n−1∑
k=0

1I(R
k
α(x)) ≤ lim

n→∞

1

n

n∑
k=0

f+(Rkα(x)) =

∫ 1

0

f+(s)ds.

By the construction of f± we also have the matching bound:∫ 1

0

f−(x)dx− ε ≤ |I| ≤
∫ 1

0

f+(x)dx+ ε

This shows that

lim
n→∞

1

n

n−1∑
k=0

1I(R
k
α(x)) = |I|.

5.2 Anosov’s Map

In this section, we first define ergodicity and mixing in an abstract setting. We
then illustrate these ideas with an important example introduced by Anosov in
the 1960s.

Definition 61. Let (X,B, µ) be a measure space. A map ϕ : X → X is measure
preserving if µ(ϕ−1(G)) = µ(G) for every G ∈ B.

The map ϕ defines a discrete dynamical system. The time mean of a function
f ∈ L1(X,B, µ) if it exists is defined by

f∗(x) = lim
n→∞

1

n

n−1∑
k=0

f(ϕk(x)). (5.2.1)
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The space mean is defined by

f̄ =

∫
X

f(x)dµ(x). (5.2.2)

Definition 62. A measure preserving transformation ϕ is ergodic if f∗ = f̄ for
every f ∈ L1(X,B, µ). The transformation ϕ is mixing if

lim
n→∞

µ(ϕn(F ) ∩G) = µ(F )µ(G)

for every pair of sets F,G ∈ B.

Remark 63. The above definition of mixing formalizes our intuitive notion of
the mixing of fluids such as water. In the first approximation, a glass of water
or a cup of coffee is an incompressible fluid with constant density. If one stirs
the coffee a bit and let its go, we obtain a volume preserving transformation.
Thus, when milk is stirred into coffee, it ‘goes all over the place’ while preserving
volume and the end result is a solution where there is an equal amount of milk
everywhere in the coffee.

Remark 64. Theorem 59 shows that the circle map Rα with irrational α is
ergodic. However, Rα is not mixing.

We now focus on the following transformation introduced by Anosov. The
underlying measure space is (X,B, µ) = T2 with Lebesgue measure. Consider
the matrix

A =

[
2 1
1 1

]
(5.2.3)

and use it to define the transformation on T2

ϕ(x) = Ax mod Z2. (5.2.4)

Lemma 13. ϕ is a measure-preserving diffeomorphism of T2.

Proof. The entries of A are integers. Therefore, Ax ∈ Z2 when x ∈ Z2. We
compute det(A) = 1 and

A−1 =
1

det(A)

[
1 −1
−1 2

]
=

[
1 −1
−1 2

]
.

Thus, A−1 also maps Z2 → Z2, which implies A−1 is well-defined as a map from
T2 → T2. Both ϕ and ϕ−1 are locally determined by A and A−1; thus they are
diffeomorphisms.

Lemma 14. The matrix A has eigenvalues and eigenvectors

λ± =
3±
√

5

2
, and u± =

[
1

λ+ − 2

]
,

[
1

λ− − 2

]
. (5.2.5)
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Proof. This is a computation with the characteristic polynomial det(λ−A).

Remark 65. Note that 0 < λ− < 1 < λ+ and that both these numbers are
irrational. Therefore, the eigendirections in R2 ‘wrap around’ into dense orbits
in T2. We call these curves Fu and Fs respectively. At each x ∈ T2 the lin-
earization Dϕ(x) splits into two invariant subspaces parallel to these directions.
The effect of these transformations is to stretch and squash a neighborhood of
x into a long skinny region that follows Fu.

Theorem 66. The diffeomorphism ϕ has a countable number of cycles. All
rational points in T2 and only such points are part of cycles.

Proof. 1. Here and in what follows we adopt the convention that when a
rational number is written as p/q it is in reduced form, i.e. gcd(p, q) = 1.
Consider points of the form x = (p1q ,

p2
q ) for an integer q and integers p1, p2.

Then

Ax =

(
2p1 + p2

q
,
p1 + p2

q

)
, A−1x =

(
p1 − p2

q
,
−p1 + 2p2

q

)
Thus, the set of points with denominator q is preserved by ϕ. There are only
finitely many such points in T2. Thus, ϕm(x) = x for sufficiently large m so
that x is part of a cycle.

2. Conversely, suppose ϕq(x) = x for x ∈ T2. Now lift x into R2. We see
that there must exist m ∈ Z2 such that

Aq(x) = x+m, or (Aq − I)x = m.

Lemma 14 below shows that det(Aq − I) 6= 0. Thus, we may invert the above
equation to obtain x = (Aq−I)−1m. Further, since A is integer valued, det(Aq−
I) is an integer. Thus, x is rational in R2 and also Z2.

Theorem 67. The diffeomorphism ϕ is mixing.

Proof. 1. We must show that for all measurable sets F,G,∈ B

lim
n→∞

|φn(F ) ∩G| = |F ||G|. (5.2.6)

As in Weyl’s theorem, we separate the proof into two parts: (i) approximations
and measure theory; (ii) a computation. Part (i) allows us to simplify the proof
to a calculation with a dense class of functions. Roughly, measurable sets may
be approximated by open sets and equation (5.2.6) may be rewritten in terms
of the indicator functions of the sets F and G. Indicator functions allow us to
approximate any function in L1(T2). Thus, equation (5.2.6) is equivalent to∫

T2

f(ϕn(x))g(x)dx =

(∫
f(s)ds

)(∫
g(r)dr

)
(5.2.7)

for every f, g ∈ L1(T2).
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2. All functions in L1(T2) may be approximated (in L1) with Fourier series.
This is a subtle statement on spaces such as R; however the torus is compact, so
every L2 function is automatically in L1 too (use the Cauchy-Schwarz inequal-
ity). The reason for being so fussy here is that L2(T2) is the ‘obvious’ space
for Fourier series because the functions e2πipx, p ∈ Z2 constitute an orthonor-
mal basis for L2(T2). On the other hand, L1 is the natural space for ergodic
theorems.

3. This leads us to the actual computation at the heart of the proof. Choose
f(x) = e2πi〈p,x〉 and g(x) = e2π〈q,x〉 where p, q ∈ Z2. Equation (5.2.7) is trivial
if either p or q = 0, so let us assume both these vectors are non-zero. Then
the right hand side of (5.2.7) is zero and we must show that the left hand side
vanishes too. By the periodicity of e2πipx

f(ϕn(x)) = e2πi〈p,Anx〉 = e2πi〈Anp,x〉.

For n large enough, Anp 6= q, so that the left hand side of (5.2.7) vanishes.

Remark 68. This proof of Theorem 67 demonstrates the application of a pow-
erful analytical method, but it does not convey the underlying intuition. This
is discussed in Remark 65. The origin of mixing is stretching by λ+ > 1 in the
u+ direction, and contraction by 0 < λ− < 1 in the u− direction in a manner
that the total volume stays constant. See Figure 5.2.1.

5.3 Structural stability of Anosov’s map

An central theme in dynamical systems theory is the stability of dynamical
behavior with respect to perturbations. Sometimes the underlying dynamic
behavior may be simple; for example, we expect an attracting fixed point to
remain attracting if we change the parameters of our system a bit. On the other
hand, circle maps and Anosov’s map show that systems that are relatively simple
to define, may have complex dynamic behavior. Perhaps the most striking
feature of Anosov’s map is not the fact that it has complex behavior such as
the coexistence of infinitely many periodic orbits with dense invariant orbits,
but the fact that this behavior is robust to perturbations. This idea is called
structural stability . Rather than define it precisely, we will illustrate it with an
important example.

Theorem 69 (Anosov’s theorem). There exists ε > 0 such that if B : T2 → T2

is a diffeomorphism satisfying ‖B − A‖C1 < ε then there is a homeomorphism
H : T2 → T2 such that B = H ◦A ◦H−1.

Remark 70. The C1 norm of a map f : T2 → T2 is

‖f‖C1 = max
x∈T2

|f(x)|+ |Df(x)|.

The map H is said to conjugate B to A. Observe that H is a homeomorphism,
even though B is assumed to be C1. This too is a general theme in structural
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6 ERGODIC PROBLEMS OF CLASSICAL MECHANICS 

¢. and then ¢2 as pictured in Figure (1.17). The linear mapping ¢ has 

two real proper values A1 and A2: 0 < A2 < 1 < Al • 

r 

)I 

Figure 1.17 

Figure 5.2.1: Mixing in Anosov’s map. This image is taken from Arnold and
Avez [4]. A minor difference with the text is that the underlying transformation
flips the roles of the x1 and x2 axis. Our choice is more common.

stability theorems. The choice of topology for the perturbation determines the
behavior of the conjugacy.

We will solve the functional equation

B ◦H = H ◦A (5.3.1)

with a fixed point argument. This functional equation is simplified by working
over R2 instead of T2. Let us write

B(x) = Ax+ f(x), H(x) = x+ h(x), (5.3.2)

where both f and h are Z2-periodic functions. Then the equation (5.3.1) may
be rewritten as

h(Ax)−Ah(x) = f(x+ h(x)). (5.3.3)
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We assume that f is given and we must solve for h. Let us Taylor expand the
the right hand side so that the first order and second order (in ‖B − A‖C1)
become clear. We have

f(x+ h(x)) = f(x) +Df(x)h(x) +O(‖h‖2). (5.3.4)

If ‖B−A‖C1 < ε then both ‖f‖C0 and ‖Df‖C0 are less than ε. Equation (5.3.3)
suggests that ‖h‖C0 is of the same order as ‖f‖C0 . Therefore, ‖Dfh‖C0 is O(ε2).
This suggests that we should first replace (5.3.3) with the linear equation

h(Ax)−Ah(x) = f(x). (5.3.5)

This is called the homological equation. Let L : C0(T2) → C0(T2) denote the
linear operator

h 7→ h ◦A−A ◦ h, (5.3.6)

so that the homological equation is equivalent to

Lh = f. (5.3.7)

Composition with the linear transformation A is a bounded linear transforma-
tion on C0 that is easily controlled.

Lemma 15. Define S : C0(T2) → C0(T2) by g 7→ g ◦ A. Then S is invertible
and

‖S‖ = ‖S−1‖ = 1. (5.3.8)

Proof. It is clear that S is a linear operator. By definition, the norm of S is

‖S‖ = sup
‖g‖C0=1

‖Sg‖C0

‖g‖C0

.

On the other hand,

‖Sg‖C0 = max
x∈T2

|g(Ax)| = max
x∈T2

|g(x)| = ‖g‖C0 .

Similarly,
‖S−1g‖C0 = max

x∈T2
|g(A−1x)| = max

x∈T2
|g(x)| = ‖g‖C0 .

The main observation underlying Anosov’s theorem is the following

Lemma 16. The operator L : C0(T2)→ C0(T2) is invertible with

‖L−1‖ ≤ 1

1− λ−
, (5.3.9)

where λ− is defined in equation (5.2.5).
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Proof. Let U = (u+, u−) be the matrix of eigenvectors in Lemma 14. Let us
express f and h in this basis, writing

f = f+u+ + f−u−, h = h+u+ + h−u−, A = λ+u+u
T
+ + λ−u−u

T
−.

Then equation (5.3.7) is expressed in coordinates as

h+(Ax)− λ+h+(x) = f+(x) (5.3.10)

h−(Ax)− λ−h−(x) = f−(x). (5.3.11)

Let E : C0(T2) → C0(T2) denote the identity operator. We rewrite the above
equations using the operator S of Lemma 15 as

(S − λ+E)h+ = f+, (S − λ−E)h− = f−. (5.3.12)

Since neither λ+ nor λ− lies in the spectrum of S, both these operators may be
inverted using the Neumann series. First, since λ−λ+ = 1 we have

(S − λ+E)−1 =
−1

λ+
(E − 1

λ+
S)−1 = λ−

(
1 + λ−S

−1 + λ2
−S
−2 + . . .

)
.

The infinite series is convergent by Lemma 15 since∥∥∥∥∥
∞∑
n=1

λn−S
−n

∥∥∥∥∥ ≤
∞∑
n=1

λn−‖S−n‖ =

∞∑
n=1

λn− =
λ−

1− λ−
. (5.3.13)

Similarly, we use equation (5.3.12) to obtain

(S − λ−E)−1 = S−1(1− λ−S−1)−1 = S−1
∞∑
n=0

λn−S
−n, (5.3.14)

which is convergent by an argument similar to (5.3.13). We also obtain the
bound

‖(S − λ−E)−1‖ ≤ 1

1− λ−
. (5.3.15)

Finally, we obtain

‖h−‖2+‖h+‖2 ≤
1

(1− λ−)2

(
‖f−‖2 + λ2

−‖f+‖2
)
≤ 1

(1− λ−)2

(
‖f−‖2 + ‖f+‖2

)
,

since 0 < λ− < 1.

Let us now return to the fixed point equation (5.3.3). We add and subtract
f(x) to the RHS and use equation (5.3.7) to rewrite equation (5.3.3) as

Lh(x) = f(x) + (f(x+ h(x))− f(x)) . (5.3.16)

Let Φf : C0 → C0 denote the map h(x) 7→ f(x+ h(x))− f(x). Note that

‖Φf (h)‖C0 = max
x∈T2

|f(x+ h(x))− f(x)| ≤ ‖Df‖C0‖h‖C0 .
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We have a solution to (5.3.16) if and only if

h = L−1Φf (h) + L−1f.

Treat the RHS as a map from C0 into itself and observe that it is contraction
if ‖Df‖C0 is small enough. This proves the following

Lemma 17. There exists ε > 0 such that if B : T2 → T2 is a diffeomorphism
satisfying ‖B − A‖C1 then there is a unique Z2-periodic continuous function
h : R2 → R2 that solves the fixed point equation (5.3.3).

Lemma 18. The map H(x) = x+h(x) defines a homeomorphism of the torus.

Proof. We must show that H is one-to-one and onto.
We will lift the maps to R2 and use hats to denote these lifts. First, if H(x) =

H(y) then since B◦H = H ◦A we also have Ĥ(Â(x̂)) = Ĥ(Â(ŷ)). By induction,
we also find Ĥ(Ânx̂) = Ĥ(Ânŷ). If x̂ 6= ŷ then limn→±∞ |Ânx̂ − Ânŷ| = +∞.
This contradicts the boundedness of h (which is bounded on R2 since it is Z2

periodic). This must mean that x̂ = ŷ in R2, so that x = y on T2.
The fact that the range of H is all of T2 is left as an exercise.

5.4 The Poincare Recurrence Theorem

Ergodic theorems have their origin in subtle paradoxes in the relation between
classical mechanics and macroscopic phenomena. The underlying questions is
this: do Newton’s apply to arbitrarily small particles and if so, how does one
scale up this behavior to macroscopic matter (i.e. the scale on which we live)?
To this end, we first assume that the physical world is described by finite-
dimensional Hamiltonian systems. If so, the following theorem holds.

Theorem 71 (Poincaré recurrence). Assume U ⊂ Rd is bounded and g : U → U
preserves volume and is continuous. Then, for every x ∈ U and every ε > 0
there exists n such that gn(B(x, ε)) ∩B(x, ε) 6= ∅.

Proof. Since U is bounded vol(U) <∞. Consider the images An := gn(B(x, ε))
of a ball B(x, ε) ⊂ U . Since g is volume preserving, Vol(An) = Vol(B(x, ε)).
Thus, if An were disjoint, we would find that

∑∞
n=1 Vol(An) =∞. On the other

hand, ∪∞n=1An ⊂ U , so that Vol ∪∞n=1 An ≤ Vol(U) <∞.
It follows that An ∩A0 is non-empty for sufficiently large n.

The connection to Hamiltonian systems is as follows. Assume ϕt : R2n →
R2n is the flow of a Hamiltonian system. Then ϕt is a symplectic diffeompro-
phism and it preserves volumes (see Corollary 3). In fact, a finer version of
this theorem holds: the volume form restricted to a constant energy surface is
preserved. In particular, Poincare recurrence holds if {z ∈ R2n|H(z) = E} is
compact.

This theorem also applies to singular limits of Hamiltonian systems. A cele-
brated example is the hard sphere gas. This is a ‘minimal’ particle system that
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was introduced in the mid-1800s by Maxwell and Boltzmann to address a funda-
mental scientific question: why is the macroscopic world so clearly irreversible,
when Newton’s laws are invariant under time reversal?

The hard sphere gas is a system consisting of N small particles that move
freely, except when they meet at collisions, when they exchange momentum in a
manner that conserves energy. For simplicity, we ignore boundaries, assume the
centers of the particles, xi ∈ Td and that the radius of each particle is δ � 1.
We denote the phase space

M = {(x, y) ∈ TNd × RNd, |xi − xj | ≥ δ, i 6= j}. (5.4.1)

The equations of motion consist of free streaming

ẋi = vi

v̇i = 0

when |xi − xj | > δ. At the boundary points of ∂M where exactly one pair of
particles meet we impose the “collision rule”

vi + vj = v′i + v′j

|vi|2 + |vj |2 = |v′i|2 + |v′j |2.

Here vi and vj are the incoming velocities, whereas v′i and v′j are the outgoing
velocities. There are also boundary points where more than two particles meet;
however, this is a measure zero set within the set of all boundary points.

In the homework, you are asked to find v′i, v
′
j given by vi, vj and to show that

the Jacobian of the transformation (vi, vj) → (v′i, v
′
j) is unity. Thus, at each

collision we obtain a measure preserving transformation of the compact energy
sphere

E = {(x, y) ∈M

∣∣∣∣∣ 1

2N

N∑
i=1

|vi|2 = E <∞.}

We have normalized the energy by a factor of 1/N so that the average energy
per particle remain E in the limit N →∞.

When the Poincare recurrence theorem is applied to this problem, we obtain
the following assertion which contradicts our everyday experience. Assume we
choose an initial configuration where all of the particles are contained within
a small region of space, but such that the initial velocities are random. We
expect that as time evolves the particles will become distributed evenly in space,
equilibrating in some way. But the Poincaré recurrence theorem tells us that
the system must always keep returning arbitrarily close to its initial condition.

This argument is called the Loschmidt paradox. It shows that our naive ex-
pectation of irreversible behavior in such a system is false. One of the resolutions
of this question relies on a sharp understanding of mixing in measure-preserving
transformations and the construction of higher-dimensional analogues of Anosov’s
construction. A central result of this type is Sinai’s proof of the ergodicity of the
hard-sphere gas extending Anosov’s work on geodesic flow in negatively curved
spaces.
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5.5 Exercises

1. Complete problems 1 through 6 on p.37 of Arnold’s book “Mathematical
methods of classical mechanics”. These problems culminate in Problem 6. How-
ever, the solution to Problem 6 is almost completely described in the hint, so
there is no need to turn it in. The treatment of Kepler’s problem in Section 4.7
follows [3] very closely.

2. Consider the collision rule in the hard-sphere gas. Assume given two ‘in-
put’ velocity vectors u,v ∈ Rd and impose the conditions of conservation of
momentum and energy at a collision:

u′ + v′ = u+ v, |u′|2 + |v′|2 = |u|2 + |v|2.

(a) Show that these conditions determine two ‘output’ vectors u′ and v′ ∈ Rd
that are unique upto permutation.

(b) Compute the Jacobian of the transformation from (u, v) to (u′, v′).

3. Consider the Gauss map G : [0, 1)→ [0, 1) defined by

G(x) =
1

x
− floor

(
1

x

)
.

Show that the probability density

p(x) =
1

log 2

1

1 + x

is invariant under G.

5.6 Solutions to exercises

2. Consider the collision rule in the hard-sphere gas. Assume given two ‘input’
velocity vectors u,v ∈ Rd and impose the conditions of conservation of momentum and
energy at a collision:

u′ + v′ = u+ v, |u′|2 + |v′|2 = |u|2 + |v|2.

(a) Show that these conditions determine two ‘output’ vectors u′ and v′ ∈ Rd that
are unique upto permutation.

(b) Compute the Jacobian of the transformation from (u, v) to (u′, v′).

Proof. (a) The trick in this problem is to recognize that in an elastic collision
between two identical spheres with radius δ there are three vectors in play: the
input velocities u and v and the unit vector l ∈ Sd−1 along the line joining the
centers of the two spheres.

Let’s build some intuition for the process of collision. Assume at first that
the spheres have a head-on collision. This means that the vectors u,v and l are
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all parallel. Since the spheres are identical, they simply exchange velocities and
u′ = v and v′ = u. On the other hand, if the spheres have a glancing collision,
that is u and v are parallel, but both u and v are perpendicular to l, then there
is no exchange of velocity, so u′ = u and v′ = v.

The general situation can be decomposed into these two extreme cases. The
particles exchange the head-on component of their velocity and they retain the
glancing component of the velocity. We separate the two components to obtain
the relation

u′ = u− ((u− v) · l) l, v′ = v + ((u− v) · l) l.
(b) Given a unit vector l ∈ Rd, the rank-one matrix llT is the orthogonal

projection onto the span of l and the matrix Id−llT is the orthogonal projection
onto its complement. Let L : R2d → R2d denote the map (u, v) 7→ (u′, v′). Then
we see that

L =

(
Id − llT llT

llT Id − llT
)

= I2d − wwT , w :=

(
−l
l

)
.

This allows a direct computation of the determinant using the Sherman-Morrison-
Woodbury formula

det(L) = det(I2d − wwT ) = (1− wTw) det(I2d) = −1, since wTw = 2.

3. Consider the Gauss map G : [0, 1)→ [0, 1) defined by

G(x) =
1

x
− floor

(
1

x

)
.

Show that the probability density

p(x) =
1

log 2

1

1 + x

is invariant under G.

Proof. Let µ denote the measure with density p. We must show that µ(G−1(A)) =
µ(A) for every Borel set A ⊂ [0, 1). Since Borel sets may be approximated with
open sets, which in turn may be approximated by intervals, it is enough to prove
invariance when A = (a, b) is an interval contained within [0, 1).

Let k ∈ N index the natural numbers. The transformation G maps each
interval [ 1

k+1 ,
1
k ) to the interval [0, 1). Thus, the pre-image G−1(a, b) consists of

a countable collection of disjoint intervals

∞⋃
k=1

(xk, yk), xk =
1

b+ k
, yk =

1

a+ k
.

Therefore, the measure of the inverse image is

µ(G−1(a, b)) =
1

log 2

∞∑
k=1

∫ yk

xk

ds

1 + s
=

1

log 2

∞∑
k=1

log

(
1 + 1

a+k

1 + 1
b+k

)
.
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The infinite sum is convergent since p is a probability measure. We may rear-
range the terms, recognizing that it is a telescoping sum with value

1

log 2
log

(
1 + b

1 + a

)
.

But this is exactly the measure µ(a, b).

Problem 1, p. 37, Arnold. This problem is straightforward. Follow the hint and
substitute x = M/r into the integral on. p.36 to obtain

Φ =

∫ xmax

xmin

dx√
2(E −W )

.

Problem 2, p. 37, Arnold. Figure 31 provides the essential hint. Let r∗ denote
the point where V (r) is at its minimum. Then for r close to r∗

V (r) ≈ V (r∗) +
1

2
V ′′(r∗)(r − r∗)2.

For brevity, ler rmax−rmin = 2a and r−rmin = s. Since V (rmin) = V (rmax) = E,
we may also write

E − V (r) = V (rmax)− V (r) =
1

2
V ′′(r∗)(a

2 − s2).

We substitute this expression in the formula for Φ on p.35 to obtain

Φ ≈
∫ rmax

rmin

M

r2

dr

(V ′′(r∗)(a2 − (r − r∗)2))
1/2

≈ M

r2
∗
√
V ′′(r∗)

∫ a

−a

ds√
a2 − s2

= π
M

r2
∗
√
V ′′(r∗)

.

On the other hand, V (r) = U(r)+M2/2r2 and V ′(r∗) = 0. Therefore, U ′(r∗) =
M2/r3. Thus, a couple of lines of algebra yields

M

r2
∗
√
V ′′(r∗)

=

√
U ′(r∗)

r∗U ′′(r∗) + 3U ′(r∗)
.
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Problem 3, p. 37, Arnold. Following Arnold, let us use r instead of r∗. The
angle Φ is independent of r for circular orbits when

U ′(r)

rU ′′(r) + 3U ′(r)

is a constant. We rewrite this equation in the form

rU ′′

U ′
= r(logU ′)′ = α− 1,

(This choice of notation for the constant is only for consistency with the answer
in Arnold.) We integrate the above differential equation to find that

U(r) = arα, α 6= 0 and U(r) = b log r, α = 0.

The condition α ≥ −2 is imposed by the restriction that the rotational kinetic
energy M2/2r2 dominates U(r) as r → 0 (see p. 34).

Problem 4, p.37, Arnold. Since U(r) → ∞ as r → ∞, it is either U(r) = arα

with α > 0 or U(r) = b log r. The maximum value of x is given by

E = W (xmax) =
1

2
x2

max + U(
M

xmax
).

Then, as E →∞, xmax ∼
√

2E, so that xmax →∞. We now make the suggested
change of variable x = yxmax to obtain

Φ =

∫ 1

ymin

dy√
2(W ∗(1)−W ∗(y))

, W ∗(y) =
y2

2
+

1

x2
max

U

(
M

yxmax

)
.

The value of xmin (and thus ymin) is determined by

E =
1

2
x2

min + U

(
M

xmin

)
.

Since U(r) → ∞ as r → ∞, when E → ∞ we find that xmin = MaαE−α or
xmin = MeE/b depending on whether U(r) = arα or U(r) = b log r. In either
case, xmin → 0 as E → ∞. We now let E → ∞ and interchange the limits in
the integral to obtain

Φ =

∫ 1

0

dy√
1− y2

=
π

2
.
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Problem 5, p.37, Arnold. Assume that U(r) = kr−β with k > 0 and 0 < β < 2.
Consider the energy level with E = 0. Then W (x) = E if and only if

0 = k
xβ

Mβ
− x2

2
.

This equation has two solutions

xmin = 0, xmax =

(
2k

Mβ

) 1
2−β

.

The angle along this orbit is

Φ0 =

∫ xmax

xmin

dx√
−2W

=

∫ 1

0

ds√
sβ − s2

=
π

2− β
.

Here we used the fact that the second integral is a standard integral that can
be found in tables of integrals, as well as the substitution x = xmaxs along with
the above formula for xmax.



Chapter 6

Hyperbolicity

A fundamental idea in dynamical systems is the “persistence of hyperbolic struc-
tures”. We have encountered an example of this idea in our proof of Anosov’s
theorem (Theorem 69). In this chapter, we explore this idea systematically for
flows and maps.

6.1 Hyperbolicity in Maps

Assume U ⊂ Rd is an open set. Every smooth map f : U → U defines a discrete
dynamical system. The orbit of a point x0 ∈ U is the sequence of iterates

xn+1 = f(xn), n ≥ 0. (6.1.1)

We denote k-fold composition by the following notation

fk = f ◦ f ◦ . . . ◦ f k − times.

Thus, equation (6.1.1) implies

xn = fn(x0), n ≥ 0. (6.1.2)

When f is a diffeomorphism this dynamical system is well-defined for all n ∈ Z.
However, several interesting maps, especially some measure preserving transfor-
mations, are not invertible. Our goal is to introduce the concept of hyperbolic
fixed points. To this end, let us begin with the simplest class of maps: invertible
linear transformations of Rd.

Suppose U = Rd and f(x) = Ax where A is an invertible matrix. Then
xn = Anx, and the asymptotics as n → ∞ are determined by the spectrum of
A. Assume A is diagonalizable and A = UΛU−1 where

Λ =

λ1

. . .

λn

 (6.1.3)

is the matrix of eigenvalues. We divide the eigenvalues into 3 subsets:

107
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(a) Stable: all λ’s such that |λi| < 1.

(b) Unstable: all λ’s such that |λi| > 1.

(c) Center: all λ’s such that |λi| = 1.

This classification reflects the fact that

If |λi| < 1 then lim
n→∞

|λi|n = 0.

If |λi| > 1 then lim
n→∞

|λi|n = +∞.

If |λi| = 1 then |λi|n = 1 for all n.

The concept of hyperbolicity is introduced to rule out the borderline case be-
tween stability and instability.

Definition 72. A fixed point x∗ of a C1 map f : U → U is hyperbolic if Df(x∗)
has no eigenvalues on the unit circle.

Let us now extend this concept to cycles.

Definition 73. An orbit {x0, x1, . . . xq−1} is a cycle of length q if x0 = xq and
x0 6= xn for 1 ≤ n ≤ q − 1.

We note that if f defines a cycle of length q then x0 = fq(x0). Thus, x0 is
a fixed point of fq.

Definition 74. The cycle {x0, x1, . . . xq−1} is hyperbolic if each xk is a hyper-
bolic fixed point of fq.

Remark 75. The linearization around a cycle has an interesting structure. By
the chain rule

Dfq(x0) = Df(fq−1(x0)) ·Df(fq−2(x0)) . . . Df(x0)

= Df(xq−1) ·Df(xq−2) . . . Df(x0)

def
= Aq−1Aq−2 . . . A0,

where we introduced the notation Aj to make the structure of the formula clear.
Similarly, since x0 = xq we also have

Dfq(x1) = A0Aq−1Aq−2 . . . A1.

Proceeding inductively, we find that

Dfq(xk) = Ak−1 . . . A0Aq−1 . . . Ak.

We cannot assume that the matrices commute.
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6.2 Hyperbolicity in Flows

Let us now extend these ideas to flows. Consider the flow ϕt defined by an ODE
ẋ = g(x). As our first example, let g(x) be linear, so that we have the equation

ẋ = Bx, x ∈ Rd. (6.2.1)

Assume that B is diagonalizable with diagonalization B = UΛU−1, so that

x(t) = etB = U

e
tλ1

. . .

etλn

U−1x0. (6.2.2)

The role of the unit circle (for maps) is now replaced by the imaginary axis. Let

λ = α+ iβ, i =
√
−1.

Then
|etλ| = etRe(λ) (for real t) = etα,

and we have

lim
t→∞

∣∣etλ∣∣ =


0 if Re(λ) < 0,

+∞ if Re(λ) > 0,

1 if Re(λ) = 0.

Definition 76. A fixed point x∗ for ẋ = g(x) is hyperbolic if Dg(x∗) has no
eigenvalues on the imaginary axis.

6.2.1 Periodic Orbits

In order to determine the persistence of periodic orbits under perturbations we
must extend the criterion of hyperbolicity to periodic orbits. This requires a
new concept: the Poincaré map. Consider a periodic orbit Γ with period T > 0.
At any point x0 ∈ Γ we define a section S transverse to the tangent vector τ
to Γ at x0 (see Figure 6.2.1). Transversality means that τ does not lie in the
section S (in Rd one may always choose S to be the hyperplane orthogonal to
τ at S).

Since Γ is periodic with period T , we have ϕT (x0) = x0. By continuity in
initial conditions, for all x ∈ S that are sufficiently close to x0, say within the
region

D = S ∩Bε(x0),

there is a well-defined first-return time T (x), such that ϕT (x) = x. The Poincaré
map at x0 is the map

Px0
: D → D, x 7→ ϕT (x)(x). (6.2.3)

A proof of the existence and regularity of the Poincaré map is outlined in the
homework. The main advantage of the Poincaré map is that it reduces the
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Figure 6.2.1: Periodic Orbit

question of persistence of periodic orbits, which is a global question, to the
persistence of fixed points for the Poincaré map, which is a local question.

Informally, a periodic orbit is hyperbolic if and only if the Poincaré map
is hyperbolic. This reduces hyperbolicity of periodic orbits for flows to the
analogous concept for maps. The weakness in the above definition is that we
must show that it does not depend on the choice of section S or initial point
x0. For these reasons, we return to the linearization of the ODE ẋ = g(x) with
the above intuition.

Assume x∗(t) is a periodic orbit with period T > 0 for ẋ = g(x). The
linearization about x∗ is

u̇ = Dg(x∗(t))u. (6.2.4)

To simplify notation, let us write this equation in this form:

u̇ = B(t)u ; B(t+ T ) = B(t). (6.2.5)

i.e. B is a periodic function of t. (We assume T > 0 to prevent trivialities).
Denote the fundamental solution to 6.2.5 as Y (t). Then, Y (t) solves the

(matrix) equation
Y (t) = B(t)Y, Y (0) = I. (6.2.6)

Definition 77. The Floquet matrix for the periodic orbit x∗(t) with period
T > 0 is Y (T ) where Y solves equation (6.2.6) with B(t+ T ) = B(t).

Definition 78. The periodic orbit Γ is hyperbolic if the Floquet matrix has
only one eigenvalue on the unit circle.

Here’s what’s going on: the Floquet matrix always has 1 as a trivial eigen-
value. Let

Y (T ) = U

1 [
non

trivial

]U−1 (6.2.7)

Once one removes the trivial eigenvalue at 1, the rest of the spectrum of Y (T )
is exactly the spectrum of the linearization of the Poincaré map.
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Figure 6.2.2: Floquet spectrum for a hyperbolic orbit

The ”metatheorem” of hyperbolic dynamical systesm is that ”hyperbolic
structures persist under small perturbations”. Here are some examples:

(i) Persistence of hyperbolic fixed points for maps and flows.

(ii) Persistence of hyperbolic periodic orbits.

(iii) Persistence of a hpyerbolic foliation (Anosov’s theorem).

(iv) Stable and unstable manifold theorems.

The key assumption in all these theorems are

(a) A spectral gap between stable and unstable directions.

(b) A careful choice of topology for perturbation.

We will first illustrate these ideas for fixed points. We then consider invariant
manifold theorems in Chapter 7.

6.3 Persistence of hyperbolic fixed points

Theorem 79. Assume g(x;µ) is a C1 vector field on U ⊂ Rd that depends
smoothly on a parameter µ ∈ (−1, 1). Suppose g(x∗; 0) = 0 and x∗ is hyperbolic.
Then there exits ε > 0 and a C1 curve of hyperbolic fixed points x(µ) for µ ∈
(−ε, ε).

Proof. Our assumption is that Dg(x∗, 0) has no eigenvalues on the imaginary
axis. In particular it is invertible. By the implicit function theorem, there exists
ε > 0 and a map (ε, ε)→ Rd, µ 7→ x(µ) with x(0) = x∗ such that

g(x(µ);µ) = 0. (6.3.1)

The smoothness of the map µ 7→ x(µ) is the same as that of the map g.
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Remark 80. Here is the intuition behind the proof. Suppose equation (6.3.1)
holds. Then differentiate it with respect to µ to find

Dg(x(µ);µ)
dx

dµ
+
∂g

∂µ
= 0.

When µ = 0 we know that Dg(x∗, 0). Therefore, we can solve for

dx

dµ
= −Dg(x(µ);µ)−1 ∂g

∂µ
, (6.3.2)

where ∂g
∂µ is known in a neighbourhood of (x∗, 0). The flaw in this argument is

that we don’t know that this curve exists without the implicit function theo-
rem. But once existence of the curve has been obtained, we can determine the
dependence of x∗ on µ through equation (6.3.2)

The map x→ x(µ) is as smooth as g. If g is C1, then so is µ→ x(µ) and if
g is Ck then so is µ → x(µ). Consequently the map µ → Dg(x(µ), µ) is Ck−1

when g is Ck. Thus, the eigenvalues change continuously and the spectral gap
persists for sufficiently small ε.

Example 11. The eigenvalues cannot be assumed to vary smoothly, even if the
map µ → Dg(x(µ), µ) is as smooth as desired (say C∞). The problem is that
when Dg(x∗, 0) has repeated eigenvalues, a small perturbation can the situation
depicted in 6.3.1.

The persistence of hyperbolic fixed points for maps is similar. We must now
solve the fixed point equation x = f(x;µ) given x∗ = f(x; 0) and x∗ hyperbolic.
We may reduce this problem to Theorem 79 by writing the fixed equation as

F (x;µ)
def
= f(x;µ)− x and then applying the implicit function theorem.

Here are some examples of what could go wrong.

Example 12. Simple Pendulum: The linearization of the flow at two distinct

fixed points are

[
0 1
−1 0

]
and

[
0 1
1 0

]
. The corresponding eigenvalues are ±

√
−1

and ±1, respectively.
The dynamics of the simple pendulum are defined by:

θ̈ + sin θ = 0. (6.3.3)

With the simple pendulum we may perturb by adding damping, resulting in the
following equation:

θ̈ + αθ̇ + sin θ = 0. (6.3.4)

Now the linearization at (0, 0) is

[
0 1
−1 −α

]
. Therefore, the characteristic poly-

nomial for this matrix is

λ(λ+ α) + 1 =0 (6.3.5)

λ2 + αλ+ 1 =0 (6.3.6)

=⇒ λ =
−α±

√
α2 − 1

2
(6.3.7)
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Figure 6.3.1: Continuous, but not differentiable, variation of eigenvalues with
parameters.
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Figure 6.3.2:

Figure 6.3.3: Phase diagrams for the perturbed simple pendulum
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Figure 6.4.1: Phase diagram for the perturbed simple pendulum

The phase diagram in the neighbourhood of (0, 0) for this perturbed system
is shown in Figure 6.3.3.

A more subtle issue here is that the perturbations don’t respect the Hamilto-
nian structure. Really the question is: if we understand the flow for ż = J∇zHo

then what can we say about ż = J∇zHµ such that

Hµ = Ho + µH1, (6.3.8)

where H1 is the perturbation. In this case, the origin perturbs to a center. This
example shows that the topology of the perturbation is important.

6.4 Persistence of Hyperbolic Periodic Orbits

6.4.1 Persistence of Cycles

We now turn to cycles in maps and periodic orbits in flows. Cycles are easy to
deal with.

Consider the map x 7→ f(x;µ) and assume that when µ = 0, we have a
hyperbolic cycle of period q. Denote this cycle by {x0, x1, ..., xq−1} with xq = x0.
We observe that fq(xj) = xj , 0 ≤ j ≤ q − 1. This leads us to the following
observation, a cycle is hyperbolic ⇐⇒ xj is hyperbolic for 0 ≤ j ≤ q − 1. But
then the implicit function theorem may be used as in Theorem 79 to show that
xj(µ) persists for small µ.

6.4.2 Persistence of hyperbolic periodic orbits

We know that a periodic orbit Γ is hyperbolic if and only if its Floquet spectrum
has a single eigenvalue at 1. This in turn is true if and only if every Poincaré
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map on Γ has a hyperbolic fixed point. When µ = 0, we have the picture for
the periodic orbit Γ as in 6.4.1. Further, we know that x∗ is a hyperbolic fixed
point.

Now, we observe that if ϕ depends smoothly on a parameter µ, then we
obtain a smooth family of Poincaré maps

Pµ : D → D, (6.4.1)

simply by continuity in parameters (this is illustrated in homework 1). Then we
find, from the implicit function theorem, that Pµ has a hyperbolic fixed point
x(µ) for |µ| < ε. Again the simple pendulum with damping shows that the
theorem is false without assumption of hyperbolicity.

6.4.3 The Grobman-Hartman Theorem

The above example shows the persistence of a global structure (periodic orbits).
We reconsider persistence of hyperbolic fixed points from this point of view.
Consider a linear map A : Rd → Rd where the map is x → Ax such that 0
is a hyperbolic fixed point. The eigenspaces of A form invariant subspaces for
the map. We next consider a family of non-linear maps B(µ) with B(0; 0) = 0
and DB(0; 0) = A. The following theorem provides the persistence of the phase
portrait of the map A near 0.

Theorem 81 (Grobman-Hartman). Assume U ∈ Rd is an open set containing
the origin. Assume the function f

f :U × (−1, 1)→ U (6.4.2)

(x, µ)→ fµ(x), (6.4.3)

is a 1-parameter family of C1 diffeomorphisms such that f(0, µ) = 0 for all µ
and x = 0 is hyperbolic for µ = 0. Then there exists ε > 0 and a 1-parameter
family of homeomorphisms

h :B(0, ε)× (−ε, ε)→ B(0, ε) (6.4.4)

(x, µ)→ hµ(x) (6.4.5)

such that the following diagram commutes

B(0, ε)
fµ→B(0, ε)

hµ ↑ ↑ hµ

B(0, ε)
A→B(0, ε)

with A = Dxf0(0)



Chapter 7

Invariant Manifold
Theorems

The main reference for this chapter is [6, Ch.4.1]. Let us first illustrate the idea
of an invariant manifold with an example from [9]. Consider the 2D system

ẋ = x (7.0.1)

ẏ = −y + x3. (7.0.2)

This system has a fixed point at (0, 0), and its linearization at (0, 0) is

u̇ = u (7.0.3)

v̇ = v, (7.0.4)

or equivalently

˙(u
v

)
=

(
1 0
0 −1

)(
u
v

)
. (7.0.5)

Thus (0, 0) is a saddle-point. The subspace {u = 0} is invariant under the flow
and as t → ∞, each trajectory (0, v(t)) → (0, 0). This subspace is the stable
subspace. Similarly, the subspace {v = 0} is invariant and is called the unstable
subspace. Equation (7.0.1) is chosen so it is exactly solvable. Clearly

x(t) = etx,

117
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where we use the slight abuse of notation of writing x for x(0) and y for y(0).
Using the method of integrating factors, we can also solve equation (7.0.2)

y(t) = e−ty +

∫ t

0

e−(t+s)x3(s)ds (7.0.6)

= e−ty + e−t
∫ t

0

e4sx3ds (7.0.7)

= e−ty + x3e−t
∫ t

0

e4sds (7.0.8)

= e−ty + x3e−t
(
e4t − 1

4

)
(7.0.9)

= e−ty +

(
e3t − e−t

4

)
x3 (7.0.10)

= e−t(y − x3

4
) +

x3

4
e3t. (7.0.11)

We now look for the nonlinear analogue of the linear phase portrait. We note
that a trajectory z(t) = (x(t), y(t)) lies on the stable subspace if and only if
z(t) → 0 as t → ∞. Similarly, z(t) lies on the unstable subspace if and only
if z(t) → 0 as t → −∞. We use these asymptotic properties, to define find
nonlinear analogues of the stable and unstable spaces. Let us define the sets
Ws and Wu respectively to consist of z0 ∈ R2 such that the trajectory z(t) with
z(0) = z0 tends to 0 as t → +∞ and t → −∞ respectively. From the solution
formula

x(t) = etx, y(t) = e−t(y − x3

4
) +

x3

4
et (7.0.12)

we see that:

• z(t)→ 0 as t→∞ if and only if x = 0; and

• z(t)→ 0 as t→ −∞ if and only if y = x3

4 .

Thus, we have found that the stable set Ws is actually the manifold {x = 0}
and that the unstable set Wu is the manifold

Wu =

{
z ∈ R2

∣∣∣∣ y =
x3

4

}
Observe that these manifolds are tangent to the stable and unstable spaces
at z = 0. The stable and unstable manifold theorems formalize this intuition
for hyperbolic fixed points. As in Picard’s theorems, we will first establish the
theorem under strong global hypotheses, then obtain local versions using cut-off
functions.
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7.1 Preliminaries

The main assumption in these theorems is the existence of a spectral gap. We
consider equations of the form

ẋ = Sx+ F (x, y) (7.1.1)

ẏ = Uy +G(x, y), (7.1.2)

where x ∈ Rk, y ∈ Rl. We may make an affine change of variables to reduce a
given vector field to this form. For brevity, we set z = (x, y), writing F (z) and
G(z) for F (x, y) and G(x, y) when this helps.

The matrices S (for stable) for stable and U (for unstable) are assumed to
satisfy

Re σ(S) < 0 (7.1.3)

Re σ(U) > 0. (7.1.4)

Here σ(M) = {λ1, · · · , λn} when M is an n×n matrix, and we write Re σ(M) <
a if and only if Re λi < a for 1 ≤ i ≤ n.

7.1.1 Manifolds

Despite the terminology, almost all we need of manifold theory is the fact that
graphs of smooth functions are also (abstractly defined) manifolds. Given a
function α : Rk → Rl, its graph is the set

Wα = {(x, y) ∈ Rk × Rl|y = α(x)}. (7.1.5)

When α ∈ C∞, Wα is a C∞ manifold; analogously, Wα is a Ck manifold when
α ∈ Ck, and Wα is a Lipshcitz manifold when α is Lipschitz.

Intuitively, a manifold is a space that locally looks like Euclidean space. In
the case of graphs, this is obtained by the above parameterization.

7.1.2 Linear Estimates

Lemma 19. Assume Re σ(M) ≤ a. Then for every λ > a, there exists a Kλ

such that ‖etM‖ ≤ Kλe
λt for t ≥ 0.

Proof. We use the Jordan decomposition over C, writing M in the form M =
UAU−1 where the matrix A is block diagonal with

A =


A1

A2

. . .

Am

 ,
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where each Ak is either diagonal or of the form

Ak =


αk 1

. . .
. . .

. . . 1
αk

 .

Given the m×m matrix

A =


α 1

. . .
. . .

. . . 1
α

 , (7.1.6)

we can write

etA = eαt



1 αt (αt)2

2 · · · (αt)m−1

(m−1)!

1 αt · · · (αt)m−2

(m−2)!

. . .
. . .

...
. . . αt

1


. (7.1.7)

Therefore,

‖etA‖ ≤ c|1 + tα+ · · ·+ (tα)m−1

(m− 1)!
||etα|, (7.1.8)

where c is a universal constant. Thus, for any λ with λ > Re α, we have

‖etAk‖ ≤ cketλ, (7.1.9)

since Re α−λ is strictly positive so e(Re α−λ)t “beats” the polynomial growth.
Taking K = c1 + · · ·+ cm, we find

‖etA‖ ≤ Ketλ. (7.1.10)

7.2 Statement of the Theorem

Assume we are given a system

ẋ = Sx+ F (x, y)

ẏ = Uy +G(x, y).
(7.2.1)

We make several assumptions:
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• Assume the spectral gap condition is satisfied:

Re σ(S) ≤ a < λ < b ≤ Re σ(U). (7.2.2)

• Assume small nonlinearity :

F (0, 0) = 0 G(0, 0) = 0

DF (0, 0) = 0 DG(0, 0) = 0
(7.2.3)

• Assume F and G are Lipschitz continuous, with Lipschitz constant δ con-
trolled by the spectral gap.

Finally, we recall that a set S ⊂ Rk ×Rl is invariant under the flow defined by
equation (7.2.1) if z(t) ∈ S for all t ∈ R if z(t0) ∈ S for some t0 ∈ R.

Theorem 82. There is a unique C1 function α : Rk → Rl with α(0) = 0,
Dα(0) = 0, supx∈Rk |α(x)| < ∞, whose graph Wα is an invariant manifold for
(7.2.1).

The proof will rely on:

1. geometric intuition about cones, and

2. a fixed point equation.

The proof itself is a sequence of estimates that show that the fixed point equation
may be solved by the contraction mapping principle.

7.3 Proof of the Theorem

Our first task is to derivate a fixed point equation for α. A preliminary step is
an a priori estimate assuming that y = α(x).

Lemma 20. Assume y = α(x) where α is a Lipschitz function from Rk to Rl.
Then for every λ > Re(σ(S)) and t ≥ 0, we have |x(t)| ≤ Kλe

(λ+KλL)t|x0|
where L is defined in (7.3.9) below. In particular, L ≤ C(λ)δ.

Proof. We rewrite the differential equation

ẋ = Sx+ F (x, y) (7.3.1)

as the integral equation

x(t) = etSx0 +

∫ t

0

e(t−s)SF (x(s), y(s))ds. (7.3.2)

Since F (0, 0) = 0, we have

|F (x, y)| = |F (x, y)− F (0, 0)| (7.3.3)

≤ Lip(f)(|x|2 + |y|2)
1
2 (7.3.4)

≤ Lip(f)(|x|+ |y|) (7.3.5)

= Lip(f)(1 + Lip(α))|x| (7.3.6)
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when y = α(x) and α is Lipschitz. Now we use the linear estimate (for λ >
Re(σ(S))

‖etS‖ ≤ Keλt (7.3.7)

to obtain

|x(t)| ≤ K
(
eλt + L

∫ t

0

eλ(t−s)|x(s)|ds
)

(7.3.8)

where
L = Lip(f)(1 + Lip(α)). (7.3.9)

Multiply through by e−λt to obtain

e−λt|x(t)| ≤ K +KL

∫ t

0

e−λs|x(s)|ds. (7.3.10)

Apply Gronwall’s inequality to h(t) = e−λt|x(t)| to obtain

e−λt|x(t)| ≤ KeKLt|x0|. (7.3.11)

Therefore,
|x(t)| ≤ Ke(KL+λ)t|x0|. (7.3.12)

We will generally assume that Lip(f) is small. (This is the “small nonlin-
earity” assumption.) Therefore, the dominant term in λ+KL is λ.

We now explore the restrictions on y = α(x) imposed by invariance. Since
y(t) solves (7.2.1) we have

e−tUy(t)− y(0) =

∫ t

0

e−sUG(x(s), y(s))ds. (7.3.13)

Lemma 21. Assume y = α(x). Then if Lip(F ) is small enough,

lim
t→∞

|e−tUy(t)| = 0. (7.3.14)

Proof. First by the spectral gap estimate (now applied to −t and θ < b ≤
Re(σ(U)),

‖e−tU‖ ≤ Kθe
−θt for t ≥ 0. (7.3.15)

Also,
|y(t)| ≤ Lip(α)|x(t)| ≤ Lip(α)Kλe

(λ+KλL)t|x0|. (7.3.16)

Therefore, we find that

|e−tUy(t)| ≤ ‖e−tU‖|y(t)| (7.3.17)

≤ Kθe
−θtLip(α)Kλe

(λ+KλL)t|x0| (7.3.18)

= KθKλe
−t(θ−(λ+KλL))|x0|. (7.3.19)
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Now we use the spectral gap. We see that if L is small enough (which may be
achieved by controlling Lip(F )) we may choose θ and λ so that

lim
t↑∞
|e−tUy(t)| = 0. (7.3.20)

Lemma 20 allows us to return to (7.3.13), use y0 = α(x0), and rewrite it as
the fixed point equation

α(x0) = −
∫ ∞

0

e−sUG(x(s), α(x(s)))ds. (7.3.21)

This puts us in familiar territory. We must show that the RHS defines a contrac-
tion mapping on a space of Lipschitz graphs. Let us first discover this structure
and then formalize it.

As in the previous lemma (21), we find that

G(x, α(x)) ≤ Lip(G)(1 + Lip(α)|x|. (7.3.22)

Similarly, if we have two graphs α1 and α2, we find that

|G(x, α1(x))−G(x, α2(x))| ≤ (LipG)|α1(x)− α2(x)|. (7.3.23)

Now we may define the contraction mapping principle more carefully.

Definition 83. Assume f : Rk → Rk has f(0) = 0 and set ‖f‖E = supx∈Rk
|f(x)|
|x| .

Let
E0 = {f ∈ C0(Rk,Rl)|f(0) = 0, ‖f‖E <∞}.

Further, for ρ > 0, let

Xρ = {f ∈ E0|Lip(f) ≤ ρ}.

We define a map T : Xρ → Xρ as follows: For every x0 ∈ Rk, define x(t;x0, f)
as the unique solution to

ẋ = Sx+ F (x, f(x)), x(0) = x0.

We define

(Tf)(x0) = −
∫ ∞

0

e−tUG(x(s), f(x(s))ds. (7.3.24)

Lemma 22. ‖Tf‖E ≤ C(LipG) for C = C(ρ, b, a) when f ∈ Xρ.

Proof. This is a sequence of estimates.

1.

|G(x, f(x))| ≤ (LipG)(|x|+ |f(x)|) (7.3.25)

≤ (LipG)(1 +
|f(x)|
|x|

)|x| (7.3.26)

≤ (LipG)(1 + ρ)|x|. (7.3.27)
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2. Now assume x = x(t;x0, f). Then by Lemma (20),

|x(t)| ≤ Kλe
(λ+KλLip(f)(1+ρ))t|x0|. (7.3.28)

3. Now we return to the definition of T in (7.3.24) and compute (for x0 6= 0)

|Tf(x0)|
x0

≤ Kλ

∫ ∞
0

‖e−tU‖(LipG)(1 + ρ)et(λ+KλLip(f)(1+ρ))dt (7.3.29)

≤ KθKλ(LipG)(1 + ρ)

∫ ∞
0

e−θte(λ+KλLip(f)(1+ρ))dt. (7.3.30)

Note again θ is close to b, λ ic lose to a and Lip(f) is small (≤ δ).

Thus we have an estimate of the form

sup
|Tf(x0)|
|x0|

≤ C(LipG) ≤ Cδ. (7.3.31)

This shows that the norm ‖Tf‖E <∞.

Lemma 23. Assume f ∈ Xρ and x1, x2 ∈ Rk are initial conditions for the
original system (7.2.1). Then

|x1(t)− x2(t)| ≤ Kλe
(λ+(Lipf)(1+ρ))t|x1 − x2|. (7.3.32)

Proof. Let x1, x2 ∈ Rk be initial conditions for ẋ = Sx + F (x, f(x)). We then
have

xi(t) = etSxi +

∫ t

0

e(t−s)sF (xi(s), f(xi(s)))ds. (7.3.33)

Therefore, using Lip(f) ≤ ρ, the difference is controlled by

|x1(t)− x2(t)| ≤ ‖etS‖|x1 − x2|+
∫ t

0

‖e(t−s)s‖(Lip F)(1 + ρ)|x1(s)− x2(s)|ds.

(7.3.34)
As in Lemma (20), we find that we may apply Gronwall’s lemma to

h(t) = e−λt|x1(t)− x2(t)| (7.3.35)

deducing that

|x1(t)− x2(t)| ≤ Kλe
(λ+KλLip(f)(1+ρ))t|x1 − x2|. (7.3.36)

Lemma 24. T maps Xρ to Xρ if LipF and LipG are small enough.

Proof. We consider two initial conditions x1 and x2 and consider |Tf(x1) −
Tf(x2)|. The estimates are very similar to Lemma (22), with minor modifica-
tions. We produce the analogous sequence of estimates.
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1.

|G(x1, f(x1(t)))−G(x2(t), f(x2(t)))| ≤ (Lip G)(1 + ρ)|x1(t)− x2(t)|.
(7.3.37)

2. By Lemma (23), we control |x1(t) − x2(t)| in terms of x1 − x2. In effect,
the role of |x0| in Lemma 3 is now replaced with |x1 − x2| and we find

|Tf(x1)− Tf(x2)|
|x1 − x2|

≤ C(LipG) ≤ Cδ ≤ ρ (7.3.38)

if δ is small enough. Here C depends on the spectral gap and ρ (in an
explicit, though slightly messy way).

The last variation on this line of reasoning is the contraction mapping argu-
ment.

Lemma 25. T : Xρ → Xρ is a contraction mapping when δ is small enough.

Proof. The proof relies on a modification of Lemma (23) and Lemma (24). First,
consider the solutions to

ẋi = Sx+ F (x, fi(x)), i = 1, 2 (7.3.39)

with the same initial condition x0. We have

xi(t) =

∫ t

0

e(t−s)sF (xi(s), fi(xi(s)))ds. (7.3.40)

Now, at any time s, writing xi for xi(s),

|F (x1, f1(x1))−F (x2, f2(x2))| ≤ (Lipf)(|x1 − x2|+ |f1(x1)− f2(x2)|. (7.3.41)

On the other hand,

|f1(x1)− f2(x2)| ≤ |f1(x1)− f2(x1)|+ |f2(x1)− f2(x2)| (7.3.42)

≤ |f1(x1)− f2(x1)|
|x1|

|x1|+ (Lipf2)|x1 − x2| (7.3.43)

≤ ‖f1 − f2‖E |x1|+ ρ|x1 − x2|. (7.3.44)

To summarize,

|F (x1, f1(x1))− F (x2, f2(x2))| ≤ ‖f1 − f2‖E |x1|+ (1 + ρ)δ|x1 − x2|. (7.3.45)

Substitute back in (7.3.40) and use Gronwall’s inequality with h(t) = e−λt|x1(t)−
x2(t)| to obtain

|x1(t)− x2(t)| ≤ Kλ‖f1 − f2‖Ee(λ+K(1+ρ)δ)t|x0|. (7.3.46)
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Now apply this estimate to Tf1 and Tf2:

Tfi(x0) = −
∫ ∞

0

e−tUG(xi(s), fi(xi(s)))ds. (7.3.47)

We now have

|G(x1(s),f1(x1(s)))−G(x2(s), f2(x2(s)))| (7.3.48)

≤ (LipG)(|x1(s)− x2(s)|+ |f1(x1(s))− f2(x2(s))| (7.3.49)

≤ (LipG)(|x1(s)− x2(s)|+ |f1(x1(s))− f2(x2(s))|) (7.3.50)

≤ δ(|x1(s)− x2(s)|+ ‖f1 − f2‖E |x1(s)|+ ρ|x1(s)− x2(s)| (7.3.51)

≤ δ(1 + ρ)|x1(s)− x2(s)|+ δ‖f1 − f2‖E |x1(s)|. (7.3.52)

The term |x1(s)−x2(s)| is controlled in terms of ‖f1−f2‖E |x0| by (7.3.46), and
|x1(s)| is controlled by Lemma (20). Using the spectral gap again, we have

|Tf1(x0)− Tf2(x0)|
|x0|

≤ Cδ‖f1 − f2‖E . (7.3.53)

Now take the sup over x0 to obtain

‖Tf1 − Tf2‖E ≤ Cδ‖f1 − f2‖E . (7.3.54)

Thus for δ small enough, this is a contraction mapping.

In summary: Lemmas (20), (21), (22), (23), (24), and (25) show that there is
a unique fixed point for T . This establishes the existence of a Lipschitz invariant
manifold.

7.4 Exercises

1. We will use the following notation. Bm(0, ε) is the ball of radius ε > 0 in
Rm. The rectilinear flow in Rm×R is the flow generated by the constant vector
field (0, . . . , 0, 1).

Prove the rectification theorem: If x ∈ Rn is not a critical point of a flow Φ,
then there is a neighborhood of x (say U), positive numbers ε > 0 and δ > 0
and a homeomorphism G from the cylinder Bn−1(0, ε)× (−δ, δ) to U such that
the image of the trajectories of the flow Φ under G−1 are trajectories of the
rectilinear flow.

2. Consider the linear system in R2 given by ẋ = Ax where A is the diagonal
matrix

A =

(
−λ 0
0 −µ

)
, λ, µ > 0.

Any orbit x(t) with x(0) = (a, b) approaches the origin. Consider the curve in
the plane obtained by piecing together the orbits with initial conditions (a, b)
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and (−a, b) where a, b > 0. How smooth is this curve? Precisely, find a condition
on the eigenvalues that guarantees that this curve has exactly k derivatives at
the origin.

3. Consider a C1 vector field f in 2D such that f(0) = 0 and

Df(0) =

(
−α β
−β −α

)
,

for fixed α > 0,β > 0. Show that all trajectories near 0 spiral into 0 in the sense
that they cross each line through the origin infinitely often.

4. Provide a complete proof for the existence of Poincaré maps in the following
setting. Assume we have a globally defined flow ϕt : Rd → Rd for the differential
equation ẋ = f(x). Suppose the flow has a periodic orbit Γ with period T .
Consider a point x∗ ∈ Γ, let τ denote the tangent vector to Γ at x and let S be
a hyperplane in Rd normal to τ . Show that there is ε > 0 and a neighborhood
D ⊂ S such that the map P : D → D defined by P (x) = ϕT (x), where T (x) is
the first return time to D, is well-defined.

(Hint: Use the implicit function theorem to solve for T (x) knowing that x∗
returns to D after time T .)

5. Assume f : R2 → R2 is a C1 vector field such that: (i) f(0) = 0; (ii) the
linearization A = Df(0) has two real eigenvalues λ− < 0 < λ+. Show that
there are open neighborhoods of 0, denoted U and V , and a C1 diffeomorphism
g : U → V such that the vector field h = g ◦ f has the standard linearization

Dh(0) =

(
−1 0

0 1

)
.

6. Generalize the above assertion above to a C1 vector field f : Rn → Rn when
Df(0) has n distinct, real eigenvalues λ1 < λ2 . . . < λk < 0 < λk+1 < . . . λn, for
some integer 1 < k < n. In this case, first aim for a transformation of the lin-
earized matrix to diag(λ1, . . . , λn) (i.e. do not rescale as in question (1)). Next,
try to rescale to a standard form, say diag(−k,−(k−1), . . . ,−1, 1, 2, . . . , n−k).

7.5 Solutions to exercises

1. We will use the following notation. Bm(0, ε) is the ball of radius ε > 0 in Rm. The
rectilinear flow in Rm×R is the flow generated by the constant vector field (0, . . . , 0, 1).

Prove the rectification theorem: If x ∈ Rn is not a critical point of a flow Φ,

then there is a neighborhood of x (say U), positive numbers ε > 0 and δ > 0 and a

homeomorphism G from the cylinder Bn−1(0, ε)× (−δ, δ) to U such that the image of

the trajectories of the flow Φ under G−1 are trajectories of the rectilinear flow.

Proof. When smoothness assumptions are not stated explicitly, assume that the
vector field is C1. Let us write x0 instead of x for the point under considera-
tion where the flow is non-singular. We may translate, rotate and rescale the
coordinate system so that x0 = 0 and f(x0) = e1.
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1. Let us write x = (x1, y) to distinguish the transverse coordinates from
the coordinate parallel to e1. The first coordinate x1 is strictly increasing and
may be used to reparametrize time as follows. For fixed δ > 0 and ε > 0 define
the neighborhood of x0

U =
⋃
|t|<δ

⋃
|y|<ε

Φt(0, y).

Since f ∈ C1, we may choose δ > 0 and ε > 0 so that ẋ1 > 1/2 for every
x ∈ U . This ensures that each x ∈ U has a unique representation of the form
x = Φt(0, y).

2. We define the map G : (−δ, δ)×Bn−1(0, ε)→ U through

(t, y) 7→ Φt(0, y).

The map G is differentiable in both t and y and at t = 0 we have DG(0, 0) = In.
Reducing ε and δ if necessary, we can ensure that DG(0, 0) is invertible in the
domain (−δ, δ) × Bn−1(0, ε). In particular, G is a diffeomorphism from this
domain onto U .

3. Observe on the other hand, that Ψt(0, y) := (t, y) is the rectilinear flow
defined through the differential equation

ẏ1 = 1, ẏj = 0, 2 ≤ j ≤ n.

Thus, G(Ψt(0, y)) = Φt(0, y), t ∈ (−δ, δ). Thus, G−1 rectifies the flow.

2. Consider the linear system in R2 given by ẋ = Ax where A is the diagonal matrix

A =

(
−λ 0
0 −µ

)
, λ, µ > 0.

Any orbit x(t) with x(0) = (a, b) approaches the origin. Consider the curve in the plane

obtained by piecing together the orbits with initial conditions (a, b) and (−a, b) where

a, b > 0. How smooth is this curve? Precisely, find a condition on the eigenvalues that

guarantees that this curve has exactly k derivatives at the origin.

Proof. The explicit solution to the system is

x(t) = e−λtx0, y(t) = e−µty0.

Assume x0 and y0 do not vanish. We eliminate t from the equation above to
obtain

y = y0

(
x

x0

)µ
λ

:= Cxα, α =
µ

λ
.

Let k = floor(α). The curve y = Cxα has k derivatives at x = 0, but it does
not have a k + 1 derivative.
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3. Consider a C1 vector field f in 2D such that f(0) = 0 and

Df(0) =

(
−α β
−β −α

)
,

for fixed α > 0, β > 0. Show that all trajectories near 0 spiral into 0 in the sense that

they cross each line through the origin infinitely often.

Proof. Let us first understand the problem completely when f is linear. That
is, first consider the system

ẋ = −αx+ βy, ẏ = −βx− αy. (7.5.1)

Switch to polar coordinates, setting x = r cos θ, y = r sin θ. We then find that

ṙ =
1

r
(xẋ+ yẏ) , θ̇ =

1

r2
(xẏ − ẋy) . (7.5.2)

Therefore, for the linear system (7.5.1) we find that

ṙ = −αr, θ̇ = −β.

This system has the exact solution

r(t) = r0e
−αt, θ(t) = θ0 − βt.

We may eliminate t from these equations to obtain the parametric form of a
logarithmic spiral

r = r0 exp(
α

β
(θ − θ0)), θ(r) = θ0 +

β

α
log(

r

r0
).

As r → 0, θ → −∞, showing that each ray θ = c is crossed infinitely many
times.

Now consider the nonlinear system

ẋ = −αx+ βy + g(x, y), ẏ = −βx− αy + h(x, y), (7.5.3)

where

g(0, 0) = h(0, 0) = 0 = ∂xg(0, 0) = ∂yg(0, 0) = ∂xh(0, 0) = ∂yh(0, 0) = 0.

By Taylor’s remainder theorem, for any ε > 0 we may find a ball of radius r0

about the origin such that the nonlinear system satisfies the inequalities

−(α+ ε)r ≤ ṙ ≤ −(α− ε)r, −(β + ε) ≤ θ̇ = −(β − ε),

when r ≤ r0. It follows that r(t) and θ(t) decreases exponentially fast according
to the estimates

r(t) ≤ r0e
−(α−ε)t, θ(t) ≤ θ0 − (β − ε)t.

Again we see that r(t) decreases monotonically towards 0, whereas θ(t) decreases
monotonically to minus infinity, showing that each ray θ = c is crossed infinitely
many times.
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4. Provide a complete proof for the existence of Poincaré maps in the following
setting. Assume we have a globally defined flow ϕt : Rd → Rd for the differential
equation ẋ = f(x). Suppose the flow has a periodic orbit Γ with period T . Consider
a point x∗ ∈ Γ, let τ denote the tangent vector to Γ at x and let S be a hyperplane in
Rd normal to τ . Show that there is ε > 0 and a neighborhood D ⊂ S such that the
map P : D → D defined by P (x) = ϕT (x), where T (x) is the first return time to D, is
well-defined.

(Hint: Use the implicit function theorem to solve for T (x) knowing that x∗ returns

to D after time T .)

Proof. Correction. A typo in the problem statement is that P : D → S,
not P : D → D. Further, the hint appears to have been misleading, since
the problem can be solved directly by combining the rectification theorem with
continuity in initial conditions.

1. As in problem 1, we can assume that x∗ = 0, f(0) = e1 (i.e. τ = e1) and
S = {(0, y) : y ∈ Rd−1}; here and below y will denote the transverse coordinate.

By the rectification theorem, we know that there are parameters ε > 0, δ > 0
and a neighborhood U of 0 in which the flow can be rectified to Ψt(0, y) = (t, y)
on (−δ, δ)×Bd−1(0, ε).

2. Let Dε be the ‘time zero slice’ of U , that is Dε = {(0, y) : |y| < ε}.
We must show that by reducing ε if necessary, the Poincaré map from Dε to
S is well-defined. This follows from continuity in initial conditions and the
rectification theorem.

First, we recall the global condition that ϕT (0) = 0. Since 0 ∈ U , by conti-
nuity in initial conditions, it follows that there is η > 0 such that ϕT ((0, y)) ∈ U
when |y| < η. Next, we use the rectification theorem. Since G : U →
(−δ, δ) × Bd−1(0, ε), it must be the case that G(ϕT (0, y)) = (t, y′) for some
t(y) with |t| < δ. But then the definition of the rectification map ensures that
G(ϕT−t(0, y)) = (0, y′), so that ϕT−t(y)(0, y) lies on the ‘time zero slice’ of Dε.
This provides the desired Poincaré time T (y) = T − t(y).

3.The flow map ϕT is C1 as is the rectification G. It follows that T (y) is C1

in y completing the proof.

5. Assume f : R2 → R2 is a C1 vector field such that: (i) f(0) = 0; (ii) the
linearization A = Df(0) has two real eigenvalues λ− < 0 < λ+. Show that there are
open neighborhoods of 0, denoted U and V , and a C1 diffeomorphism g : U → V such
that the vector field h = g ◦ f has the standard linearization

Dh(0) =

(
−1 0

0 1

)
.

Proof. Correction. Unfortunately, there is a mismatch in this problem and the
next between what I thought I was asking and the actual question. If one follows
the question as stated, the answer is trivial. We must find a transformation g
such that Dg(0) satisfies the equation

Dh(0) =

(
−1 0

0 1

)
= Dg(0)A.
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Clearly, all that is required is that

Dg(0) = Dh(0)A−1,

and this condition in turn can be obtained by choosing g to be a linear trans-
formation g(x) = Dh(0)A−1x.

6. Generalize the above assertion above to a C1 vector field f : Rn → Rn when

Df(0) has n distinct, real eigenvalues λ1 < λ2 . . . < λk < 0 < λk+1 < . . . λn, for some

integer 1 < k < n. In this case, first aim for a transformation of the linearized matrix

to diag(λ1, . . . , λn) (i.e. do not rescale as in question (1)). Next, try to rescale to a

standard form, say diag(−k,−(k − 1), . . . ,−1, 1, 2, . . . , n− k).

Proof. Correction. Exactly the same argument as in Problem 5 works. Neither
problem is satisfactory. What I was actually after here is the proof of a lemma
that nonlinear systems can be reduced to a standard form for the stable manifold
theorems by suitable preprocessing.
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Chapter 8

Dynamics and algorithms

8.1 Introduction

The purpose of this chapter is to provide an introduction to the interplay be-
tween dynamics and numerical algorithms. We will provide representative ex-
amples of numerical algorithms that have an unexpected gradient or Hamilto-
nian structure. The use of this structure provides important insights into the
behavior of the algorithm. We consider two such examples:

1. The QR algorithm for computing eigenvalues of real symmetric matrices.

2. Interior point methods for linear and semidefinite programming (abbrevi-
ated LP and SDP respectively).

We will introduce the QR algorithm and a related Hamiltonian system called
the QR flow. For LP and SDP, we illustrate the role of Riemannian gradient
flows. In both these instances, we must generalize the concepts of gradient and
Hamiltonian flows from the naive structure on Rn or R2n to manifolds as stated
in Table 4.1.

8.2 Manifolds, metrics, symplectic forms

In keeping with the minimalist approach to manifold theory discussed in Sec-
tion 4.6, we will focus on manifolds which are subsets of familiar spaces such
as Rn or a suitable space of matrices. This means that we can continue to
use familiar tools of calculus while developing a geometric intuition for certain
algorithms.

8.2.1 The Frobenius metric

Spaces of matrices will play an important role in our work. The following
notation will be used.

133
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• Mn: real n× n matrices.

• Sn: real symmetric matrices in Mn.

• An: real antisymmetric matrices in Mn.

• Pn: positive semidefinite matrices in Sn.

• Pn+: positive definite matrices in Pn.

These spaces may be equipped with many metrics. The generalization to Mn

of the Euclidean metric on Rn is called the Frobenius metric

‖M‖22 := Tr(MTM). (8.2.1)

The Frobenius metric is natural because it has a group invariance that is anal-
ogous to the rotational invariance on Rn. The singular value decomposition of
a matrix M ∈Mn is the factorization

M = UΛV T , (8.2.2)

where U and V are orthogonal matrices and Λ is a diagonal matrix of non-
negative singular values. Then its Frobenius norm

‖M‖22 = Tr(MTM) = Tr(V TΛ2V ) = Tr(Λ2) = Tr(MMT ) = ‖MT ‖22. (8.2.3)

We will construct other metrics on subsets of Mn (such as An, Sn and Pn)
by modifying the Frobenius metric. Note for example that Sn and An are
orthogonal spaces with respect to the Frobenius metric. Indeed, if S = ST and
K = −KT , then

Tr(KTS) = −Tr(KS) = −Tr(SK) = −Tr(STK) = −Tr(KTS).

When Sn is equipped with the Frobenius norm, the diagonal and off-diagonal
terms carry different weights, since

Tr(STS) =

n∑
i,j=1

S2
ij =

n∑
i=1

Sii
2 + 2

∑
i<j

S2
ij . (8.2.4)

This separation of diagonal and off-diagonal terms reflects the fact that dim(Sn) =
n(n+ 1)/2, so that only the terms in the upper-triangular part of S determine
the matrix.

When studying LP and SDP we will need to impose positivity constraints.
When x ∈ Rn the condition x ≥ 0 means that

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0. (8.2.5)

Similarly for S ∈ Sn we write S � 0 to mean S ∈ Pn. This redundancy in
notation is for consistency with the literature on SDP [5].
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8.2.2 Gradient flows and Hamiltonian flows

The basics of differentiable manifold theory are roughly as follows. A manifold
M is first defined as an abstract topological space (i.e. a set with a collection
of neighborhood) along with an atlas, which is a collection of coordinate maps
defined on charts. On each chart N coordinates are maps ϕ : N → Rn. Thus,
the study of functions from M→ R is reduced to a study of functions from a
neighborhood in Rn to R. The main requirement of the charts is that they be
consistent with one another, i.e. they must agree on the overlap Ni∩Nj for any
two distinct charts Ni and Nj .

The advantage of working in this abstract setting is that the manifold is
defined intrinsically. On the other hand, when we define manifolds as subsets
of Rn, we are imposing an additional structure of an extrinsic space. In the
examples we consider, we first assume the structure of a differentiable manifold.
We then equip this manifold with addition structure, a metric or a symplectic
form, and then define gradient and Hamiltonian dynamical systems with respect
to this structure. This provides a unifying approach to many problems.

Given a manifold, M, a C1 curve is a continuously differentiable map x :
(−1, 1) → M, t 7→ x(t). Let us fix a point x and (with abuse of notation),
consider curves x(t) with x(0) = x. The tangent space toM at x consists of the
set of derivatives ẋ(0) for all smooth curves x(t) with x(0) = 0. This definition
seems unecessarily complicated: it is introduced so that the tangent space TxM
may be defined using the primitive concept of smooth functions on a manifold
and nothing more. In particular, this definition ensures that the tangent bundle
TM, consisting of TxM, x ∈M, is an intrinsic concept.

Given a manifold M a 1-form is a smooth linear functional on TM. Every
smooth function V :M→ R defines a 1-form, dV the differential of V , whose
action at any x ∈M and v ∈ TxM is

dV (x)(v) :=
d

ds
V (x(s)), x(0) = x, ẋ(0) = v. (8.2.6)

A metric or a symplectic form is an additional structure on a differential
manifold M. A metric g is a positive definite 2-tensor. At each point x ∈ M,
g(x) : TxM× TxM→ R. Given x ∈M and u, v ∈ TxM,

g(x)(u, v) = g(x)(v, u), g(x)(u, u) > 0, when u 6= 0. (8.2.7)

A variety of different metrics on Rn may be generated by defining smooth maps
g : Rn → Pn+ and setting g(x)(u, v) = vT g(x)u.

A symplectic form ω is a closed, non-degenerate skew-symmetric 2-form.
Closed means that dω = 0 in the sense of differential forms. Non-degeneracy
means that for each x ∈M, if u ∈ TxM and ω(x)(u, v) = 0 for every v ∈ TxM
then u = 0. Skew-symmetry means that for u, v ∈ TxM we have

ω(x)(u, v) = −ω(x)(v, u). (8.2.8)

A dynamical system on a manifold is a differential equation of the form

ẋ = v(x), x ∈M, (8.2.9)
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where v(x) ∈ TxM for each x ∈M. Gradient and Hamiltonian systems use the
metric and symplectic form respectively to ‘convert’ a 1-form into a vector field.

First, let us consider gradient flows. Assume (Mn, g) is a Riemannian man-
ifold and assume that V : M → R is a potential on M. The gradient of V ,
written gradgV is the vector field defined implicitly by

g(x)(gradgV (x), v) = dV (x)(v), x ∈M, v ∈ TxM. (8.2.10)

Since g is positive definite, the vector gradgV (x) is well-defined. The associated
Riemannian gradient flow is

ẋ = −gradgV (x), x ∈M. (8.2.11)

The fundamental estimate for gradient flows now takes the form

d

dt
V (x(t)) = −

∣∣gradgV (x)
∣∣2 . (8.2.12)

A symplectic form may be used to convert a scalar field H : M → R. We
define the vector field XH by

ω(XH , v) = dH(x)(v), x ∈M, v ∈ TxM. (8.2.13)

The vector-field XH is well-defined because ω is non-degerate. The associated
Hamiltonian system is

ẋ = XH(x), x ∈M. (8.2.14)

As in our discussion of Hamiltonian systems on Rn, it is immediate that when
x(t) solves equation (8.2.13)

d

dt
H(x(t)) = 0. (8.2.15)

Now that gradient flows and Hamiltonian flows have been defined, let us
consider some interesting applications of these structures. In the sections that
follow, we will first introduce a numerical algorithm. We then discuss its (un-
expected) connection with a dynamical system.

8.3 The QR algorithm and the QR flow

8.3.1 The QR algorithm

One of the fundamental problems of numerical analysis is the symmetric eigen-
value problem. We assume given a matrix L ∈ Sn; our task is to compute the
eigenvalues of L. It is possible to pre-process the matrix L so that we may
assume that it is tridiagonal . That is, L is of the form

L =


a1 b1 0 . . .
b1 a2 b2
...

. . .
. . . bn−1

bn−1 an−1

 (8.3.1)



8.3. THE QR ALGORITHM AND THE QR FLOW 137

A central theme in numerical linear algebra is the use of matrix factoriza-
tions [14]. One of the most fundamental of these is the QR decomposition,
which is a numerical description of the Gram-Schmidt procedure for determin-
ing an orthogonal basis for a matrix L. Given a matrix L we write

L = QR (8.3.2)

where Q is an orthogonal matrix such that span{l1, . . . , lk} = span{q1, . . . , qk},
1 ≤ k ≤ n, where {lj}nj=1 and {qj}nj=1 denote the column vectors of L and Q
respectively. Fast and stable methods for computing the QR decomposition of a
matrix are available in all standard software libraries for matrix computations.

The QR algorithm is an iterative scheme for computing the eigenvalues of a
given matrix L0. Given Lk, k = 0, 1, . . ., the scheme produces the next iterate
Lk+1 as follows:

1. Factor the given matrix Lk = QkRk.

2. Intertwine the factors to determine Lk+1 = RkQk.

The sequence of iterates is isospectral , that is they have the same eigenvalues.
Indeed, since Qk is orthogonal, Q−1 = QT , and we find that

Lk+1 = QTk LkQk = UTk L0Uk, Uk = Q0Q1 · · ·Qk. (8.3.3)

Theorem 84. Assume L0 is a tridiagonal matrix with distinct eigenvalues.
Then

lim
k→∞

Lk = Λ :=


λ1

λ2

. . .

λn

 , (8.3.4)

where λ1 < λ2 < . . . < λn.

Note that the algorithm computes the eigenvalues of the matrix L0 and sorts
them too!

The rate of convergence of the QR algorithm is important. Practical imple-
mentations include an additional shifting step to accelerate convergence of the
scheme. This is an important augmentation of the QR algorithm, but we will
ignore it so that we can explain the connection with Hamiltonian flows in the
simplest setting.

8.3.2 The QR flow

How does one obtain interesting symplectic manifolds? Of course, what is in-
teresting depends in large measure on the context, so it is helpful to take a long
historical view of such questions.

The development of classical mechanics has involved a sequence of reformu-
lations of Newton’s laws since the publication of the Principia in 1687. The
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first significant reformulation is Lagrange’s mechanics in 1788. The use of a
Lagrangian replaced a detailed analysis of forces in a mechanical system with a
general recipe for applying Newton’s laws that reduces to computations with a
single function, the Lagrangian. This work also contains the seeds of the modern
idea of a manifold: the configuration space of a mechanical system, for example
a kinematic linkage, is an early example of the idea of a manifold. In geometric
terms, Lagrange’s equations take place on the tangent bundle TM of a mani-
fold M. Hamilton reformulated Lagrange’s equation in 1835, constructing the
Hamiltonian of a mechanical system as the convex dual of the Lagrangian. The
importance of this idea for fundamental physics became apparent only in the
1920s with the creation of quantum mechanics. While the structure of Hamilto-
nian systems is easiest to see in R2n, the natural geometric setting of Hamilton’s
equations is the cotangent bundle T ∗M, consisting of the pairs (x, p), x ∈ M,
p ∈ TxM∗.

While mechanical systems constitute a historically important class of Hamil-
tonian systems the exact solution and range of applicability of Hamiltonian sys-
tems has been significantly expanded through the use of Lie groups. In partic-
ular, most of the fundamental examples of symplectic manifolds, are coadjoint
orbits of Lie groups. We will develop this concept systematically in Spring
20202, but first let us illustrate its utility by studying an example, the Toda
lattice, that may be approached in two different ways.

First, the traditional description. The Toda lattice is a system of n particles
with identical masses at positions x1 < x2 < . . . < xn on the line, subject to
the Hamiltonian

H(x, y) =
1

2

n∑
j=1

y2
j +

n∑
j=1

exj−xj+1 . (8.3.5)

The Toda lattice equations are the Hamiltoniam system

ẋj = yj , ẏj = exj−1−xj − exj−xj+1 , 1 ≤ j ≤ n, (8.3.6)

with the boundary conditions x0 ≡ −∞, xn+1 = +∞, e−∞ = 0. Note that we
have used the standard symplectic structure (R2n, J).

Everything so far suggests that this is a Hamiltonian flow with the ‘usual’
structure. However, the Toda lattice has several unexpected integrals and a
systematic understanding of these integrals follows from a different description
of the Toda system as a Hamiltonia flow. The following change of variables was
introduced by Flaschka in 1975. Define the variables

ak = −1

2
yk, bk =

1

2
e

1
2 (xk−xk+1), 1 ≤ k ≤ n, (8.3.7)

as well as the tridiagonal matrices

L =


a1 b1 . . .
b1 a2 b2
...

. . .
. . . bn−1

bn−1 an−1

 , K =


0 b1 . . .
−b1 0 b2
...

. . .
. . . bn−1

−bn−1 an−1

 .

(8.3.8)
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The matrices K and L have the following properties

L = LT , K = −KT , K = LT− − L−, (8.3.9)

where L− denotes the lower-triangular part of L. In these variables, the Toda
lattice equations (8.3.6) take the simple form

L̇ = [K,L], (8.3.10)

where [A,B] = AB −BA denotes the Lie bracket of two matrices. This change
of variables converts the Toda lattice equations into an exactly solvable system.
A key lemma is the following feature of differential equations such as (8.3.10)

Lemma 26. Assume t 7→ K(t) is a smooth map from (−1, 1)→ An. Then the
solution to equation (8.3.10) is

L(t) = U(t)TL(0)U(t), where U̇ = KU, U(0) = I. (8.3.11)

In particular, equation (8.3.10) determines an isospectral flow.

What Flaschka achieved through this change of variables is to reveal an
unexpected set of conserved quantities for the particle system (8.3.5). The
eigenvalues of L(t), or equivalently, all the Hamiltonians Hk(t) := Tr(Lk(t)) are
conserved.

What matters for the purposes of eigenvalue computation is that equa-
tion (8.3.10) is itself a Hamiltonian flow on a symplectic manifold. That is,
equation (8.3.10) is a Hamiltonian system in every sense that equation (8.3.6)
is a Hamiltonian system. Here is the form in which the relation to the QR
algorithm is transparent. Define a Hamiltonian HQR on the space Sn as follows:

HQR(L) = Tr(L logL− L). (8.3.12)

Then define the QR flow

L̇ = [KQR(L), L], KQR = dHQR(L)T− − dHQR(L). (8.3.13)

The comparison between this flow and the QR algorithm is as follows. Assume
that L0 is tridiagonal. Let L(t) denote the QR flow with this initial condition
and let Lk denote the iterates of the QR algoritm.

Theorem 85 (Stroboscope theorem). The iterates of the QR algorithm agree
with the solution to the QR flow at integer times

L(k) = Lk, k = 1, 2, . . . . (8.3.14)

This is a striking and unexpected result that is typical of several iterative
algorithms that are built around matrix factorizations. We will approach these
results systematically in Spring 2020.
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8.4 Hyperbolic geometry, LP and SDP

Optimization theory is primarily the study of fast methods to determine the
minimum of a given function. It is further possible to reduce the complexity of
this problem by studying the minimization of linear functions on convex sets.

8.4.1 Linear programming

A linear program (LP) in standard form is as follows. Assume x ∈ Rn, x ≥ 0
and assume given m constraint equations

aTj x = bj , 1 ≤ j ≤ m, (8.4.1)

where m ≤ n and aj ∈ Rn, j = 1, . . . ,m are linearly independent vectors. This
constraint equation may also be expressed in the form

Ax = b, (8.4.2)

where A has m rows aTj , j = 1, . . . ,m and b = (b1, . . . , bm) ∈ Rm. We assume
that the set P of solutions to (8.4.2) has a non-empty interior of dimension
n −m. This may always be achieved by increasing the dimension n by adding
new variables to the LP. In the terminology of LP, we are assuming that the
constraint set is feasible.

In addition to the constraints, we are given a cost vector c ∈ Rn. An LP in
standard form is then the problem:

min{cTx |: x ≥ 0, Ax = b} (8.4.3)

The polytope P is convex as is the linear cost function. Since a convex function
on a convex set achieves its minimum, there is at least one point on P that
solves the minimization problem. The task in LP is to find numerical methods
that solve this problem fast (which is quantified precisely with the notion of
polynomial time algorithms).

There are two fundamentally distinct classes of algorithms to solve LP. The
first of these, the simplex method , is an iterative method that ‘walks along’
the vertices of the P. At each vertex x ∈ ∂P , the simplex method chooses a
neighboring vertex on which the value of the cost function goes down, or returns
the value cTx. The simplex method was developed independently in the West
and in the Soviet Union beginning in the 1940s. It was applied to problems
of logistics and resource allocation during the second world war and was the
foundation of the newly created field of operations research.

The simplex method was largely unchallenged for about forty years until in-
terior point methods were shown to be successful in the 1980s by Karmarkar [11].
His pioneering work was followed by several developments that led to a system-
atic understanding of interior point methods. As one may expect from the
terminology, in an interior point method the argmin of the cost function is ap-
proached by an iterative sequence {xn}∞n=0 that lie in the interior of P and
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approach the boundary ∂P as n → ∞. In practice, the sequence {xn} is de-
termined through the use of Newton’s method. We will consider the discrete
sequence more carefully in Spring 2020; for now we will explain the connection
with Riemannian geometry and gradient flows by restricting attention to a con-
tinuous time variant of Karmarkar’s method. In another parallel with the QR
algorithm, the study of the algorithm leads to a fundamental geometric question:
how does one construct interesting Riemannian metrics on a manifold?

The key new structure is the following: suppose we had a convex function
F : P → R such that limx→∂P F (x) = +∞. Such a function is called a barrier
in the terminology of interior point methods. Given a barrier on P, we define a
new Riemannian metric on P by setting

g(x) = D2F (x). (8.4.4)

Such a metric is called a Hessian metric. The continuous time variant of interior
point algorithms is the following. For t ≥ 0 define the central path

x(t) = argmins∈P
(
F (s) + tcT s

)
. (8.4.5)

The parameter t penalizes the relative strength of the barrier and the cost
function. Since F (x) diverges as x→ ∂P, the barrier serves to keep x(t) within
the interior of P for all t.

When t = 0, the point x0 =: argmins∈PF (s) is called the center of the
polytope, relative to the barrier F . The central path is the solution to the
following gradient flow

ẋ = −gradgc
Tx, x(0) = x0. (8.4.6)

Observe that the complexity of the problem arises from the structure of the
barrier, not the structure of the cost function.

8.4.2 Semidefinite programming

A broader class of problems that is of similar character is semidefinite program-
ming (SDP). The orthant x ∈ Rn, x ≥ 0 is replaced with the set X ∈ Pn. The
linear constraints are described as follows. Assume given m matrices Aj ∈ Sn
and b ∈ Rm and consider the constraint set

P = {X ∈ Pn |Tr(AjX) = bj , 1 ≤ j ≤ m}. (8.4.7)

The set P is a convex polytope with respect to the geometry on Sn given
by the Frobenius norm. As with LP, interior point methods again rely on
the construction of barriers. A barrier is a convex function on P such that
limX→∂P F (X) = +∞.

The cost function is prescribed by a matrix C ∈ Sn. The SDP is then

min
X∈P

Tr(CX). (8.4.8)
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The central path associated to a barrier F is the parametrized path for t ≥ 0
determined by

X(t) = argminS∈P (F (S) + tTr(CS)) . (8.4.9)

It should be apparent that the structure of the SDP is completely analogous
to LP. The structure of SDP may be further generalized to a class of convex
optimization problems called conic programs. LP is obtained from SDP by
restricting attention to diagonal matrices. However, such theoretical unity must
also be contrasted with the fact that for practical implementations, it is quite
wasteful to use methods for SDPs to solve a given LP.

8.4.3 Barriers and hyperbolic geometry

We have been ignoring one of the most important questions in the theory. How
does one find barriers in the first place? And how does one choose between
barriers to find the ‘right’ barrier for a given SDP. This is a question with some
depth, since it requires a balance between a deeper understanding of the hyper-
bolic geometry of Pn and the pragmatic considerations of fast computation. To
get started, here are some examples of barriers:

1. If P = Rn+, F (x) = − log(x1 · · ·xn).

2. If P = Pn, F (X) = − log detX.

Let us verify convexity of the barrier in these examples. The barrier for LP
is obtained from the barrier for SDP by setting X = diag(x1, . . . , xn), but it
is simpler to verify convexity through a direct computation. First, for LP we
differentiate F (x) = − log(x1 · · ·xn) to obtain

∂F

∂xi
= − 1

xi
,

∂2F

∂xi∂xj
=

1

xixj
δij . (8.4.10)

For SDP, the calculation reduces to understanding how to compute the first
and second derivatives of the determinant at the identity. Assume given a path
X(s) ∈ Sn with X(0) = I, Ẋ(0) = V and Ẍ(0) = 0. To leading order

det(X(s)) ≈ det(I+sV ) = 1+sTrV +
s2

2

∑
i 6=j

det

(
Vii Vij
Vji Vjj

)
+. . . . (8.4.11)

Therefore,

d

ds
det(X(s))

∣∣∣∣
s=0

= TrV,
d2

ds2
det(X(s))

∣∣∣∣
s=0

=
∑
i6=j

(ViiVjj − VijVji) .

(8.4.12)
Next let us compute the first and second derivatives of f(s) = − log detX(s).
Since X(0) = I and Ẋ(0) = V we have

d

ds
f(s)

∣∣∣∣
s=0

= TrV,
d2

ds2
f(s)

∣∣∣∣
s=0

= (TrV )2 −
∑
i 6=j

(
ViiVjj − V 2

ij

)
. (8.4.13)
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In order to get a feel for the last term, let us write it out explicitly when n = 2.
We then obtain the sum

(V11 + V22)2 − 2(V11V22 − V12)2 = V 2
11 + 2V 2

12 + V 2
22 = Tr(V 2). (8.4.14)

This calculation generalizes to the identity

d2

ds2
f(s)

∣∣∣∣
s=0

= Tr(V 2). (8.4.15)

The general calculation may be reduced to the above. Suppose that X ∈ Pn+

is fixed and consider a path X(s) ∈ Pn+ with Ẋ(0) = V . The first derivative of
the determinant is 1

d

ds
det(X(s))

∣∣∣∣
s=0

= (8.4.16)

= det(X)
d

ds
det(X−1/2X(s)X−1/2)

∣∣∣∣
s=0

= det(X) Tr(X−1V ).

In a similar manner, the second derivative of detX(s) is obtained from equa-
tion (8.4.12) by replacing V with X−1/2V X−1/2. Finally, writing f(s) =
− log detX(s) we find that

d

ds
f(s)

∣∣∣∣
s=0

= Tr(X−1V ) =
d2

ds2
f(s)

∣∣∣∣
s=0

= Tr((X−1V )2). (8.4.17)

The last identity shows that the barrier F (X) = − log detX is convex, so that its
Hessian determines a metric on Pn+. This metric is of fundamental importance
in hyperbolic geometry.

Definition 86. The trace metric on Pn+ is defined as follows. Suppose X ∈
Pn+ and V,W ∈ TXPn+. Then

gX(V,W ) = Tr(X−1V X−1W ). (8.4.18)

This metric has many properties that are analogous to the hyperbolic geom-
etry of the upper half plane equipped with the Poincaré metric. The geodesics
may be computed explicitly by analyzing the underlying group invariance and
the curvature tensor may be computed explicitly.

Let us now return to an SDP with feasible polytope P. In this setting,
a barrier that generalizes − log detX is defined in the following way. Given
X ∈ P, define the polar set

P∗(X) = {y ∈ Sn |Tr ((Z −X)Y ) ≤ 1 for all Z ∈ P}. (8.4.19)

1Multiplying on the left and right with X−1/2 ensures that X−1/2V X−1/2 ∈ Sn when
X ∈ Pn+. This is not true if we write X−1V . This distinction does not matter for the
formulas above since we also take a trace.
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The universal barrier on P is the function

Fu(X) = − log vol(P∗(X)). (8.4.20)

This barrier has many deep and interesting properties. For example, it may
be expressed in terms of a generalization of the Fourier transform to convex
cones and it admits several geometric interpretations. We will consider these
characterizations in depth in Spring 2020.



Bibliography

[1] V. I. Arnol’d, Ordinary differential equations, MIT Press, Cambridge,
Mass.-London, 1978. Translated from the Russian and edited by Richard
A. Silverman.

[2] , Geometrical methods in the theory of ordinary differential equations,
vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences], Springer-Verlag, New York, sec-
ond ed., 1988. Translated from the Russian by Joseph Szücs [József M.
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