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Abstract

We consider the Laguerre Unitary Ensemble (aka, Wishart Ensemble) of sample covariance matrices
A = XX∗, where X is an N × n matrix with iid standard complex normal entries. Under the scaling
n = N + b

√
4cNc, c > 0 and N →∞, we show that the rescaled fluctuations of the smallest eigenvalue,

largest eigenvalue and condition number of the matrices A are all given by the Tracy–Widom distribution
(β = 2). This scaling is motivated by the study of the solution of the equation Ax = b using the conjugate
gradient algorithm, in the case that A and b are random: For such a scaling the fluctuations of the halting
time for the algorithm are empirically seen to be universal.
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1 Introduction

Consider the sample covariance matrix A = XX∗ where X is an N × n matrix with iid entries with some
distribution F . Our main result is a limit theorem (see Theorem 1.3) for the condition number of these
matrices when1 F ∼ Xc, Xc has the standard complex normal distribution2 and

α := n−N = b
√

4cNc+ o(N1/2), c > 0. (1.1)

The study of this scaling is motivated by a computational problem discussed below. In the case that F ∼ Xc

we refer to the matrices {A} as lying in the Laguerre Unitary Ensemble (LUE).

0Email: deift@cims.nyu.edu, govind menon@brown.edu, trogdon@cims.nyu.edu (corresponding author).
1The notation F ∼ X means that the random variable F has the same distribution as the random variable X.
2The random variable Xc = X1 + iX2 where X1, X2 are independent Gaussians with mean zero and variance 1/2 is said to

have the standard complex normal distribution.
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Main results. Define the Airy kernel

KAi(x, y) =
Ai(x) Ai′(y)−Ai(y) Ai′(x)

x− y
,

where Ai denotes the Airy function [20]. Then, define the Fredholm determinant

F2(s) = det(I −KAi|L2((s,∞))).

Here KAi|L2((s,∞)) represents the integral operator with kernel KAi acting on L2((s,∞)). The function F2(s)
is the distribution function for the largest eigenvalue of a random Hermitian matrix in the edge-scaling limit
as N → ∞ and is known as the Tracy–Widom (β = 2) distribution [25]. For a positive Hermitian matrix
A, let λmax be the largest eigenvalue of A, λmin be the smallest and let κ = λmax/λmin be the condition
number.

Fix c > 0. We prove:

Theorem 1.1 (Smallest eigenvalue λmin). Assume A = XX∗ where X is an N × (N + α) matrix of iid
standard complex Gaussians and α = b

√
4cNc. Then for all t ∈ R

lim
N→∞

P
(

c− λmin

cα−2/322/3
≤ t
)

= F2(t).

Theorem 1.2 (Largest eigenvalue λmax). Assume A = XX∗ where X is an N × (N + α) matrix of iid
standard complex Gaussians, α = b

√
4cNc and ν = 4N + 2α+ 2. Then for all t ∈ R

lim
N→∞

P
(
λmax − ν
ν1/322/3

≤ t
)

= F2(t).

Theorem 1.3 (Condition number κ). Assume A = XX∗ where X is an N × (N +α) matrix of iid standard
complex Gaussians, α = b

√
4cNc, and ν = 4N + 2α+ 2. Then for all t ∈ R

lim
N→∞

P
(

κ− ν
c

c−1να−2/322/3
≤ t
)

= lim
N→∞

P

(
κ− 4N

c

4c−4/3N2/3
≤ t

)
= F2(t).

History of the problem. The study of the eigenvalues, and in particular, the condition number, of
random positive definite matrices has a rich history in mathematics and statistics going back at least to
the seminal paper of Goldstine and von Neumann [10]. The exact distributions of the largest and smallest
eigenvalues of sample covariance matrices, with iid columns, were computed in [23] and [17], respectively, in
terms of infinite series and hypergeometric functions for any finite N and n. When F is either a standard
real or standard complex Gaussian distribution and α = 0, Edelman [7] determined the scaling limit of the
smallest and largest eigenvalues and the condition number as N →∞,

lim
N→∞

P
( κ

N2
≤ t
)

= FE(t) := e−4/t. (1.2)

It also can be shown that the condition number distribution is heavy-tailed for finite N because the density
of λmin does not vanish near zero — λmin is exponentially distributed with parameter N/2 [7].

As noted by Johnstone3 [15], a by-product of Johansson’s work on last-passage percolation [14] is that the
fluctuations of the largest eigenvalue of LUE with α fixed are given in terms of the Tracy–Widom distribution
F2(t) as N → ∞. When α = bcNc, c > 0, it can be shown that the smallest eigenvalue also has Tracy–
Widom fluctuations in the N → ∞ limit [1] and that the condition number has fluctuations given by the
convolution of two independent, but scaled, Tracy–Widom distributions. This result does not appear to be
explicitly stated in the literature but it follows from the asymptotic independence of the extreme eigenvalues
[2]. See [13] for the case of n� N3.

3Johnstone [15] also proved a limit theorem when F is a standard real Gaussian.
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In terms of interpolation between the limiting condition number distribution FE(t) at α = 0 and the con-
volution of two Tracy–Widom distributions when α = bcNc, we see that the scaling (1.1) is sufficiently strong
to force λmin away from zero and give pure Tracy–Widom statistics for the condition number. Assuming
independence of the smallest and largest eigenvalues, from Theorems 1.1 and 1.2 we have

λmax

λmin
≈

ν + ν1/322/3ξ
(1)
GUE

c− cα−2/322/3ξ
(2)
GUE

.

Here ξ
(1)
GUE and ξ

(2)
GUE are iid random variables with P(ξ

(1)
GUE ≤ t) = F2(t). Then using a Neumann series we

have a formal expansion

λmax

λmin
− ν

c
≈ ν

c

(
α−2/322/3ξ

(2)
GUE + ν−2/322/3ξ

(2)
GUE + o(ν−2/3)

)
. (1.3)

If α = bcNc, the first two terms in this expansion are of the same order and dominate the expansion. Thus,
it is clear why the convolution is involved. Also, for α = 0 it is clear that such an expansion cannot be
justified. In the case of (1.1), α� ν and just the first term is dominant. Lemma 4.6 rigorously justifies the
formal expansion in this case. It does not appear that the scaling (1.1) has been treated previously in the
literature.

Remark 1.1. Our calculations in this paper are for the case α = b(4cN)γc, γ = 1/2. Note that the first
term in the right-hand side of (1.3) is still dominant for 0 < γ < 1. For this reason we anticipate a similar
Tracy–Widom limit theorem for the condition number for 0 < γ < 1. In addition, we anticipate that the
conclusions of the numerical studies that we discuss below when γ = 1/2 will be unchanged for 0 < γ < 1.

Our method of proof makes use of the asymptotics of Laguerre polynomials {L(α)
n (x)}n≥0 which are

orthogonal with respect to the weight xαe−xdx on [0,∞). These asymptotics are derived via the Deift-Zhou
method of nonlinear steepest descent as applied to orthogonal polynomials [4] (see also [3] for an introduc-
tion). For fixed α, this problem was addressed by Vanlessen [27] for the generalized weight xαe−Q(x)dx (see

also [21] for Q(x) = x). From the classical work of Szegö [24] and [27], the asymptotic expansion of L
(α)
N (x)

as N →∞ near x = 0 is given in terms of Bessel functions. Forrester [9] noted that this implies the statistics
of the smallest eigenvalue are given in terms of a determinant involving the so-called Bessel kernel.

As is seen in Theorem 1.1, under the scaling (1.1), the asymptotics of Laguerre polynomials is given in
terms of the Airy function, giving rise to the Airy kernel and producing Tracy–Widom statistics. This was
noted first by Forrester [9]. This transition from Bessel to Airy can also be seen by considering the weight
xαe−x−t/xdx for varying t [28]. The difference here is that this transition is induced via the parameter α
that is naturally present in the Laguerre polynomials.

A computational problem. Our motivation for considering the scaling (1.1) comes from a computational
problem. In numerical analysis, the condition number of a positive-definite N ×N matrix A is arguably the
most important scalar quantity associated to the matrix. Specifically, it controls the loss in precision that is
expected when solving the system Ax = b. The condition number can also be tied directly to the difficultly
encountered in solving the system by iterative methods. This is evident, in particular, in the conjugate
gradient algorithm used to solve Ax = b [12]. The conjugate gradient algorithm is stated as follows (see [11]
for an overview): Given an initial guess x0 (we use x0 = b), compute r0 = b − Ax0 and set p0 = r0. For
k = 1, . . . , N ,

1. Compute the residual rk = rk−1 − ak−1Apk−1 where4 ak−1 =
〈rk−1, rk−1〉`2
〈pk−1, Apk−1〉`2

.

2. Compute pk = rk + bk−1pk−1 where bk−1 =
〈rk, rk〉`2

〈rk−1, rk−1〉`2
.

3. Compute xk = xk−1 + ak−1pk−1.

4We use the notation ‖y‖2
`2

= 〈y, y〉`2 =
∑
j |yj |2 for y = (y1, y2, . . . , yN ) ∈ CN .
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If A is strictly positive definite xk → x = A−1b as k → ∞. Geometrically, the iterates xk are the best
approximations of x over larger and larger Krylov subspaces Kk,

‖Axk − b‖A = minx∈Kk‖Ax− b‖A, Kk = span{b, Ab, . . . , Ak−1b}, ‖x‖2A = 〈x,A−1x〉`2 ,

as k ↑ N . In exact arithmetic, the method takes at most N steps: In calculations with finite-precision
arithmetic the number of steps can be much larger than N . The quantity one monitors over the course of
the conjugate gradient algorithm is the norm ‖rk‖`2 . By [16],

‖rk‖`2 ≤ 2

(
1 +

2√
κ

)−2k

‖r0‖`2 , (1.4)

from which we see that the larger κ is, the slower the convergence. It is remarkable that the bound (1.4)
does not depend explicitly on n, only implicitly through κ. We note that (1.4) was derived in [16] under
the assumption of exact arithmetic, but (1.4) is also useful in calculations with finite precision, provided the
effect of rounding errors is anticipated to be small.

We are interested in the statistical behavior of the conjugate gradient algorithm (1)-(3) when A and b are
chosen randomly. Let b have iid entries distributed according to a distribution F̃ which may differ from the
matrix-entry distribution F . We use the pair E = (F, F̃ ) to refer to the ensemble, encoding the distribution
of the entries of both A and b in Ax = b. Let ε > 0, E, N > 0 and n > 0 be given. For a pair (A, b) we define
the halting time Tε,E,N,n = Tε,E,N,n(A, b) to be the smallest integer such that ‖rk‖`2 = ‖rk(A, b)‖`2 ≤ ε. The
residuals in the conjugate gradient method decrease monotonically, thus ‖rk(A, b)‖`2 ≤ ε for k ≥ Tε,E,N,n.

In [6], the authors performed a numerical study of Tε,E,N,n as a random variable. For n = N + b2
√
Nc,

Monte Carlo simulations for different ensembles E were used to show that the fluctuations

τε,E,N,n =
Tε,E,N,n − E[Tε,E,N,n]√

Var[Tε,E,N,n]
,

of Tε,E,N,n had a universal limiting form5. The motivational goal of this paper is to further our understanding
of the universality that is observed in [6] under the scaling (1.1). To this end, we focus on the condition
number κ = κN,n = κN,n(A) of the matrix A and use the the rigorous results above, numerical simulations
of τε,E,N,n [6] and κN,n, and the estimate (1.4), to infer properties of the halting time distribution.

Numerical results presented in Appendices A.1– A.3 illustrate the sharply different behavior of the condi-
tion number and halting time distributions in the cases α = 0, α = b2

√
Nc and α = N . Universality appears

to depend critically on the choice α = b2
√
Nc: If α = 0 or α = N , the histogram for τε,E,N,n does not

appear to have a universal form. The numerical experiments also reveal an interplay between the tightness
of the condition number distribution and tightness of the halting time distribution that is consistent with
the following upper bound on Tε,E,N,n, which is obtained by taking a logarithm of (1.4):

Tε,E,N,n ≤
1

2

log ‖r0‖`2 − log ε+ log 2

log
(

1 + 2√
κ

) .

In order to use this bound to estimate the expectation of T jε,E,N,n, j = 1, 2, . . . one must estimate

E

 1

logj
(

1 + 2√
κ

)
 =

∫ ∞
1

1

logj
(

1 + 2√
s

)dP(κ ≤ s). (1.5)

We make some observations:

(i) Since logj
(

1 + 2√
s

)
= O(s−j/2) as s → ∞, (1.5) does not provide an a priori bound on the higher

moments of Tε,E,N,n, N and n fixed, if the distribution P(κN,n ≤ s) is heavy-tailed.

(ii) The right hand side of (1.5) may diverge as N →∞ even when all moments are finite for finite N .

5By universal, we mean that the histogram for τε,E,N,n is independent of E for N sufficiently large and ε sufficiently small.
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(iii) When the system is well-conditioned, for example if κN,n = C+N−aξ, a > 0, C ≥ 1, for a fixed, positive
random variable ξ with exponential tails, all moments of Tε,E,N,n are bounded by an N -independent
constant.

In Appendix A.1, we present numerical experiments on both κN,n and τε,E,N,n in the ill-conditioned case,

n = N , assuming F̃ is uniform on [−1, 1] and F ∼ Xc or F is Bernoulli. The numerical results in Figure 11(b)
and 11(c) show that τε,E,N,n does not converge as n,N → ∞ (Note from Figure 11(b), in particular, that
the kurtosis for both distributions does not converge.). This case illustrates point (i): from [7] we see that
the condition number distribution has infinite expectation and hence the right hand side of (1.5) is infinite.
This is consistent with the numerical results, since the empirical mean of the halting time is (much) larger
than N . Since the maximum number of steps in the conjugate gradient method is N in exact arithmetic,
this also shows that round-off errors have degraded the accuracy of the computation.

The well-conditioned case, n = 2N , is considered in Appendix A.2. We assume F̃ is uniform on [−1, 1]
and F ∼ Xc or F is Bernoulli. In contrast with the case above, the condition number κN,n satisfies (iii) in the
limit N →∞ with a = 2/3 implying, in particular, by (1.5), that supN E[Tε,E,N,n], supN Var[Tε,E,N,n] <∞.
The numerical results in Figures 12(b) and 12(d) indicate that the random variable τε,E,N,n remains discrete
in the large N limit. Indeed, this is necessarily true for any sequence of integer-valued random variables
(XN )N≥0 with supN Var[XN ] <∞: Clearly, in such a case the fluctuations

XN − E[XN ]√
Var[XN ]

,

cannot have a limiting distribution with a density. The only universal limit possible here is a statistically
trivial point mass.

Finally, we turn to the critical scaling, n = b2
√
Nc in Appendix A.3. It follows from Theorem 1.3 that

E[κN,n] = O(N), Var[κN,n] = O(N4/3), N →∞.

As in (ii), the estimates on the right hand side of (1.5) diverge as N → ∞. This divergence is consistent
with an empirically observed divergence in the mean and variance of Tε,E,N,n. Indeed, in contrast with the
well-conditioned case, such a divergence is necessary to obtain a non-trivial limiting distribution for τε,E,N,n.
Further, in contrast with the ill-conditioned case, the empirical mean of the halting time, while large, is
(much) smaller than N and rounding errors do not appear to play a dominant role.

The paper is organized as follows. In Section 2 we review the global eigenvalue density for LUE and
discuss its connection to Laguerre polynomials and hence to a Riemann–Hilbert problem. In Section 3, we
use classical Riemann–Hilbert analysis to rigorously determine the asymptotics of the Laguerre polynomials
that appear in the global eigenvalue density. In Section 4 we use these asymptotics to prove limit theorems
for the distribution of the largest and smallest eigenvalues, along with the condition number. This final
section contains the proofs of the main results. As the behavior of the conjugate gradient algorithm is
universal with respect to the choice of E above, it is sufficient to consider one particular ensemble. For this
reason we have decided to study the analytically tractable case E = LUE. We include a table of notation to
guide the reader.

Acknowledgments. This work was supported in part by grants NSF-DMS-1300965 (PD), NSF-DMS-
1411278 (GM) and NSF-DMS-1303018 (TT). The authors thank Ivan Corwin, Anne Greenbaum, Ken
McLaughlin and Brian Rider for helpful conversations.

Nomenclature

Ai The Airy function, page 1

α α = N − n, page 1

w̌ w̌(z) = (2α+ 2)z − α log→ z + (α+ 1)πi, page 22
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`N `N = 2N(2 log 2 + 1), page 12

ŵ ŵ(x) = (2α+ 2)x− α log x, page 12

H(1)
α , H(2)

α Hankel functions, page 18

Iα, Kα Modified Bessel functions, page 18

log←(·) The principal branch of the logarithm, page 10

(·)γ← The principal branch of the root, page 10

KN The correlation kernel, page 7

N The solution of the RH problem with a skew jump, page 15

ν ν = 4N + 2α+ 2, page 2

V The left factor for the correlation kernel near z = 1, page 31

W The right factor for the correlation kernel near z = 1, page 31

φ← The indefinite integral of the EM cut along (−∞, 1], page 10

φ→ The indefinite integral of the EM cut along [0,∞), page 10

ψ← ψ←(z) = (z)
1/2
← + (z − 1)

1/2
← , page 12

ψ→ ψ→(z) = (z)
1/2
→ + (z − 1)

1/2
→ , page 11

log→(·) The branch of the logarithm that is cut on [0,∞) with a real limit from above, page 10

(·)γ→ The branch of the root that is cut on [0,∞) with a positive limit from above, page 10

τε,E,N,n The halting time fluctuations, page 4

A The solution of a Riemann–Hilbert problem near z = 0, page 24

c The constant in the critical scaling α = b
√

4cNc, page 1

D The solution of a diagonal RH problem, page 16

D∞ D(∞), depends on N,α, page 16

f← The change of variables near z = 1, page 20

f→ The change of variables near z = 0, page 22

g The log transform of the EM, page 10

M M = N + 1
2 (α+ 1), page 20

MAi The analytic prefactor for S←(z), page 20

N The dimension, N ×N , of the LUE, page 1

PAi The classical Airy parametrix, page 17

PBessel The classical Bessel parametrix, page 18

S∞ The solution of the truncated RH problem on [0, 1], page 15

S← The local parametrix near z = 1, page 20
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S→ The local parametrix near z = 0, page 22

Tε,E,N,n The halting time, page 4

V The left factor for the correlation kernel near z = 0, page 29

W The right factor for the correlation kernel near z = 0, page 29

wν wν(x) = xαe−νx, page 8

EM The Marchenko–Pastur equilibrium measure, page 10

LUE Laguerre Unitary Ensemble, page 1

2 The Laguerre Polynomials and the Laguerre Unitary Ensemble

2.1 The Laguerre kernel

We first recall the definition of the Laguerre kernel. These ideas are well-known and may be found in [9,
Section 2]. Let A = XX∗ where X is an N × (N + α) matrix of iid standard complex Gaussian random
variables. Then the eigenvalues 0 ≤ λmin = λ1 ≤ λ2 ≤ · · · ≤ λN = λmax of A have the joint probability
density

pN (λ1, . . . , λN ) =
1

C
(α)
N

N∏
j=1

λαj e−λj
∏

1≤j<k≤N

|λj − λk|2.

The statistics of eigenvalues are more conveniently expressed as determinants involving Laguerre polynomials.

Recall that the Laguerre polynomials, {L(α)
j (x)}∞j=0, are a family of orthogonal polynomials on [0,∞),

orthogonal with respect to the weight e−xxα. We normalize them as follows[20]

L
(α)
j (x) = kjx

j +O(xj−1), kj =
(−1)j

j!
,∫ ∞

0

L
(α)
i (x)L

(α)
j (x)e−xxαdx = δij

Γ(j + α+ 1)

j!
. (2.1)

We then define the associated wavefunctions, orthogonal with respect to Lebesgue measure on [0,∞),

ψj(x) :=

(
j!

Γ(j + α+ 1)

)1/2

e−x/2xα/2L
(α)
j (x),∫ ∞

0

ψj(x)ψi(x)dx = δij ,

and the correlation kernel

KN (x, y) =

N−1∑
j=0

ψj(x)ψj(y), 0 < x, y <∞.

The kernel KN defines a positive, trace-class operator on L2([a, b]). Since KN has finite rank, it is clearly
trace class. To see that KN is positive, consider f ∈ C∞((s, t)) with compact support and note that∫ t

s

∫ t

s

KN (x, y)f(x)f∗(y)dxdy =

∫ t

s

∫ t

s

N−1∑
j=0

ψj(x)ψj(y)f(x)f∗(y)dxdy

=

(∫ t

s

ψj(x)f(x)dx

)(∫ t

s

ψj(x)f∗(x)dx

)
=

∣∣∣∣∫ t

s

ψj(x)f(x)dx

∣∣∣∣2 .
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It is by now classical that the statistics of the eigenvalues λ1 . . . < λN may be expressed in terms of
Fredholm determinants of the kernel KN [3, 9] (which are well-defined since KN is trace-class). In particular,
the statistics of the extreme eigenvalues are recovered from the determinantal formula

P (no eigenvalues in [a, b]) = det(I −KN |L2([a,b])). (2.2)

By the Christoffel–Darboux formula [24], we may also write

KN (x, y) =
N !

Γ(N + α)

(
Γ(N + α+ 1)Γ(N + α)

N !(N − 1)!

)1/2(
ψN−1(x)ψN (y)− ψN (x)ψN−1(y)

x− y

)
=

N !

Γ(N + α)
e−(x+y)/2xα/2yα/2

L
(α)
N (y)L

(α)
N−1(x)− L(α)

N (x)L
(α)
N−1(y)

x− y
.

Thus, questions about the asymptotic behavior of KN (x, y) as N → ∞ reduce to the study of the large N

asymptotics of L
(α)
N and L

(α)
N−1. What is new in this paper is the study of these asymptotics in the scaling

regime for α, see (1.1).

2.2 The Riemann-Hilbert approach to Laguerre polynomials

To compute the asymptotics of the Laguerre polynomials we use their representation in terms of the solution
of a Riemann–Hilbert problem and follow [27] for the general theory. We also refer to [21] for some explicit
calculations. We note that we use Riemann–Hilbert theory as opposed to using the integral representation
for Laguerre polynomials to determine the appropriate asymptotics. This is because in the scaling region of
interest the Riemann–Hilbert method gives a direct and algorithmic approach to the difficulties arising from
turning point considerations. Define the rescaled polynomials (cf. [21])

L̂
(α)
j (x) = L

(α)
j (νx), ν = 4N + 2α+ 2, (2.3)

πj(x) = (−1)jj!ν−jL̂
(α)
j (x) = xn +O(xn−1). (2.4)

Here {πj(x)} are the monic orthogonal polynomials for the weight

wν(x) = xαe−νx. (2.5)

This scaling is chosen so that the asymptotic density of the zeros of L̂
(α)
N (x) as N →∞ is supported on the

interval [0, 1] (see [21] for α fixed). Following [8] we define

Y (z) =

[
πN (z) CR+ [πNwν ](z)

cNπN−1(z) cNCR+ [πN−1wν ](z)

]
, z ∈ C \ R+, (2.6)

where CΓ denotes the Cauchy integral operator

CΓf(z) =
1

2πi

∫
Γ

f(s)

s− z
ds,

and, by (2.1),

c−1
N = − 1

2πi

∫
R+

π2
N−1(s)wν(s)ds = − (N − 1)!Γ(N + α)ν−ν/2+2

2πi
.

In the remainder of the manuscript we use the notation6 Y ±(z) = Y±(z), z ∈ Γ to denote the boundary
values of an analytic function Y (z) from the left (−) or the right (+) side of as one moves along an oriented
contour Γ. See Figure 1 for schematic of a contour Γ. We also use the notation

C±Γ f(z) := (CΓf(z))±.

By general theory, the matrix Y (z) defined in equation (2.6), is the unique solution to the following
Riemann–Hilbert problem:

6We allow the ± to be in either the sub- or super-script for notational convenience.
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Riemann–Hilbert Problem 2.1. The function Y (z) satisfies the following properties:

1. Y (z) is analytic on C \ [0,∞) with limits Y ±(x) as z → x ∈ (0,∞) from above or below;

2. Y +(x) = Y −(x)

[
1 wν(x)
0 1

]
for x ∈ (0,∞); and

3. Y (z) =
(
I +O(z−1)

)
zNσ3 as z →∞. Here σ3 = diag(1,−1).

We focus our effort on the analysis of Y (z), since this yields the asymptotics of KN via the identity

KN (x, y) = −w
1
2
ν (x)w

1
2
ν (y)

2πi

[
0 1

]
Y −1

+ (x)Y+(y)
[

1 0
]>

x− y
, 0 < x, y <∞. (2.7)

Indeed, the definitions of the limits Y ±, the weight wν , and the rescaled Laguerre polynomials (2.3), yield
the identity

KN (x, y) = w
1
2
ν (x)w

1
2
ν (y)

N !να

Γ(N + α)

L̂
(α)
N (y)L̂

(α)
N−1(x)− L̂(α)

N (x)L̂
(α)
N−1(x)

x− y

= w
1
2
ν (x)w

1
2
ν (y)

νν/2−2

Γ(N + α)
(ν−2N+1)N !

L̂
(α)
N (y)L̂

(α)
N−1(x)− L̂(α)

N (x)L̂
(α)
N−1(x)

x− y

=
w

1
2
ν (x)w

1
2
ν (y)

c−1
N (2πi)

πN (y)πN−1(x)− πN (x)πN−1(y)

x− y

=
w

1
2
ν (x)w

1
2
ν (y)

2πi

Y +
11(y)Y +

21(x)− Y +
11(x)Y +

21(y)

x− y
.

Since det(Y (z)) ≡ 1, this identity is equivalent to equation (2.7).

−
+

−
+

Γ

Figure 1: An example of an oriented contour Γ.

The goal of the reminder of this section is to solve for Y (z) asymptotically as N → ∞. This requires a
series of explicit transformations or deformations:

• Y 7→ T so that T (z) ∼ I as z →∞,

• T 7→ S so that the jump matrices for S tend uniformly to the identity matrix on closed subsets of
C \ [0, 1], and

• S 7→ E where the jump matrices of E tend to the identity matrix in L2 ∩ L∞.

This procedure is now standard and a general reference is [4].
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2.3 The first deformation: normalization at infinity

Before we proceed we introduce additional notation to fix branch cuts. For γ ∈ R let

z 7→ (z)
γ
← = zγ ,

have its branch cut on (−∞, 0] such that (z)
γ
← > 0 for z > 0, i.e., the principal branch. By contrast, let

z 7→ (z)
γ
→ ,

have its branch cut on [0,∞) in order that (z)
γ
→,+ > 0 for z > 0, when the real axis is oriented left-to-right,

i.e. the limit from above is positive. Note that for Im z > 0, (z)
γ
→ = (z)

γ
←. If z < 0, then (z)

γ
→ = |z|eiπγ .

We similarly define branches of the logarithm. The map

z 7→ log←(z) = log(z),

denotes the principal branch of the logarithm, whereas

z 7→ log→(z),

has its branch cut on [0,∞) so that log→,+(z) > 0 for z > 1. It is then clear that

log→(z) =

{
log←(z), if Im z > 0,
log←(z) + 2πi, if Im z < 0.

In this notation the left arrow ← is used for emphasis and signifies the principal branch. It is sometime
omitted when there is no confusion. Also

√
· is always used to denote the non-negative square root of a

non-negative number.
As in [5], we remove the polynomial behavior of Y (z) at infinity using the log transform of the equilibrium

measure as follows. In our case α/N → 0 as N → ∞ and the equilibrium measure (EM) is the so-called
Marchenko–Pastur distribution [19]

dµ(s) =
2

π

√
1− s
s

χ[0,1](s)ds, (2.8)

where χA denotes the characteristic function of the set A. We define the log transform

g(z) :=

∫ 1

0

log→(z − s)dµ(s). (2.9)

We also introduce the following functions to simplify the analysis of the asymptotic behavior of g as z →∞
and its jumps across the interval (0,∞):

φ→(z) := 2

∫ z

0

(
s− 1

s

)1/2

→
ds, z ∈ C \ [0,∞), (2.10)

φ←(z) := 2

∫ z

1

(
s− 1

s

)1/2

←
ds, z ∈ C \ (−∞, 1]. (2.11)

Lemma 2.1. (i) For x ≥ 0, the upper and lower limits of g are given by

g+(x) =

∫ 1

0

log |x− s|dµ(s) + πi

∫ 1

x

dµ(s),

g−(x) =

∫ 1

0

log |x− s|dµ(s) + 2πi− πi

∫ 1

x

dµ(s),

g+(x)− g−(x) = −2πi

∫ x

0

dµ(s).
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(ii) eNg(z) = zN (1 +O(z−1)) as z →∞, uniformly in C \ [0,∞).

(iii) For z > 0

g±(z) = −φ±→(z) + 2z − (2 log 2 + 1) + πi, (2.12)

φ+
→(z) = iπ + φ←(z), (2.13)

φ−→(z) = −iπ + φ←(z). (2.14)

Proof. Parts (i) and (ii) follow directly from the definition of g(z) and log→(z). To establish (iii), we first
show that

g(z) + φ→(z)

extends to an entire function of z. First, it is clear that the function is bounded in the finite plane, and
analytic for Re z < 0. For Re z > 0 we check the boundary values. For 0 < Re z < 1 we have

g+(z) + φ+
→(z) = g−(z)− 2πi

∫ z

0

dµ(s) + φ+
→(z) = g−(z) + φ−→(z). (2.15)

Now, if z > 1 we use (2.13) and (2.14) and (2.15) holds. This shows that g(z) + φ→(z) is an entire function
because 0 and 1 would have to be bounded, isolated singularities. To establish (2.12) we turn to an explicit
integration of φ→(z). Consider for 0 < z < 1

φ+
→(z) = 2i

∫ z

0

√
1− s
s

ds
s=t2
= 4i

∫ √z
0

√
1− t2dt = 2i(

√
z(1− z) + arcsin

√
z).

Then, we must consider the analytic continuation of this function so that it is analytic in C\ [0,∞). We find
that if θ = arcsin

√
z then

θ = −i log←(i
√
z ±

√
1− z2).

If we take the (−) sign, we actually need π − θ to consider the correct branch. From this, it follows that

2i(
√
z(1− z) + arcsin

√
z) = 2 (z(z − 1))

1/2
→,+ + 2πi− 2 log←(i (z)

1/2
+ + i (z − 1)

1/2
→,+).

Define

ψ→(z) = (z)
1/2
→ + (z − 1)

1/2
→ .

First, it can be shown that if ψ→(z) = c ∈ R then z > 1. But for z > 1, ±ψ±→(z) > 0 so that ψ→ must map
into either the upper- or lower-half plane. We find that Imψ→(z) > 0 for z ∈ C \ [0,∞). From this we find
the analytic continuation to the whole complex plane

φ→(z) = 2 (z(z − 1))
1/2 − 2 log← ψ→(z) + iπ, z ∈ C \ [0,∞),

where log← an be replaced with log→ because Imψ→(z) ≥ 0. Also, for this reason, log← ψ→(z) is analytic
anywhere ψ→(z) is. We also have

φ→(z) = 2z − log z − (2 log 2 + 1) + πi + o(1), g(z) = log z + o(1), as z →∞. (2.16)

This proves (2.12).

We now use this proof to obtain a closed-form expression for φ←(z). First, φ→(z) − πi = φ←(z) for
Im z > 0 and then for 0 < z < 1

φ←(z) = 2 (z(z − 1))
1/2
+ − 2 log←(i (z)

1/2
→,+ + i (z − 1)

1/2
→,+) + πi

= 2 (z(z − 1))
1/2
+ − 2 log←(i (z)

1/2
←,+ + i (z − 1)

1/2
←,+) + πi

= 2 (z(z − 1))
1/2
+ − 2 log← ψ+

←(z), (2.17)

ψ←(z) = (z)
1/2
← + (z − 1)

1/2
← . (2.18)
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Therefore, the analytic continuation is given by

φ←(z) = 2 (z(z − 1))
1/2 − 2 log← ψ←(z), z ∈ C \ (−∞, 1].

and ψ←(z) > 0 for z ∈ C \ (−∞, 1].
Define `N = 2N(2 log 2 + 1) and the matrix function

T (z) := e
1
2 `Nσ3Y (z)e−(Ng(z)+ 1

2 `N )σ3 , (2.19)

which solves the following problem.

Riemann–Hilbert Problem 2.2. The function T (z) satisfies the following properties:

1. T (z) is analytic in C \ [0,∞) and has limits T ± (x) as z → x ∈ [0,∞) from above or below.

2. T+(x) = T−(x)JT (x) for x ∈ [0,∞) where

JT (x) =



[
e2Nφ+

→(x) e−ŵ(x)

0 e2Nφ−→(x)

]
, if x ∈ (0, 1),

[
1 e−2Nφ+

→(x)−ŵ(x)

0 1

]
, if x ∈ [1,∞).

ŵ(x) = (2α+ 2)x− α log x.

3. T (z) = I +O(z−1) as z →∞.

2.4 The second deformation: lensing

We factor the matrix JT on (0, 1) as follows:

JT (x) =

[
1 0

e2Nφ−→(x)+ŵ(x) 1

] [
0 e−ŵ(x)

−eŵ(x) 0

] [
1 0

e2Nφ+
→(x)+ŵ(x) 1

]
. (2.20)

This allows a lensing of the problem. Let Γ↑ and Γ↓ be contours as in Figure 2 and set

S(z) :=


T (z), if z is outside the region enclosed by Γ↑ and Γ↓,

T (z)

[
1 0

−e2Nφ→(z)+ŵ(z) 1

]
, if z is inside the region enclosed by [0, 1] and Γ↑,

T (z)

[
1 0

e2Nφ→(z)+ŵ(z) 1

]
, if z is inside the region enclosed by [0, 1] and Γ↓.

We obtain the following Riemann–Hilbert problem for S.

Riemann–Hilbert Problem 2.3. The function S(z) satisfies the following properties:

1. S(z) is analytic on C \ Γ,

2. S+(s) = S−(s)JS(s) where JS is defined by

JS(s) =



[
1 0

e2Nφ→(s)+ŵ(s) 1

]
, if s ∈ Γ↑ ∪ Γ↓,[

0 e−ŵ(s)

−eŵ(s) 0

]
, if s ∈ (0, 1),[

1 e−2Nφ+
→(s)−ŵ(s)

0 1

]
, if s ∈ (1,∞).

12



Γ↑

Γ↓

0 1

Γ

Figure 2: The jump contours Γ for S. The region bounded by Γ↑ and Γ↓ is called the “lens”.

3. S(z) = O(1) as z → 0 from outside the lens,

4. S(z)

[
1 0

±e2Nφ→(z)+ŵ(z) 1

]
= O(1) as z → 0 inside the lens. The (+) sign is taken for z in the

region enclosed by [0, 1] and Γ↑ and the (−) sign is taken in the region enclosed by [0, 1] and Γ↓,

5. S(z) = I +O(z−1) as z →∞.

This deformation is valid for any choice of contours Γ↑ and Γ↓ arranged as in Figure 2.

Lemma 2.2. With α as in (1.1), there exist positive constants cδ and Dδ such that

‖JS − I‖L∞(Γ↑\(B(0,δ)∪B(1,δ))), ‖JS − I‖L∞(Γ↓\(B(0,δ)∪B(1,δ))) ≤ Dδe
−Ncδ ,

‖JS − I‖L1∩L∞((1+δ,∞)) ≤ Dδe
−Ncδ .

Proof. We now obtain an upper bound on the real part of φ→. For Im z > 0 the function (z)
1/2
→ agrees with

the principal branch. For z = x+ iy,

Im
z − 1

z
=

y

x2 + y2
.

It is also clear that for arg z ∈ (0, π), Im (z)
1/2
→ ≥ 1

2 |z|
−1/2 Im z. From this, the simple estimate follows for

Im z > 0

Im

(
z − 1

z

)1/2

→
≥ 1

2

Im z

|z − 1|1/2|z|3/2
.

Assume 0 ≤ Re z ≤ 1, Im z > 0 and consider the real part of the integral∫ z

0

(
s− 1

s

)1/2

→
ds =

∫ Re z

0

(
s− 1

s

)1/2

→,+
ds+

∫ z

Re z

(
s− 1

s

)1/2

→
ds.

The first term is purely imaginary and the only contribution to the real part is from the second term. Then

Reφ→(z) ≤ −
∫ | Im z|

0

|y|
|(Re z − 1)2 + y2|1/4|(Re z)2 + y2|3/4

dy ≤ −
∫ | Im z|

0

|y|
(1 + y2)2

dy. (2.21)

This quantity on the right-hand side is bounded uniformly above by a negative constant provided Im z ≥
δ > 0. A similar argument follows for Im z < 0 resulting in the same estimate.

From this discussion, it follows that

‖JS − I‖L∞(Γ↑\(B(0,δ)∪B(1,δ))), ‖JS − I‖L∞(Γ↓\(B(0,δ)∪B(1,δ))) ≤ Dδe
−Ncδ ,
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for some positive constants Dδ, cδ. For z > 1 we also look to estimate the real part of φ→(z). It follows that

Reφ+
→(z) = Reφ+

←(z) =

∫ z

1

∣∣∣∣s− 1

s

∣∣∣∣1/2 ds,

which is necessarily a monotonic, strictly increasing function giving the estimate

‖JS − I‖L1∩L∞((1+δ,∞)) ≤ D′δe−Nc
′
δ ,

for some new positive constantsD′δ, c
′
δ. These estimates hold even in the case α→∞ because e−(2α+2)z+α log z ≤

1 for z ≥ 1. The lemma follows from a redefinition of cδ, Dδ.

We require the following lemma in the sequel.

Lemma 2.3.

φ→(z) 6= 0, z ∈ C \ [0,∞),

φ+
→(0) = 0,

φ+
→(z) 6= 0, z > 0.

(2.22)

Proof. We first claim that

sign Im

(
z − 1

z

)1/2

→
= sign Im z. (2.23)

Assume that there exists two points a, b ∈ C+ so that

Im

(
a− 1

a

)1/2

→
> 0 and Im

(
b− 1

b

)1/2

→
< 0.

It follows that there exists a point z∗ on the line that connects a and b so that Im
(
z∗−1
z∗

)1/2

→
= 0. Then

(z∗ − 1)/z∗ > 0 contradicting that z∗ is in the open upper-half plane. Similar considerations follow in
C− and the sign of the imaginary part is constant in each open half plane. Then (2.23) follows from the

Cauchy–Riemann equations as
(
z−1
z

)1/2
→ is real with a positive derivative for z < 0.

Similarly, it can be shown that Re
(
z−1
z

)1/2
→ > 0 for z ∈ [0, 1]. We write

f(s) = 2 Re

(
s− 1

s

)1/2

→
, g(s) = 2 Im

(
s− 1

s

)1/2

→
,

φ→(z) =

∫ Re z

0

f+(s)ds+ i

∫ Re z

0

g+(s)ds

+ i

∫ Im z

0

f(Re z + is)ds−
∫ Im z

0

g(Re z + is)ds

Then for Re z ≥ 1, z ∈ C+,

Imφ→(z) = π +

∫ Im z

0

f(Re z + is)ds ≥ π.

For Re z ≤ 1, z ∈ C+,

Reφ→(z) =

∫ Re z

0

f+(s)ds−
∫ Im z

0

g(Re z + is)ds < 0,
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because g is positive in the upper-half plane, f+(s) = 0 for 0 < s < 1 and f+(s) > 0 for s < 0. Also, for

z < 0, φ→(z) =
∫ Re z

0
f(s)ds < 0. Hence φ→(z) cannot vanish in C+ \ [0,∞) and φ+

→(z) cannot vanish for
z ≥ 1.

For z ∈ C−, φ→(z) = φ→(z∗)∗ because the two functions are equal for z < 0. Thus, it remains to show
that φ+

→(z) vanishes on [0, 1] only at z = 0. From(
z − 1

z

)1/2

→,+
= i

√
1− z
z

for 0 < z < 1,

Imφ→(z) is a strictly monotone function on (0, 1) and the lemma follows.

This leads us to consider the solution of the Riemann–Hilbert problem obtained by removing the jumps
on Γ↑, Γ↓ and [1,∞).

Riemann–Hilbert Problem 2.4. We seek the function S∞(z) with the following properties:

1. S∞(z) is analytic on C \ [0, 1],

2. S+
∞(x) = S−∞(x)

[
0 e−ŵ(x)

−eŵ(x) 0

]
for x ∈ (0, 1),

3. S±∞(x) diag
(
|x| 12α, |x|− 1

2α
)
∈ L2((0, 1)), and

4. S∞(z)→ I as z →∞.

Remark 2.1. A standard argument shows that S∞ with these properties is unique if it exists.

We now show that S∞ exists by an explicit construction. We first start with the determination of a
matrix function N which satisfies the following conditions

N+(x) = N−(x)

[
0 1
−1 0

]
, x ∈ (0, 1), N (∞) = I.

Consider

U :=
1√
2

[
1 −i
i −1

]
, so that

[
0 1
−1 0

]
= U diag(i,−i)U−1.

Direct calculation shows that M = U−1NU satisfies the conditions

M+(x) =M−(x)

[
i 0
0 −i

]
, x ∈ (0, 1) M(∞) = I.

Another direct calculation shows that M(z) = diag(v(z), 1/v(z)) for v(z) =
(
z−1
z

)1/4
→ and therefore

N (z) = UM(z)U−1 =
1

2

 v(z) +
1

v(z)
−iv(z) +

i

v(z)

iv(z)− i

v(z)

1

v(z)
+ v(z)

 .
It is also important to note that for z ∈ C \ [0, 1] we have

v(z) =
(z − 1)

1/4
→

(z)
1/4
→

=
(z − 1)

1/4
←

(z)
1/4
←

.
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We write the jump condition for S∞(z) as

S+
∞(x) = S−∞(x)

[
0 e−ŵ(x)

−eŵ(x) 0

]
,

N−1
+ (x)S+

∞(x) =

[
0 −1
1 0

]
N−1
− (x)S−∞(x)

[
0 e−ŵ(x)

−eŵ(x) 0

]
. (2.24)

We make the ansatz D(z) = diag(d(z), 1/d(z)) where D(z) := N−1(z)S∞(z). Then (2.24) turns out to be
equivalent to the condition d+(z)d−(z) = eŵ(z). Formally, by taking the logarithm and letting h(z) = log d(z)

h+(z) + h−(z) = (2α+ 2)z − α log z, 0 < z < 1.

To find h(z) we let h(∞) 6= 0 (d(∞) 6= 1) and we recall (2.16). Note that φ+
→(z) + φ−→(z) = 0 for 0 < z < 1

and φ+
→(z)− φ−→(z) = 2πi for z > 1. Following [21], we claim that

h(z) = −1

2
α log→ z + (α+ 1)z +

1

2
απi− α1

2
φ→(z)− (z(z − 1))

1/2
, (2.25)

is an appropriate choice. First, we have that for z > 1,

h+(z) = −1

2
α log z + (α+ 1)z +

1

2
απi− α1

2
φ+
→(z)−

√
z(z − 1),

h−(z) = −1

2
α(log z + 2πi) + (α+ 1)z +

1

2
απi− α1

2
(φ+
→(z)− 2πi)−

√
z(z − 1) = h+(z).

Therefore h is analytic on C \ [0, 1]. So for 0 < z < 1

h+(z) = −1

2
α log z + (α+ 1)z +

1

2
απi− α1

2
φ+
→(z)− i

√
z(1− z),

h−(z) = −1

2
α(log z + 2πi) + (α+ 1)z +

1

2
απi− α1

2
φ−→(z) + i

√
z(1− z),

h+(z) + h−(z) = (2α+ 2)z − α log z.

Finally, limz→∞ h(z) = 1
2α(2 log 2+1)+ 1

2 follows from (2.16). Then D(z) = eh(z)σ3 , D∞ := e(α log 2+ 1
2 (α+1))σ3

and then

S∞(z) = D−1
∞ N (z)D(z).

We note that we can also write, using (2.13), D(z) = eĥ(z)σ3 where

ĥ(z) = −1

2
α log← z + (α+ 1)z − α1

2
φ←(z)− (z(z − 1))

1/2
. (2.26)

3 The asymptotics of critically-scaled Laguerre polynomials

From the above calculations, one may guess that S(z) ≈ S∞(z) in some sense as N → ∞. However, this
is not justified because the convergence of the jump matrix of S to the jump matrix of S∞ is not uniform.
Actually, because of the singularity behavior of S∞(z) at z = 0, we’ll see that S(z) 6≈ S∞(z). We now
develop local parametrices to solve the Riemann–Hilbert problem for S locally near z = 0 and z = 1. This
requires the construction of the so-called Airy and Bessel parametrices.

Remark 3.1. Unless otherwise noted we use the convention[
M11 M12

M21 M22

]
O(α) =

[
O(α)M11 O(α)M12

O(α)M21 O(α)M22

]
.

Specifically, O(·) should be treated as a scalar, but it can be a different function in each component.
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γ1

γ2

γ3

γ4

III

III IV

Figure 3: Dividing the complex plane to define the Airy parametrix with the contour ΣAi = γ1∪γ2∪γ3∪γ4.
The contour γ2 makes the angle π/3 with γ3.

3.1 The classical Airy parametrix.

First, we divide the complex plane for variable ξ into sectors, see Figure 3. Let ω = e2πi/3 and Ai(ξ) denote
the Airy function. Define

PAi(ξ) =



[
Ai(ξ) Ai(ω2ξ)
Ai′(ξ) ω2 Ai′(ω2ξ)

]
ω−σ3/4, if ξ ∈ I,

[
Ai(ξ) −ω2 Ai(ωξ)
Ai′(ξ) −Ai′(ωξ)

]
ω−σ3/4, if ξ ∈ IV,

[
Ai(ξ) Ai(ω2ξ)
Ai′(ξ) ω2 Ai′(ω2ξ)

]
ω−σ3/4

[
1 0
−1 1

]
, if ξ ∈ II,

[
Ai(ξ) −ω2 Ai(ωξ)
Ai′(ξ) −Ai′(ωξ)

]
ω−σ3/4

[
1 0
1 1

]
, if ξ ∈ III.

(3.1)

From the asymptotic calculations in Appendix B.1, it follows that PAi solves the following Riemann–
Hilbert problem:
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Riemann–Hilbert Problem 3.1.

P+
Ai(ξ) = P−Ai(ξ)JAi(ξ), ξ ∈ ΣAi,

JAi(ξ) =



[
1 1
0 1

]
, if ξ ∈ γ1,

[
1 0
1 1

]
, if ξ ∈ γ2 ∪ γ4,

[
0 1
−1 0

]
, if ξ ∈ γ3.

,

PAi(ξ) =

[
1

2
√
π
ξ−1/4e−

2
3 ξ

3/2 ω1/4

2
√
π
ξ−1/4e

2
3 ξ

3/2

− 1
2
√
π
ξ1/4e−

2
3 ξ

3/2 ω1/4

2
√
π
ξ1/4e

2
3 ξ

3/2

]
ω−σ3/4

(
I +O(ξ−3/2)

)
.

We will come back to this and use it heavily later. We also rewrite the the asymptotics in a more
convenient form:

PAi(ξ) =
1

2
√
π
ξ−

1
4σ3EAi(ξ)e

− 2
3 ξ

3/2σ3

EAi(ξ) =

[
ω−1/4(1 +O(ξ−3/2)) ω1/2(1 +O(ξ−3/2)),
−ω−1/4(1 +O(ξ−3/2)) ω1/2(1 +O(ξ−3/2))

]

3.2 The classical Bessel parametrix.

The Airy parametrix has the characteristic that four contours exit from the origin in the ξ plane. This is
the case, locally, near z = 1 in our Riemann–Hilbert problem for S. Near z = 0 it, the contours look more
like those in Figure 4. Define

PBessel(ξ) =



[
Iα(2ξ1/2) i

π Kα(2ξ1/2)
2πiξ1/2 I′α(2ξ1/2) −2ξ1/2 K′α(2ξ1/2)

]
, if ξ ∈ I ∪ IV,

[
1
2 H(1)

α (2(−ξ)1/2) 1
2 H(2)

α (2(−ξ)1/2)

πξ1/2H(1)
α

′
(2(−ξ)1/2) πξ1/2H(2)

α

′
(2(−ξ)1/2)

]
e

1
2απiσ3 , if ξ ∈ II,

[
1
2 H(2)

α (2(−ξ)1/2) − 1
2 H(1)

α (2(−ξ)1/2)

−πξ1/2H(2)
α

′
(2(−ξ)1/2) πξ1/2H(1)

α

′
(2(−ξ)1/2)

]
e−

1
2απiσ3 , if ξ ∈ III.

(3.2)

Here Iα, Kα, H(2)
α and H(1)

α are the modified Bessel and Hankel functions [20]. From the calculations in (B.2)
and the jump condition established in [18] we have the following:
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β1

β2

β3

I ∪ IVII

III

Figure 4: Dividing the complex plane to define the Bessel parametrix with the contour ΣBessel = β1∪β3∪β3.
Here the contour β1 makes an angle of π/3 with β2.

Riemann–Hilbert Problem 3.2. When α is given by (1.1), the function PBessel solves:

P+
Bessel(ξ) = P−Bessel(ξ)JBessel(ξ), ξ ∈ ΣBessel,

JBessel(ξ) =



[
1 0

eαπi 1

]
, if ξ ∈ β1,

[
0 1
−1 0

]
, if ξ ∈ β2,

[
1 0

e−απi 1

]
, if ξ ∈ β3,

PBessel(ξ) =


O
[
|ξ|α/2 |ξ|−α/2
|ξ|α/2 |ξ|−α/2

]
, if | arg ξ| < 2π/3,

O
[
|ξ|−α/2 |ξ|−α/2
|ξ|−α/2 |ξ|−α/2

]
, if 2π/3 < | arg ξ| < π,

as ξ → 0,

PBessel(M
2ξ) =

[
1
2

(
1
πM

)1/2
ξ−1/4e2Mξ1/2e−cξ

−1/2 i
2

(
1
πM

)1/2
ξ−1/4e−2Mξ1/2ecξ

−1/2

i (πM)
1/2

ξ1/4e2Mξ1/2e−cξ
−1/2

(πM)
1/2

ξ1/4e−2Mξ1/2ecξ
−1/2

]
× (I +O(α−1)), M →∞, |ξ| ≥ 1/C > 0.
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As in the case of the Airy parametrix, we rewrite this in a more convenient form:

PBessel(M
2ξ) = (πM)−

1
2σ3ξ−

1
4σ3EBessel(M

2ξ)e2Mξ1/2σ3e−cξ
−1/2σ3 ,

EBessel(M
2ξ) =

[
1
2 (1 +O(α−1)) i

2 (1 +O(α−1))
i(1 +O(α−1)) 1 +O(α−1)

]
.

These asymptotics apply for all ξ with | arg ξ| < π. Furthermore, the asymptotics remain valid up to the
boundary, arg ξ = ±π.

3.3 Mapping the Airy parametrix.

As it stands, the function PAi solves a Riemann–Hilbert problem that resembles the jumps of S near z = 1
but not exactly. We perform a change of variables and pre-multiply by an analytic matrix function to make
this match exact. There is an additional constraint. We want the resulting local solution to also match with
S∞ in an appropriate manner. Consider for z > 1

φ←(z) = 2

∫ z

1

(s− 1)
1/2
← (s)

−1/2
← ds.

Expanding (s)
−1/2
← = 1 +G(s) in a power series about s = 1, it follows that

φ←(z) =
4

3
(z − 1)3/2(1 + (z − 1)Ĝ(z)),

where Ĝ(z) has a convergent power series in s− 1 with real coefficients. Define the function

f←(z) = 22/3(z − 1)(1 + (z − 1)Ĝ(z))2/3, (3.3)

which is analytic function in a neighborhood of z = 1. Here (·)2/3
denotes the principal branch. We then

have

f←(z) =

(
3

2
φ←(z)

)2/3

,

in the sense that (f←(z))3/2 = 3
2φ←(z) for z close to one. We establish the following facts about f←:

• f←(1) = 0 and f ′←(1) > 0.

This follows from (3.3). This shows that, in particular, f← is one-to-one (conformal) near z = 1.

• f←(B(1, δ) ∩ R) ⊂ R for sufficiently small δ > 0.

This follows because Ĝ(z) is real for z real.

• f←(B(1, δ) ∩ C±) ⊂ C± for sufficiently small δ > 0.

First, let δ′ be sufficiently small so that f← is one-to-one on B(1, δ′). Let L > 0 be the largest value such
that (−L,L) ⊂ f←([−δ′, δ′]). Now, let δ < δ′ be sufficiently small to ensure that f←(B(1, δ)) ⊂ B(0, L).
Assume that Im f←(a) > 0 and Im f←(b) < 0 for a, b ∈ B(1, δ) ∩ C+. Therefore, on the line that
connects a to b there must be a value z∗ such that f(z∗) ∈ (−L,L) and this contradicts that f←
is one-to-one. Then f←(B(1, δ) ∩ C+) must be mapped into either the upper- or lower-half planes.
Considering f←(1 + iε) = 2iε(1 +O(ε))3/2 we see that Im f←(1 + iε) > 0 for sufficiently small ε and the
claim follows.

Consider

S←(z) := MAi(z)PAi(M
2/3f←(z))e

1
2 ŵ(z)σ3eNφ←(z)σ3 ,

MAi(z) := 2
√
πD−1
∞ N (z)(ψ←(z))−σ3

[
ω−1/4 ω1/2

−ω−1/4 ω1/2

]−1

(M2/3f←(z))
1
4σ3 ,

M := N +
1

2
(α+ 1).
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ξ = 0

B(1, δ)Kδ

z = 1

f←

Figure 5: The conformal map ξ = f←(z) applied to B(1, δ). We choose Γ↑ so that it coincides with ΓAi in
C+ and Γ↓ so that it coincides with ΓAi in C−.

ξ = 0

ΓAi

z = 1

Kδ ∩ ΣAi

f−1
←

Figure 6: The pullback of Kδ ∩ ΣAi to create the contour ΓAi.

Let δ > 0 be sufficiently small so that f← is one-to-one, analytic and maps C+ into C+ when restricted to
B(1, δ). Let Kδ = f←(B(1, δ). It follows that Kδ is an open neighborhood of the origin. Define a contour
ΓAi := f−1

← (Kδ ∩ ΣAi). See Figures 5 and 6 for a graphical representation of this procedure and how this
affects the precise definition of Γ↑ and Γ↓ inside the ball B(1, δ).

We prove the following lemma in Appendix B.3.

Lemma 3.1. The functions S←(z) and MAi(z) have the following properties:

• S←(z) is analytic in B(1, δ) \ ΓAi and is continuous up to ΓAi. S←(z) has the same jumps as S(z) in
a neighborhood of z = 1.

• For |z − 1| = δ

S←(z) = D−1
∞ ĚAi(z)D∞S∞(z), (3.4)

where ĚAi(z) = I +O(M−1) as M = N + 1
2 (α+ 1)→∞.

• MAi(z) is analytic in a neighborhood of z = 1.

3.4 Mapping the Bessel parametrix.

We perform the same steps for PBessel so that it solves the Riemann–Hilbert problem for S(z) near z = 0.
As before, we would want the resulting local solution to match with S∞ but we will see, this is impossible
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and this complication will modify the entire discussion that follows.
Consider for z < 0

φ→(z) = 2

∫ z

0

(s)
−1/2
→ (s− 1)

1/2
→ ds = 2

∫ z

0

1√
−s
√

1− sds.

Now because
√

1− s has a convergent Taylor series about s = 0, with real coefficients, we find

φ→(z) = −4
√
|z|(1 + zT (z)),

for an analytic function T (z) whose Taylor series has real coefficients. Define

f→(z) := −4z(1 + zT (z))2. (3.5)

It is clear that this function is analytic in a neighborhood of z = 0. We further note that for z 6∈ [0,∞
sufficiently small

(f→(z))1/2 = −1

2
φ→(z),

because f→(z) and −φ→(z) are both positive for z < 0.
We establish the following facts concerning f→:

• f→(0) = 0 and f ′←(0) < 0.

This follows directly from the definition of f→.

• f→(B(0, δ) ∩ R) ⊂ R for sufficiently small δ > 0.

This follows from the fact that the Taylor series of
√

1− s has real coefficients.

• f→(B(0, δ) ∩ C±) ⊂ C∓ for sufficiently small δ > 0.

The same argument used to show that f←(B(1, δ) ∩ C±) ⊂ C± can be applied to −f→(z) and this
claim follows.

Consider

PBessel(M
2f→(z)) = (πM)−

1
2σ3(f→(z))−

1
4σ3EBessel(M

2f→(z))e−Mφ→(z)σ3e−2c/φ→(z).

Note that φ→(z) only vanishes at z = 0 from (2.22). Consider the function

S→(z) = MBessel(z)PBessel(M
2f→(z))e

1
2 w̌(z)σ3eNφ→(z)σ3 , (3.6)

MBessel(z) := D−1
∞ N (z)(ψ→(z))−σ3

[
1
2

i
2

i 1

]−1

(M2f→(z))
1
4σ3π

1
2σ3 , (3.7)

w̌(z) := (2α+ 2)z − α log→ z + (α+ 1)πi. (3.8)

In the same way as before, let δ > 0 be sufficiently small so that f→ is one-to-one, analytic and maps C+

into C− when restricted to B(0, δ). Let Lδ = f→(B(0, δ). It follows that Lδ is an open neighborhood of
the origin. Define a contour ΓBessel := f−1

← (Lδ ∩ ΣBessel). We reverse the orientation of all contours. See
Figures 7 and 8 for a graphical representation of this procedure and how this affects the precise definition of
Γ↑ and Γ↓ inside the ball B(0, δ).

We prove the following lemma in Appendix B.4.

Lemma 3.2. The functions S→(z) and MBessel(z) have the following properties:

• S→(z) is analytic in B(0, δ) \ ΓBessel and is continuous up to ΓBessel \ {0}. S←(z) has the same jumps
and singularity behavior as S(z) at z = 0, that is

– S→(z) = O(1) as z → 0 from outside the lens and
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ξ = 0

B(0, δ)Kδ

z = 0

f→

Figure 7: The conformal map ξ = f→(z) applied to B(0, δ). We choose Γ↑ so that it coincides with ΓBessel

in C+ and Γ↓ so that it coincides with ΓBessel in C−.

ξ = 0

ΓBessel

z = 0

Lδ ∩ ΣBessel

f−1
→

Figure 8: The pullback of Lδ ∩ ΣBessel to create the contour ΓBessel.
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– S→(z)

[
1 0

±e2Nφ→(z)+ŵ(z) 1

]
= O(1) as z → 0 inside the lens. The (+) sign is taken for z in

the region enclosed by [0, 1] and Γ↑ and the (−) sign is taken in the region enclosed by [0, 1] and
Γ↓.

• For |z| = δ

S→(z) = D−1
∞ ĚBessel(z)D∞S∞(z)e2c/φ→(z)σ3 , (3.9)

where ĚBessel(z) = I +O(α−1) as α→∞.

• MBessel(z) is analytic in a neighborhood of z = 0.

To account for the fact that (3.9) has a factor of e2c/φ→(z)σ3 we consider an additional Riemann–Hilbert
problem.

Riemann–Hilbert Problem 3.3. The function A(z) satisfies the following properties:

1. A(z) is analytic on C \ ∂B(0, δ) for 0 < δ < 1 and continuous up to ∂B(0, δ),

2. A+(z) = A−(z)S∞(z)e−2c/φ→(z)σ3S−1
∞ (z) for |z| = δ, and

3. A(z) = I +O(z−1) as z →∞.

Here ∂B(0, δ) has counter-clockwise orientation.

First, we look closer at the jump matrix

S∞(z)e−2c/φ→(z)σ3S−1
∞ (z) = D−1

∞ N (z)D(z)e−2c/φ→(z)σ3D−1(z)N−1(z)D∞

= D−1
∞ N (z)e−2c/φ→(z)σ3N−1(z)D∞,

because D(z) is diagonal. Now, define A∞(z) := D∞A(z)D−1
∞ and it follows that A∞ has the jump condition

A+
∞(z) = A−∞(z)N (z)e−2c/φ→(z)σ3N−1(z).

Note that A∞ is independent of N . This jump matrix is analytic across (0, 1): Indeed, for 0 < z < 1

N+(z)e−2c/φ+
→(z)σ3N−1

+ (z) = N−(z)

[
0 1
−1 0

]
e2c/φ−→(z)σ3

[
0 −1
1 0

]
N−1
− (z)

= N−(z)e−2c/φ−→(z)σ3N−1
− (z).

Following standard theory, the solution is unique if it exists. We now construct an integral representation
for A∞(z) assuming it exists. Once we have the representation it is a rather simple matter to check that
the formula gives a bonafide solution. First consider, B(z) := A∞(z)N (z). Then B(z) is analytic in C \ Γδ,
Γδ = ∂B(0, δ) ∪ [0, 1] and it has the following properties

B+(z) = B−(z)e−2c/φ→(z)σ3 , |z| = δ,

B+(z) = B−(z)

[
0 1
−1 0

]
, 0 < z < 1,

B(∞) = I.

Let B1(z) = [f1(z), f2(z)] be the first row of B(z). It follows that f2(z) = O(z−1) as z →∞ and we are led
to consider g(z) = (z(z − 1))1/2f2(z)f1(z). Then for some ` ∈ C to be determined below

g+(z) = g−(z), |z| = δ or 0 < z < 1, g(∞) = `.
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Because B(z) should have at most fourth-root singularities at z = 0, 1, we require g(z) to be bounded at
z = 0, 1. Thus g(z) is entire, g(z) ≡ ` and hence

f2(z) =
`

f1(z)(z(z − 1))1/2
.

We are led to the following Riemann–Hilbert problem for f1(z):

f+
1 (z) = f−1 (z)e−2c/φ→(z), |z| = δ,

f+
1 (z)f−1 (z) = −`(z(z − 1))

−1/2
− , 0 < z < 1,

f1(∞) = 1.

(3.10)

Now, using the principal branch of the logarithm, consider the function r(z) = (log f1(z))(z(z − 1))−1/2:

r+(z)− r−(z) = −2c/φ→(z)(z(z − 1))−1/2, |z| = δ,

r+(z)− r−(z) = (z(z − 1))
−1/2
+ log

(
−`(z(z − 1))

−1/2
−

)
,

= (z(z − 1))
−1/2
+

(
log(−i`)− 1

2
log(z(1− z))

)
0 < z < 1,

r(z) = O(z−2), z →∞.

We choose ` to enforce the last condition. The function r(z) is the sum of a function that satisfies the first
jump condition and a function that satisfies the second condition. We first claim that

r̃(z) := − log

(
2 +

2z − 1

(z(z − 1))1/2

)
,

is analytic in C \ [0, 1]. This is true as the argument of the logarithm is never negative. Indeed, if

1 +
z − 1/2

(z(z − 1))1/2
= −γ2 and so z2 − z − b = 0, b = 1/4((1 + γ2/2)2 − 1) ≥ 0,

or z =
1±
√

1 + b

2
∈ R.

But because (z(z − 1))1/2 > 0 for z > 1 and (z(z − 1))1/2 < 0 for z < 0 the claim follows. It also follows
that r̃+(z) + r̃−(z) = log(z(1− z)) and hence

r(z) = r(z; `, c) = − 1

2πi

∫
{|s|=δ}

2c/φ→(s)

(s(s− 1))1/2(s− z)
ds+

(
log(−i`(c))

2
− 1

2
r̃(z)

)
(z(z − 1))−1/2. (3.11)

Then r(z) = r1/z +O(z−2) as z →∞ where

r1 =
1

2πi

∫
{|s|=δ}

2c/φ→(s)

(s(s− 1))1/2
ds+

log(−i`(c))

2
+ log 2.

We must have r1 = 0, so we choose ` = `(c) by

`(c) = i exp

(
−c 1

πi

∫
{|s|=δ}

2/φ→(s)

(s(s− 1))1/2
ds− 2 log 2

)
.

Because φ→(z̄) = φ→(z) for z 6∈ [0,∞), the exponent is real, implying that ` ∈ iR+. Then

(z(z − 1))1/2r(z; `(c), c) = − c

πi

∫
{|s|=δ}

(z(z − 1))1/2/φ→(s)

(s(s− 1))1/2(s− z)
ds+

1

2
log(−i`(c)) +

1

2
log

(
2 +

2z − 1

(z(z − 1))1/2

)
,

(3.12)
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Γ↑

Γ↓

z = 0 z = 1

Figure 9: The full definition of the contours Γ↑ and Γ↓. The definition inside the shaded regions is given by
ΓAi and ΓBessel and the remainder is a straight line connecting the two contours. Note that the contours are
continuous but not necessarily smooth.

f1(z) = exp((z(z − 1))1/2r(z; `(c), c)) and f2(z) = `(c)(z(z − 1))−1/2 exp(−(z(z − 1))1/2r(z; `(c), c)). It is
easy to see that both f1 and f2 have at worst fourth-root singularities at z = 0, 1.

To determine the second row B2(z) = [h1(z), h2(z)] of B(z) we use the same procedure. It follows that
h1(z)h2(z)(z(z − 1))1/2 = k is constant. We obtain a Riemann–Hilbert problem for h2(z)

h+
2 (z) = h−2 (z)e2c/φ→(z), |z| = δ,

h+
2 (z)h−2 (z) = k(z(z − 1))

−1/2
− , 0 < z < 1,

h2(∞) = 1.

If one sends c → −c and k → −` then we have (3.10). So, h2(z) = exp((z(z − 1))1/2r(z;−`(−c),−c)) and
h1(z) = −`(−c)(z(z − 1))−1/2 exp(−(z(z − 1))1/2r(z;−`(−c),−c)). Finally, we have

A∞(z) =

[
e(z(z−1))1/2r(z;`(c),c) `(c)e−(z(z−1))1/2r(z;`(c),c)(z(z − 1))−1/2

−`(−c)e−(z(z−1))1/2r(z;−`(−c),−c)(z(z − 1))−1/2 e(z(z−1))1/2r(z;−`(−c),−c)

]
N−1(z),

and using (3.12) we see that detA∞(z) = 1.

3.5 The final deformation

Before we discuss the final deformation, we must specify Γ↑ and Γ↓. Based on the discussion in the previous
section we have defined both contours ΓBessel and ΓAi inside the balls B(0, δ) and B(1, δ), respectively. Let
Γ↑ and Γ↓ to be the contours obtained by connecting ΓBessel and ΓAi with straight lines as in Figure 9. For
convenience we also define Γ′↑ = Γ↑ \ (B(0, δ) ∪B(1, δ)) and similarly Γ′↓ = Γ↓ \ (B(0, δ) ∪B(1, δ)).

Define

E(z) =


D∞S(z)S−1

→ (z)A−1(z)D−1
∞ , if z ∈ B(0, δ) \ ΓBessel,

D∞S(z)S−1
← (z)A−1(z)D−1

∞ , if z ∈ B(1, δ) \ ΓAi,

D∞S(z)S−1
∞ (z)A−1(z)D−1

∞ , if z ∈ C \ (B(0, δ) ∪B(1, δ) ∪ (0,∞) ∪ Γ↑ ∪ Γ↓).

We look at the jump of E on ∂B(0, δ):

E+(z) = D∞S(z)S−1
→ (z)A−1

+ (z)D−1
∞

= D∞S(z)S−1
∞ (z)A−1

+ (z)D−1
∞ (D∞S(z)S−1

∞ (z)A−1
− (z)D−1

∞ )−1D∞S(z)S−1
→ (z)A−1

− (z)D−1
∞

= E−(z)(D∞S(z)S−1
∞ (z)A−1

− (z)D−1
∞ )−1D∞S(z)S−1

→ (z)A−1
+ (z)D−1

∞

= E−(z)D∞A−(z)S∞(z)S−1
→ (z)A−1

+ (z)D−1
∞ .
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From the jumps of A(z) we find

E+(z) = E−(z)D∞A+(z)S∞(z)e2c/φ→(z)σ3S−1
→ (z)A−1

+ (z)D−1
∞ .

Using (3.9)

E+(z) = E−(z)D∞A+(z)D−1
∞ Ě−1

Bessel(z)D∞A
−1
+ (z)D−1

∞ = E−(z)A+
∞(z)Ě−1

Bessel(z)(A
+
∞)−1(z). (3.13)

For z ∈ ∂B(1, δ)

E+(z) = D∞S(z)S−1
← (z)A−1(z)D−1

∞

= D∞S(z)S−1
∞ (z)A−1(z)D−1

∞ (D∞S(z)S−1
∞ (z)A−1(z)D−1

∞ )−1D∞S(z)S−1
← (z)A−1

− (z)D−1
∞

= E−(z)(D∞S(z)S−1
∞ (z)A−1(z)D−1

∞ )−1D∞S(z)S−1
← (z)A−1(z)D−1

∞

= E−(z)D∞A(z)S∞(z)S−1
← (z)A−1(z)D−1

∞ .

Using (B.4)

E+(z) = E−(z)D∞A(z)D−1
∞ Ě−1

Ai (z)D∞A
−1(z)D−1

∞ = E−(z)A+
∞(z)Ě−1

Ai (z)(A+
∞)−1(z). (3.14)

From here on, we let 0 < δ < 1/2 be sufficiently small so that that f← and f→ are one-to-one on B(1, δ)
and B(0, δ), respectively. We establish the following:

Riemann–Hilbert Problem 3.4. The function E(z) satisfies the following properties:

1. E(z) is analytic on C \ ΣR for ΣR = Γ′↑ ∪ Γ′↓ ∪ ∂B(0, δ) ∪ ∂B(0, δ) ∪ (1 + δ,∞) and continuous up to
the contour ΣR.

2. The jump conditions for E(z) are given by

E+(z) = E−(z)JE(z), z ∈ ΣR,

JE(z) =

{
I +O(M−1), if z ∈ ΣR \ ∂B(0, δ),
I +O(α−1), if z ∈ ∂B(0, δ),

where the error terms tend to zero in L2 ∩ L∞ as N →∞.

3. E(z) = I +O(z−1) as z →∞.

Using (3.14) and (3.13) and Lemmas 3.2 and 3.1 it is clear that the jump matrix for E has the correct
behavior on ∂B(0, δ) and ∂B(1, δ). On Γ′↑, Γ′↓ and (0,∞) the jump matrix for E(z) is given by

A∞(z)N (z)D(z)JS(z)D−1(z)N−1(z)A−1
∞ (z).

Because A∞(z), A−1
∞ (z),N (z) and N−1(z) are all uniformly bounded on the contours being considered we

only need to consider D(z)JS(z)D−1(z). For z ≥ 1 + δ

D(z)JS(z)D−1(z) =

[
1 e−2Nφ+

→(z)+απ−αφ+
→(z)−2(z(z−1))1/2

0 1

]
.

We have Reφ+
→(z) ≥ C > 0 for z ≥ 1 + δ. Let R > 0 be so that φ+

→(z) > π for z ≥ R. Then on [1 + δ,R]
we have ∣∣∣exp

(
−2Nφ+

→(z) + απ − αφ+
→(z)− 2 (z(z − 1))

1/2
)∣∣∣ ≤ e−2NC → 0 in L2 ∩ L∞,

for any ε > 0. On [R,∞) we have∣∣∣exp
(
−2Nφ+

→(z) + απ − αφ+
→(z)− 2 (z(z − 1))

1/2
)∣∣∣ ≤ exp

(
−2N Reφ+

→(z)
)
→ 0 in L2 ∩ L∞.
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On Γ′↑ ∪ Γ′↓ we have

D(z)JS(z)D−1(z) =

[
1 0

e2Nφ+
→(z)−απ+αφ+

→(z)+2(z(z−1))1/2→ 1

]
.

From Lemma 2.2 there exists a (possibly new) constant C > 0 so that Reφ+
→(z) < −C on Γ′↑ ∪ Γ′↓. Let

m = maxΓ′↑∪Γ′↓
(2|z(z − 1)|1/2) then it follows that∣∣∣exp
(

2Nφ+
→(z)− απ + αφ+

→(z) + 2 (z(z − 1))
1/2
→

)∣∣∣ ≤ e−(2N+α)C → 0 in L2 ∩ L∞.

Finally, we have to establish that E(z) is analytic in B(0, δ), B(1, δ) and in a neighborhood of each point in
(δ, 1− δ). We compute the jumps for z ∈ ΓBessel. First

E+(z) = D∞S
+(z)(S+

→)−1(z)A−1(z)D−1
∞ .

Then from Lemma 3.2 S+(z)(S+
→)−1(z) = S−(z)(S−→)−1(z) and this is an analytic function in B(0, δ). Thus

E+(z) = E−(z). Similar calculations follow for B(1, δ) and (δ, 1− δ).
From classical theory [3] (see also [26]) it follows that

E(z) = I + CΣRuN (z), uN = O(α−1)→ 0 in L2(ΣR).

It then directly follows that E(z) → I, E ′(z) → 0 uniformly for z bounded away from ΣR. We have thus
proved the following theorem concerning the asymptotics of Laguerre polynomials.

Theorem 3.1. There exists δ∗ > 0 such that for any δ ∈ (0, δ∗), the upper limit, Y+(x), x ∈ (0,∞) takes
the following form:

(a) In the region 0 < x ≤ δ,

Y+(x) = e−
1
2 `Nσ3D−1

∞ E(x)A∞(x)D∞S
+
→(x)

[
1 0

e2Nφ+
→(x)+ŵ(x) 1

]
e(Ng+(x)+ 1

2 `N )σ3 .

(b) In the region 1− δ ≤ x ≤ 1,

Y+(x) = e−
1
2 `Nσ3D−1

∞ E(x)A∞(x)D∞S
+
←(x)

[
1 0

e2Nφ+
→(x)+ŵ(x) 1

]
e(Ng+(x)+ 1

2 `N )σ3 .

(c) In the region 1 ≤ x ≤ 1 + δ,

Y+(x) = e−
1
2 `Nσ3D−1

∞ E(x)A∞(x)D∞S
+
←(x)e(Ng+(x)+ 1

2 `N )σ3 .

(d) In the region 1 + δ ≤ x <∞,

Y+(x) = e−
1
2 `Nσ3D−1

∞ E(x)A∞(x)D∞S
+
∞(x)e(Ng+(x)+ 1

2 `N )σ3 .

Further, as N →∞, E(x)→ I, E ′(x)→ 0 uniformly in each of the regions listed above.

4 The extreme eigenvalues and the condition number

In this section, we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3. The proof of Theorem 1.1 and
Theorem 1.2 relies on the asymptotic results of Section 3, and some basic operator theory. Since the kernel
KN is related to Y through equation ( 2.7), we apply Theorem 3.1 to show that after suitable rescaling, the
kernels KN converge to the Airy kernel KAi at both the soft and hard edge. Standard results on operator
theory are then applied to establish convergence of the associated Fredholm determinants. The proof of
Theorem 1.3 follows from these results, though an additional lemma is necessary to account for the fact that
the largest and smallest eigenvalues are not independent.
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4.1 Uniform convergence of KN at the hard edge

We first consider the smallest eigenvalue. Let δ∗ be as in Theorem 3.1, fix δ ∈ (0, δ∗) and consider x in the
interval (0, δ]. We use equations (3.6)–(3.7) relating S to the Bessel kernel and Theorem 3.1(a) to obtain

Y+(x) = e−
1
2 `Nσ3D−1

∞ E(x)A∞(x)D∞MBessel(x)PBessel(M
2f→(x))−

×
[

1 0
e−(α+1)πi 1

]
e(Nφ+

→(x)+Ng+(x)+ 1
2 `N )σ3e

1
2 w̌+(x)σ3 .

It follows from the definition of MBessel(z) that M̂Bessel(z) := D∞MBessel(z)M
− 1

2σ3 is an analytic function
in B(0, δ) that is independent of N (also of M and α). It is convenient to introduce the following functions:

V (z) = w
1
2
ν (z)

[
0 1

]
e−(Nφ+

→(z)+Ng+(z)+ 1
2 `N )σ3e−

1
2 w̌+(z)σ3

[
1 0

e−απi 1

]
[PBessel(M

2f→(z))−]−1M−
1
2σ3 ,

(4.1)

W (z) = M
1
2σ3PBessel(M

2f→(z))−

[
1 0

e−(α+1)πi 1

]
e(Nφ+

→(z)+Ng+(z)+ 1
2 `N )σ3e

1
2 w̌+(z)σ3

[
1
0

]
w

1
2
ν (z). (4.2)

A straightforward calculation then yields

w
1
2
ν (x)w

1
2
ν (y)

[
0 1

]
Y −1

+ (x)Y+(y)
[

1 0
]>

= V (x)M̂−1
Bessel(x)A−1

∞ (x)E−1(x)E(y)A∞(y)M̂Bessel(y)W (y).

Thus, we may define the analytic function B(y) := E(y)M̂Bessel(y) and rewrite equation ( 2.7) in the form

KN (x, y) = − 1

2πi

V (x)B−1(x)B(y)W (y)

x− y
.

The study of the asymptotics of KN has now been reduced to the asymptotics of V and W . We further
simplify V and W using the definition and properties of the Bessel parametrix. Comparing (3.2) and ( 4.1),
we see that we must consider the Bessel parametrix PBessel(ξ) with argument ξ = M2f→(x) with x ∈ (0, 1).
The relevant regime here for the Bessel parametrix is (III). Indeed, for x ∈ (0, 1), φ+

→(x) is purely imaginary
with a positive imaginary part so that f→(x) < 0. Furthermore, because f→ maps the upper-plane to the
lower-half plane (at least locally) ξ1/2 = − 1

2Mφ+
→(x) (negative imaginary part) and (−ξ)1/2 = − i

2Mφ+
→(x)

(positive real part). Recall also that P−1
Bessel is easily computed since PBessel has determinant one. From

(3.2)(III), we obtain

V (x) = e(N+ 1
2 )πi

[
1 1

] [ −π2Mφ+
→(x)H(1)

α

′
(−iMφ+

→(x)) 1
2 H(1)

α (−iMφ+
→(x))

−π2Mφ+
→(x)H(2)

α

′
(−iMφ+

→(x)) 1
2 H(2)

α (−iMφ+
→(x))

]
M−

1
2σ3

= e(N+ 1
2 )πiM1/2

[
−πφ+

→(x)Jα
′(−iMφ+

→(x)) Jα(−iMφ+
→(x))

]
.

(4.3)

In the second line we have used the Bessel function identity Jα(x) = 1
2 H(1)

α (x) + 1
2 H(2)

α (x). A similar
calculation for W yields

W (x) = M
1
2σ3

[
1
2 H(2)

α (−iMφ+
→(x)) − 1

2 H(1)
α (−iMφ+

→(x))
π
2Mφ+

→(x)H(2)
α

′
(−iMφ+

→(x)) −π2Mφ+
→(x)H(1)

α

′
(−iMφ+

→(x))

] [
1
−1

]
e(N+ 1

2 )πi

=

[
Jα(−iMφ+

→(x))
πφ+
→(x)Jα

′(−iMφ+
→(x))

]
e(N+ 1

2 )πiM1/2

(4.4)

The above formulas hold in the region x ∈ (0, 1). It is convenient to extend the range of definition of V and
W by adopting the convention V (x) = W (x) = 0 for x ≤ 0.

We now apply classical asymptotic formulas for the Bessel function Jα to obtain quantitative decay
estimates on V and W . These will imply convergence results for KN . More precisely, define the rescaled
variables and the rescaled kernel

x̂ =
c2

α2
+ x

c222/3

α8/3
=
c2

α2

(
1 + x

(
2

α

)2/3
)
, K̂N (x, y)dy := KN (x̂, ŷ)dŷ.

We then have the following convergence result.
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Proposition 4.1. As N →∞ the rescaled kernels converge pointwise,

K̂N (x, y)→ Ai(−y) Ai′(−x)−Ai′(−y) Ai(−x)

x− y
, (x, y) ∈ R2,

and the convergence is uniform for (x, y) in any compact subset of (−∞, L]2 for any L ∈ R. If x = y
then the limit is determined by continuity. Further, there exists a positive, piecewsie-continuous function
G : (−∞, L)2 → (0,∞), such that

|K̂N (x, y)| ≤ G(x, y),

∫ L

−∞

∫ L

−∞
G(x, y)dxdy <∞,

∫ L

−∞
G(x, x)dx <∞. (4.5)

The technical lemmas that underly this result are stated below, but proved in Appendix C. Let W =
[W1,W2]T and V = [V1, V2].

Lemma 4.1. Define

g(x) =

{
e−

1
6 |x+1|3/2 , if −∞ < x ≤ −1,

1, otherwise.

Assume x ∈ (−∞, L], L ∈ R. Then there exists a constant CL > 0 and A > 0 such that if α > A then

|W1(x̂)| = |V2(x̂)| ≤ CLM1/2α−1/3g(x),

|W2(x̂)| = |V1(x̂)| ≤ CLM−1/2α1/3g(x),

|W ′1(x̂)| ≤ CLM1/2α7/3,

|W ′2(x̂)| ≤ CLM−1/2α9/3,

with the convention that W (x) = V (x) = 0 for x < 0.

Lemma 4.2. For x in a compact subset of (−∞, L], L ∈ R

V (x̂) = e(N+ 1
2 )πiM1/2

[
πi
α

M

(
2

α

)2/3

(Ai′(−x) +O(α−1/3))

(
2

α

)1/3

(Ai(−x) +O(α−1/3))

]
, (4.6)

W (x̂) = e(N+ 1
2 )πiM1/2


(

2

α

)1/3

(Ai(−x) +O(α−1/3))

−πi
α

M

(
2

α

)2/3

(Ai′(−x) +O(α−1/3))

 , (4.7)

W ′(x̂) = e(N+ 1
2 )πiM1/2

 −
1

2

α3

c2

(
2

α

)2/3

(Ai′(−x) +O(α−1/3))

−iπ
α3

c2M
(xAi(−x) +O(α−1/3))

 , (4.8)

where the error terms are uniform in x.

4.2 Uniform convergence of KN at the soft edge

We write the expansion for 1 < z < 1 + δ

Y+(z) = e−
1
2 `Nσ3D−1

∞ E(z)A∞(z)D∞MAi(z)PAi(M
2/3f←(z))+e( 1

2 ŵ(z)+Nφ←(z)+Ng+(z)+ 1
2 `N )σ3 .

From (2.12) and (2.13) we have

1

2
ŵ(z) +Nφ←(z) +Ng+(z) +

1

2
`N =

1

2
ŵ(z) +Nφ+

→(z) +Ng+(z) +
1

2
`N −N iπ

=
1

2
νz − 1

2
α log z = logw

− 1
2

ν (z).
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We simplify these expressions using

Y+(z)w
1
2σ3
ν (z) = e−

1
2 `Nσ3D−1

∞ E(z)A∞(z)D∞MAi(z)M
− 1

6σ3M
1
6σ3PAi(M

2/3f←(z))+

and noting that B(z) := E(z)A∞(z)D∞MAi(z)M
− 1

6σ3 has no N dependence, is analytic on (1− δ, 1 + δ) and
has a constant determinant. In view of (2.7) we define

V (z) :=
[

0 1
]
P−1

Ai (M2/3f←(z))+M
− 1

6σ3 ,

W (z) := M
1
6σ3PAi(M

2/3f←(z))
[

1 0
]>
.

It follows from [20, (9.2.8)] that detPAi(M
2/3f←(z)) = (2πi)−1 so that

V (z) = 2πi
[

0 1
] [ ω2 Ai(ω2M2/3f←(z)) −Ai(ω2M2/3f←(z))

−Ai′(M2/3f←(z)) Ai(M2/3f←(z))

]
M−

1
6σ3 ,

= 2πi
[
−Ai′(M2/3f←(z)) Ai(M2/3f←(z))

]
M−

1
6σ3 ,

W (z) := M
1
6σ3

[
Ai(M2/3f←(z))
Ai′(M2/3f←(z))

]
.

By analytic continuation, the same formula holds for 1− δ < z < 1. And then

KN (x, y) =
V (x)B−1

(x)B(y)W (y)

x− y
,

for appropriate values of x and y.
Next, for z ≥ 1 + δ we examine

Y+(z)w
1
2σ3
ν (z) = e−

1
2 `Nσ3D−1

∞ E(z)A∞(z)N (z)D(z)e(Ng+(z)+ 1
2 `N )σ3w

1
2σ3
ν (z).

Define the N -independent function B̃(z) = E(z)A∞(z)N (z) and the two functions

W̃ (z) := D(z)e(Ng+(z)+ 1
2 `N )σ3w

1
2σ3
ν (z)

[
1 0

]>
,

Ṽ (z) :=
[

0 1
]
w

1
2σ3
ν (z)e−(Ng+(z)+ 1

2 `N )σ3D−1(z).

And then

KN (x, y) =
Ṽ (x)B̃−1(x)B̃(y)W̃ (y)

x− y
,

for appropriate values of x and y. Consider the scaling operator

x̌ = 1 +
x

22/3M2/3
,

So that

M2/3f←(x̌) = x+O(M−2/3), (4.9)

uniformly for x in a compact set. Define ǨN (x, y) through the equality ǨN (x, y)dy = KN (x̌, y̌)dy̌.

Proposition 4.2. As N →∞ the rescaled kernels converge pointwise,

ǨN (x, y)→ Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y
, (x, y) ∈ R2,

and the convergence is uniform for (x, y) in a compact subset of [L,∞)2 for any L ∈ R. If x = y then
the limit is determined by continuity. Further, there exists a positive, piecewise-continuous function Ḡ :
(L,∞)2 → (0,∞), such that

|ǨN (x, y)| ≤ Ḡ(x, y),

∫ ∞
L

∫ ∞
L

Ḡ(x, y)dx dy <∞,
∫ ∞
L

Ḡ(x, x)dx <∞. (4.10)

31



As in the previous section, we have some technical lemmas that are used in the proof of this proposition.
All details can be found in Appendix D. Let W = [W 1,W 2]T and V = [V 1, V 2].

Lemma 4.3. Define

ḡ(x) = (1 + |x|)1/4

{
e−x, if −∞ < x ≤ 0,
1, otherwise.

Assume x ∈ [L, δM2/322/3], L ∈ R. Then there exists constants CL > 0 and A > 0 such that if α > A then

|W 1(x̌)| = 1

2π
|V 2(x̌)| ≤ CLM1/6ḡ(x),

|W 2(x̌)| = 1

2π
|V 1(x̌)| ≤ CLM−1/6ḡ(x),

|W ′1(x̌)| ≤ CLM5/6,

|W ′2(x̌)| ≤ CLM1/2.

Additionally, for x ∈ [δM2/322/3,∞)

‖W̃ (x̌)‖ =
1

2π
‖Ṽ (x̌)‖ ≤ e−21/3NM−2/3x ≤ ḡ(x),

for sufficiently large N .

The following follows directly from (4.9).

Lemma 4.4. For x in a compact subset of [L,∞), L ∈ R

V (x̌) = 2πi
[
−M−1/6(Ai′(x) +O(M−2/3)) M1/6(Ai(x) +O(M−2/3))

]
,

W (x̌) =

[
M1/6(Ai(x) +O(M−2/3))
M−1/6(Ai′(x) +O(M−2/3))

]
,

W
′
(x̌) = 22/3

[
M5/6(Ai′(x) +O(M−2/3))
M1/2(xAi(x) +O(M−2/3))

]
,

where the error terms are uniform in x.

4.3 Proofs of the main theorems

Our main tools for our proofs are from [22]:

Theorem 4.1 (Theorem 3.4). The map A 7→ det(I +A) is a continuous function on J1 and

|det(I +A)− det(I −B)| ≤ ‖A−B‖1 exp(‖A‖1 + ‖B‖1 + 1).

Here J1 is the set of trace class operators with norm

‖A‖1 = tr
√
A∗A.

Theorem 4.2 (Theorem 2.20). Suppose An → A, |An| → |A| and |A∗n| → |A∗| all weakly and that ‖An‖1 →
‖A‖1, then ‖A−An‖1 → 0.

From [3] it is known that

det(I −KN |L2((t,s))),

gives the probability that are is no eigenvalues in the interval (t, s). Thus taking into account the initial
scaling by ν

P(λmin/ν ≥ t) = det(I −KN |L2((0,t))),

P(λmax/ν ≤ t) = det(I −KN |L2((t,∞))).
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The same statements hold for ǨN (x, y) and K̂N (x, y).

Proof of Theorem 1.1: We begin with the observation that

det(I −KN |L2((0,t̂))) = det(I − K̂N |L2((−(α/2)2/3,t))) = det(I − K̂N |L2(−∞,t)))

when we use the convention that KN (x, y) = 0 if x ≤ 0 or y ≤ 0. Define

K̂Ai(x, y) = −KAi(−x,−y).

Let f, g ∈ C∞(R) with compact support. Then from Proposition 4.1, |K̂N (x̂, ŷ)f(x)g∗(y)| ≤ G(x, y)||f(x)||g(y)| ∈
L1((−∞, t)2). Thus, by the dominated convergence theorem∫ t

−∞

∫ t

−∞
K̂N (x, y)f(x)g∗(y)dxdy →

∫ t

−∞

∫ t

−∞
K̂Ai(x, y)f(x)g∗(y)dxdy,

as N → ∞. Therefore K̂N |L2((−∞,t)) → KAi|L2((−∞,t)) weakly. Additionally, convergence in trace norm
follows: ∫ t

−∞
K̂N (x, x)dx→

∫ t

−∞
K̂Ai(x, x)dx.

From Theorems 4.2 and 4.1 we have that

lim
N→∞

det(I −KN |L2((0,t̂))) = det(I − ǨAi|L2((0,t))) = F2(−t).

Stated another way, for t ∈ R

lim
N→∞

P
(
λmin ≥

c2ν

α2
+ tν

c222/3

α8/3

)
= F2(−t).

Also, ν = 4N + o(α−1) = α2/c so that this result can be simplified. We use the following lemma with

cN =
c2ν

α2
, c̄N = c,

dN =
c2ν22/3

α8/3
, d̄N = 4cα−2/322/3.

Lemma 4.5. Suppose P((XN − cN )/dN ≤ t)→ F (t) where F is continuous at t. If (c̄N − cN )/dN → 0 and
d̄N/dN → 1 then P((XN − c̄N )/d̄N ≤ t)→ F (t).

Proof. First, consider

P
(
XN − c̄N

d̄N
≤ t
)

= P
(
XN − cN

dN

dN
d̄N

+
cN − c̄N
dN

d̄N
dN
≤ t
)
.

For ε > 0, let N∗ > 0 be sufficiently large so that |(c̄N − cN )/dn| < ε and |1− d̄N/dN | < ε. Then

lim sup
N→∞

P
(
XN − c̄N

d̄N
≤ t
)
≤ lim sup

N→∞
P
(
XN − cN

dN
≤ t

1 + sign(t)ε
+
ε(1 + ε)

1− ε

)
= F

(
t

1 + sign(t)ε
+
ε(1 + ε)

1− ε

)
,

lim inf
N→∞

P
(
XN − c̄N

d̄N
≤ t
)
≥ lim inf

N→∞
P
(
XN − cN

dN
≤ t

1− sign(t)ε
− ε(1 + ε)

1− ε

)
= F

(
t

1− sign(t)ε
− ε(1 + ε)

1− ε

)
.

Because ε is arbitrary, the lemma follows.
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To see that our choice of cN , c̄N , dN and d̄N fits the hypotheses of this lemma, note that

α =
√

4cN +O(1) ⇒ α2 = 4cN +O(
√
N),

cν = 4cN +O(
√
N), να−2/3 = O(N5/6),

and then

cN − c̄N
dN

= c
cν − α2

c2ν22/3

α2/3

= O(N−1/3),

d̄N
dN

=
α2

cν
→ 1.

The theorem follows. �

Proof of Theorem 1.2: We begin with the observation that

det(I −KN |L2((ť,∞))) = det(I − ǨN |L2((t,∞))).

Following the arguments in the proof of Theorem 1.1 we have sufficient conditions for

lim
N→∞

P
(
λmax/ν ≤ ť

)
= lim
N→∞

det(I − ǨN |L2((t,∞))) = F2(t).

Written another way, using that ν = 4M ,

lim
N→∞

P
(
λmax − ν

ν
22/3M2/3

≤ t
)

= lim
N→∞

P
(
λmax − ν
ν1/322/3

≤ t
)

= F2(t).

This proves Theorem 1.2. �

Before we prove Theorem 1.3 we prove a critical lemma from first principles.

Lemma 4.6. Assume two sequences of random variables (Xn)n≥0, (Yn)n≥0 and two sequences of real num-
bers (an)n≥0, (bn)n≥0 satisfy the following properties:

• Yn > 0 a.s., an, bn > 0,

• Yn = an + bnŶn so that Ŷn → ξ in distribution, and

• an/bn →∞ and an
bn
|Xn − 1| → 0 in probability.

Then

Xn/Yn − a−1
n

bna
−2
n

→ −ξ

in distribution.

Proof. We then claim that for each t ∈ R (where t is a point of continuity for F (t))

P
(
Xn

Yn
≤ 1

an + bnt

)
→ 1− F (t) (4.11)

where F (t) = P(ξ ≤ t). To see this, compute

P
(
Xn

Yn
≤ 1

an + bnt

)
= P

(
Xn

an + bnŶn
≤ 1

an + bnt

)
= P

(
an
bn

(Xn − 1) +Xnt ≤ Ŷn
)
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For 1 > ε > 0, consider

P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn
)

= P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn,
an
bn
|Xn − 1| ≥ ε

)
+ P

(
an
bn

(Xn − 1) +Xnt ≤ Ŷn,
an
bn
|Xn − 1| < ε

)
.

It is clear, by the fourth assumption that the first term here vanishes as n → ∞ so we concentrate on the
latter. It is certainly true that for t ≥ 0 and sufficiently large n

lim sup
n→∞

P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn,
an
bn
|Xn − 1| < ε

)
≤ lim sup

n→∞
P
(
−ε+ (1− ε)t ≤ Ŷn

)
= 1− F (−ε+ (1− ε)t).

Then we use the fact that P(A ∩B) = P(A) + P(B)− P(A ∪B) to find

An =

{
an
bn

(Xn − 1) +Xnt ≤ Ŷn
}
,

Bn =

{
an
bn
|Xn − 1| < ε

}
,

P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn,
an
bn
|Xn − 1| < ε

)
= P(An ∩Bn)

= P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn
)

+ P(Bn)− P(An ∪Bn).

It is also clear by the third assumption that limn→∞ P(Bn) = limn→∞ P(An ∪Bn) = 1. We use the estimate

P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn
)
≥ P(ε+ (1 + ε)t ≤ Yn).

Therefore

lim inf
n→∞

P
(
an
bn

(Xn − 1) +Xnt ≤ Ŷn,
an
bn
|Xn − 1| < ε

)
≥ 1− F (ε+ (1 + ε)t).

We have shown that

1− F (ε+ (1 + ε)t) ≤ lim inf
n→∞

P
(
Xn

Yn
≤ 1

an + bnt

)
≤ lim sup

n→∞
P
(
Xn

Yn
≤ 1

an + bnt

)
≤ 1− F (−ε+ (1− ε)t).

Letting ε ↓ 0 demonstrates the claim. For t < 0, this argument can be adapted by replacing (1 ± ε) with
(1∓ ε).

We now modify things and consider for t being a point of continuity of F (t)

P
(
Xn

Yn
≤ 1

an

(
1− bn

an
t

))
.

We note that (for fixed t)

1

an

(
1− bn

an
t

)
=

1

an + bnt

(
1− b2n

a2
n

t2
)
.

Define

X̂n = Xn

(
1− b2n

a2
n

t2
)−1

,(
1− b2n

a2
n

t2
)−1

= 1 + En(t),

En(t) =
b2n
a2
n

t2
1

1− b2n
a2n
t2
.
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and consider

an
bn

(X̂n − 1) =
an
bn

(Xn − 1) +
an
bn
En(t)Xn.

It then follows that an
bn
|X̂n − 1| prob→ 0 and from this we may apply (4.11) with Xn replaced by X̂n to state

that for any s where s is a point of continuity of F (s),

P

(
X̂n

Yn
≤ 1

an + bns

)
→ 1− F (s).

If we set s = t we find

P
(
Xn

Yn
≤ 1

an

(
1− bn

an
t

))
= P

(
X̂n

Yn
≤ 1

an + bnt

)
→ 1− F (t).

This proves the lemma.

Proof of Theorem 1.3: The proof of this theorem relies critically on on Lemma 4.6. We note that

λmin = c+ c

(
2

α

)2/3

ŶN

where ŶN
dist→ −ξGOE where P(ξGOE ≤ t) = F2(t). We let bN = c(2/α)2/3/ν, aN = c/ν, YN = λmin/ν and

XN = λmax/ν. Then for ε > 0

P
(
an
bn
|Xn − 1| ≥ ε

)
= P

(
c
(α

2

)2/3

|λmax/ν − 1| ≥ ε
)

= P
(
λmax − ν
ν1/322/3

≥ εν2/3

c22/3

(α
2

)−2/3
)

+ P
(
λmax − ν
ν1/322/3

≤ −εν
2/3

c22/3

(α
2

)−2/3
)
.

For any L > 0 there exists N∗ > 0 such that for N > N∗

lim sup
N→∞

P
(
λmax − ν
ν1/322/3

≥ εν2/3

c22/3

(α
2

)−2/3
)
≤ lim sup

N→∞
P

(
λmax − ν
ν1/322/3

≥ L
)
,

because ν/α→∞. A similar estimate follows for

P
(
λmax − ν
ν1/322/3

≤ −εν
2/3

c22/3

(α
2

)−2/3
)
.

Then because L is arbitrary we have

lim
N→∞

P
(
an
bn
|Xn − 1| ≥ ε

)
= 0,

or an
bn
|Xn − 1| prob→ 0. Then Lemma 4.6 implies

lim
N→∞

P

(
XN
YN
− 1

aN

bNa
−2
N

≥ −t

)
= 1− F2(−t),

or because a−2
N bN = c−1(2/α)2/3ν,

lim
N→∞

P

(
XN
YN
− 1

aN

bNa
−2
N

≤ t

)
= F2(t) = lim

N→∞
P

(
λmax

λmin
− ν

c

c−1ν(2/α)2/3
≤ t

)
.

This proves the theorem.
�
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A Motivating numerical calculations

In this appendix, we discuss the simulations of the halting time Tε,E,N,n that motivated the study of the

critically-scaled Laguerre Unitary Ensemble. Given M samples of the ensemble E = (F, F̃ ) which each
consist of an N ×N matrix A and an N -dimensional vector b, we can compute M samples drawn from the
distribution of Tε,E,N,n. Recall the definition of the fluctuations

τε,E,N,n =
Tε,E,N,n − E[Tε,E,N,n]√

Var[Tε,E,N,n]
≈ Tε,E,N,n − 〈Tε,E,N,n〉

σε,E,N,n
, (A.1)

where 〈Tε,E,N,n〉 and σε,E,N,n represent the sample average and sample standard deviation, respectively,
taken over the M � 1 samples. We plot the histogram of τε,E,N,n in Figure 10 for three choices of F . This
computation indicates universality for τε,E,N,n.

Notation. When F is a Bernoulli random variable, taking values ±1 with equal probability, we call the
resulting ensemble the positive definite Bernoulli ensemble (PBE). We also refer to the pair E = (F, F̃ ) as
PBE (or LUE of F ∼ Xc). Here F̃ is understood to be uniform on [−1, 1].
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Figure 10: A demonstration of universality for τε,E,N,n when n ∼ N +b
√

4cNc with c = 1. The computation
is taken over 32, 000 samples drawn from the ensemble E. This figure contains three histograms. One for
F being a Bernoulli random variable taking the values ±1 with equal probability (PBE), one for F being a
standard real normal random variable and the last for F being a standard complex normal random variable
(LUE).

A.1 Ill-conditioned random matrices

In this section we consider the distribution of Tε,E,N,N , i.e. n = N in the case of LUE and PBE. The
limiting distribution for the condition number is given in (1.2) for LUE. We plot a simulated histogram for
the condition number when N = 100 and when N = 196 in Figure 11(a) again for LUE. In Figure 11(b) we
plot the corresponding simulated halting time distribution once again for LUE. The computed moments are
shown in Figure 11(c) for LUE and PBE and indicate that the fluctuations are not universal (compare with
Figure 13(c) below).

A.2 Well-conditioned random matrices

Here we consider the distribution of Tε,E,N,2N , i.e. n = 2N in the case of LUE and PBE. It is known that
the distribution of the condition number has a limit with finite mean. This is demonstrated in Figure 12(a)
for N = 100 and N = 196 for LUE. A simulated histogram for Tε,E,N,2N is shown in Figure 12(b) for LUE.
From this plot, it is apparent that the discrete nature of the distribution will persist as N →∞ in agreement
with the discussion in the introduction.
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LUE
N Mean Variance Skewness Kurtosis

100 282.442 1290.84 -1.75573 5.43125
200 643.592 2809.2 -2.47523 10.6812
300 1018.9 4220.1 -2.80277 14.2713
400 1404.26 4718.35 -2.12134 23.1877
500 1786.33 6390.55 -2.80864 21.4515
600 2173.88 7846.43 -2.61028 20.5573
700 2565.14 9163.6 -1.93369 33.4126

PBE
N Mean Variance Skewness Kurtosis

100 279.86 2124.82 -0.544804 6.54769
200 641.935 7069.64 -0.0881511 14.4649
300 1021.09 14353.2 1.38426 36.2729
400 1409.61 28189.1 11.4373 706.288
500 1802.01 41838. 5.62383 136.943
600 2197.1 55448.6 4.59607 95.9881
700 2590.53 70960.4 4.02138 52.7732

(c)

Figure 11: Ill-conditioned matrices. Numerical calculations when N = n. All calculations are taken
over 32, 000 samples. (a) Histograms for the simulated condition number for LUE when N = 100, 196. (b)
Histograms for τε,E,N,N for ε = 10−14 for LUE. (c) A table of the computed mean, variance, skewness and
kurtosis of Tε,E,N,N for both LUE. This table indicates that the kurtosis does not converge as N increases.
Thus, there is no limiting distribution function for the fluctuations.
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LUE
N Mean Variance Skewness Kurtosis

100 73.2159 1.15328 0.0759259 3.0488
200 85.5885 0.982886 -0.0105681 3.03685
300 90.5032 0.790077 0.00742551 3.03203
400 93.2354 0.727263 0.0189789 2.96987
500 95.0356 0.581249 0.0196577 2.9729
600 96.3209 0.530806 -0.0227588 2.92353
700 97.2547 0.487275 -0.00846606 2.98083
1000 99.1397 0.356686 0.0636354 3.13519

PBE
N Mean Variance Skewness Kurtosis

100 72.2804 2.17711 0.0195341 3.05985
200 84.9429 1.88208 0.00520835 3.01454
300 90.0251 1.51354 0.0114286 3.031
400 92.8684 1.28947 0.0260843 3.0192
500 94.7242 1.07907 0.0107542 3.03627
600 96.0485 0.957456 0.0285771 2.98779
700 97.0346 0.85989 0.0016651 2.98035
1000 98.9859 0.643946 0.0312824 2.952

(c)
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Figure 12: Well-conditioned matrices. Numerical calculations when n = 2N . All calculations are
taken over 32, 000 samples. (a) Histograms for the simulated condition number of LUE. (b) Histograms for
Tε,E,N,2N for ε = 10−14 for LUE. The discrete nature of the distribution persists in the N → ∞ limit. (c)
A table of the computed mean, variance, skewness and kurtosis of Tε,E,N,2N for both LUE and PBE. This
table indicates that the mean is bounded and the variance is monotonically decreasing as a function of N .
(d) Histograms for τε,E,N,2N for both LUE and PBE plotted on the same axes for N = 400. From this plot
it is clear that due to the discrete nature of the distributions they will not coincide as in Figure 10.
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A.3 Critically-scaled random matrices

Finally, we consider the distribution of Tε,E,N,N+b
√

4Nc, i.e. n = N + b
√

4cNc (c = 1) in the case of LUE

and PBE. In Figure 13(a) we examine the condition number which we know by Theorem 1.3 has Tracy–
Widom fluctuations for LUE. In Figure 13(b) we examine the distribution for Tε,E,N,N+b

√
4Nc for LUE. The

calculations show a limiting form for the halting time (see also Figure 10). In this case, the moments of
the condition number are unbounded as N → ∞ but the limiting distribution is not heavy-tailed and a
non-trivial limit exists. Numerical experiments also indicate that this phenomenon persists for the scalings
n = N + b(4cN)γc if 0 < γ < 1. Universality is also apparent from Figure 13(c).
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LUE
N Mean Variance Skewness Kurtosis

100 133.573 1.16093 0.0163642 3.09041
200 258.119 16.21 -0.0752041 3.02723
300 359.573 33.8961 -0.00898283 2.96971
400 442.731 53.6034 0.00574321 3.04426
500 525.601 75.9278 0.0095558 2.96023
600 599.448 95.4292 0.0288976 2.99469
700 665.955 119.276 0.0245652 3.01978
1000 838.013 175.635 0.0299194 2.98757

PBE
N Mean Variance Skewness Kurtosis

100 132.235 2.50567 -0.276531 3.40614
200 255.512 30.5358 -0.0575893 2.9452
300 356.774 67.6515 0.0169258 2.99919
400 440.032 106.758 0.00737936 3.00197
500 522.989 146.83 0.0309066 3.00585
600 596.929 192.582 0.025091 2.9947
700 663.378 230.798 0.0233565 3.01858
1000 835.867 348.123 0.0497676 2.99017

(c)

Figure 13: Critically scaled matrices. Numerical calculations when n = N + b
√

4Nc. All calculations
are taken over at least 32, 000 samples. (a) Histograms for the simulated condition number of LUE. (b)
Histograms for Tε,E,N,N+b

√
4Nc for ε = 10−14 for LUE. (c) A table of the computed mean, variance, skewness

and kurtosis of Tε,E,N,N+b
√

4Nc for both LUE and PBE. This table indicates that the mean is unbounded and
the variance is monotonically increasing as a function of N . Furthermore, the kurtosis is close to 3 for both
LUE and PBE. This is yet stronger evidence for the universality observed in Figure 10. The computations
for N = 1000 use 64, 000 samples.
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B The Parametrices

In this appendix we present the asymptotic calculations for the Airy and Bessel parametrices.

B.1 The Airy parametrix

We use the connection formulas (ω = e2πi/3) and refer to Figure 3 for the sectors I, II, III and IV:

Ai(ξ) = −ωAi(ωξ)− ω2 Ai(ω2ξ),

Ai′(ξ) = −ω2 Ai′(ωξ)− ωAi′(ω2ξ).

Here Ai(ξ) is the Airy function. We also calculate the large-ξ asymptotics of the matrix functions in (3.1)
using

Ai(ξ) =
1

2
√
π
ξ−1/4e−

2
3 ξ

3/2
(

1 +O(ξ−3/2)
)
, (B.1)

Ai′(ξ) = − 1

2
√
π
ξ1/4e−

2
3 ξ

3/2
(

1 +O(ξ−3/2)
)
, (B.2)

uniformly for | arg ξ| ≤ π − ε for any ε > 0.

• For ξ ∈ I we find

PAi(ξ) =

[
1

2
√
π
ξ−1/4e−

2
3 ξ

3/2 ω1/4

2
√
π
ξ−1/4e

2
3 ξ

3/2

− 1
2
√
π
ξ1/4e−

2
3 ξ3/2 ω1/4

2
√
π
ξ1/4e

2
3 ξ3/2

]
ω−σ3/4

(
I +O(ξ−3/2)

)
.

Note that ω2ξ ∈ IV and we must keep with the convention that arg ξ ∈ (−π, π]. We used (ω2ξ)3/2 =

|ξ|3/2e
3i
2 (arg ξ−2π/3) = −ξ3/2 and (ω2ξ)±1/4 = |ξ|±1/4e±

1i
4 (arg ξ−2π/3) = ξ±1/4e∓iπ6 .

• For ξ ∈ IV we find that ωξ = |ξ|ei(arg ξ+ 2π
3 ) ∈ I and

PAi(ξ) =

[
1

2
√
π
ξ−1/4e−

2
3 ξ

3/2 ω1/4

2
√
π
ξ−1/4e

2
3 ξ

3/2

− 1
2
√
π
ξ1/4e−

2
3 ξ3/2 ω1/4

2
√
π
ξ1/4e

2
3 ξ3/2

]
ω−σ3/4

(
I +O(ξ−3/2)

)
.

This follows because (ωξ)3/2 = |ξ|3/2ei(3/2 arg ξ+π)) = −ξ3/2 and (ωξ)±1/4 = |ξ|3/2e±i(1/4 arg ξ+π/6)) =
ξ±1/4e±iπ6 .

• For ξ ∈ II we rewrite the matrix using the connection formula because the asymptotics for Ai(ξ) are
not uniformly valid here:

PAi(ξ) =

[
Ai(ξ) Ai(ω2ξ)
Ai′(ξ) ω2 Ai′(ω2ξ)

]
ω−σ3/4

[
1 0
−1 1

]
=

[
−ωAi(ωξ)− ω2 Ai(ω2ξ) Ai(ω2ξ)
−ω2 Ai′(ωξ)− ωAi′(ω2ξ) ω2 Ai′(ω2ξ)

]
ω−σ3/4

[
1 0
−1 1

]
=

[
−Ai(ωξ) −Ai(ω2ξ)
−ωAi′(ωξ) −ω2 Ai′(ω2ξ)

] [
ω 0
ω2 −1

]
ω−σ3/4

[
1 0
−1 1

]
=

[
−Ai(ωξ) −Ai(ω2ξ)
−ωAi′(ωξ) −ω2 Ai′(ω2ξ)

]
ω1/2

[
ω1/4 0

0 −ω−1/4

]
=

[
−ωAi(ωξ) Ai(ω2ξ)
−ω2 Ai′(ωξ) ω2 Ai′(ω2ξ)

]
ω−σ3/4.

For ξ ∈ II we write ωξ = |ξ|ei arg ξ−4iπ/3 ∈ IV and ω2ξ = |ξ|ei arg ξ−2iπ/3 ∈ I to compute

PAi(ξ) =

[
1

2
√
π
ξ−1/4e−

2
3 ξ

3/2 ω1/4

2
√
π
ξ−1/4e

2
3 ξ

3/2

− 1
2
√
π
ξ1/4e−

2
3 ξ3/2 ω1/4

2
√
π
ξ1/4e

2
3 ξ3/2

]
ω−σ3/4

(
I +O(ξ−3/2)

)
.
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• The calculation for ξ ∈ III is similar to this:

PAi(ξ) =

[
Ai(ξ) −ω2 Ai(ωξ)
Ai′(ξ) −Ai′(ωξ)

]
ω−σ3/4

[
1 0
1 1

]
=

[
−ωAi(ωξ)− ω2 Ai(ω2ξ) −ω2 Ai(ωξ)
−ω2 Ai′(ωξ)− ωAi′(ω2ξ) −Ai′(ωξ)

]
ω−σ3/4

[
1 0
1 1

]
=

[
−Ai(ωξ) −Ai(ω2ξ)
−ωAi′(ωξ) −ω2 Ai′(ω2ξ)

] [
ω ω2

ω2 0

]
ω−σ3/4

[
1 0
1 1

]
=

[
−Ai(ωξ) −Ai(ω2ξ)
−ωAi′(ωξ) −ω2 Ai′(ω2ξ)

] [
0 1
1 0

]
ω2ω−σ3/4

=

[
−ω2 Ai(ω2ξ) −ω2 Ai(ωξ)
−ωAi′(ω2ξ) −Ai′(ωξ)

]
ω−σ3/4.

For ξ ∈ III we write ωξ = |ξ|ei arg ξ+2iπ/3 ∈ IV and ω2ξ = |ξ|ei arg ξ+4iπ/3 ∈ I to compute

PAi(ξ) =

[
1

2
√
π
ξ−1/4e−

2
3 ξ

3/2 ω1/4

2
√
π
ξ−1/4e

2
3 ξ

3/2

− 1
2
√
π
ξ1/4e−

2
3 ξ3/2 ω1/4

2
√
π
ξ1/4e

2
3 ξ3/2

]
ω−σ3/4

(
I +O(ξ−3/2)

)
.

B.2 The Bessel parametrix

We refer to Figure 4 for the sectors in the complex plane for the Bessel parametrix. To state the precise
Riemann–Hilbert problem (Riemann–Hilbert problem 3.2) that is solved by PBessel in (3.2) we have to address
asymptotics as α→∞. For any ε > 0 (see [20])

Iα(αz) =

(
1

2πα

)1/2
eαη

(1 + z2)1/4
(1 +O(z−1)), | arg z| ≤ 1

2
π − ε,

I′α(αz) = (1 + z2)1/4

(
1

2πα

)1/2
eαη

z
(1 +O(z−1)), | arg z| ≤ 1

2
π − ε,

Kα(αz) =
( π

2α

)1/2 e−αη

(1 + z2)1/4
(1 +O(z−1)), | arg z| ≤ 3

2
π − ε,

K′α(αz) = −(1 + z2)1/4
( π

2α

)1/2 e−αη

z
(1 +O(z−1)), | arg z| ≤ 3

2
π − ε,

η(z) =
(
1 + z2

)1/2
+ log

z

1 + (1 + z2)
1/2

.

(B.3)

Here the branch cut for
(
1 + z2

)1/2
is taken on the segment [−i, i]. We compute the asymptotics of each

factor in the above expansions replacing z with Mz/α for M = N + 1
2 (α + 1). Assuming |z| ≥ δ > 0 with

| arg z| ≤ 1
2π − ε and M/α→∞ (see (B.3)), we find the following:(
1 +

(
Mz

α

)2
)1/4

=

√
M

α
z1/2

(
1 +

( α

Mz

)2
)1/4

=

√
M

α
z1/2

(
1 +O

( α
M

)2
)
,

(
1 +

(
Mz

α

)2
)1/2

=
M

α
z

(
1 +

( α

Mz

)2
)1/2

=
M

α
z

(
1 +O

( α
M

)2
)
,

αη

(
M

α
z

)
= Mz

(
1 +

1

2

( α

Mz

)2

+O
( α
M

)3
)

+ α log

 M
α z

1 + M
α z
(

1 +O
(
α
M

)2)


= Mz +
1

2

α2

Mz
+ α log

(
M
α z

1 + M
α z

)
+O

(
α3

M2

)
.
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To further simplify things here, use the scaling (1.1) so that M/α = O(α). From this we have(
1 +

(
Mz

α

)2
)1/4

=

√
M

α
z1/2

(
1 +O

(
α−2

))
,

(
1 +

(
Mz

α

)2
)1/4

=
M

α
z
(
1 +O

(
α−2

))
,

αη

(
M

α
z

)
= Mz − 2c

z
+O(α−1).

Thus, if |z| ≥ δ > 0 we may simplify the expansions

Iα(Mz) = Iα(α(Mz/α)) =

(
1

2πM

)1/2
eMz

z1/2
e−2c/z(1 +O(α−1)), | arg z| ≤ 1

2
π − ε,

I′α(Mz) = I′α(α(Mz/α)) =

(
1

2πM

)1/2
eMz

z1/2
e−2c/z(1 +O(α−1)), | arg z| ≤ 1

2
π − ε,

Kα(Mz) = Kα(α(Mz/α)) =
( π

2M

)1/2 e−Mz

z1/2
e2c/z(1 +O(α−1)), | arg z| ≤ π − ε,

K′α(Mz) = K′α(α(Mz/α)) = −
( π

2M

)1/2 e−Mz

z1/2
e2c/z(1 +O(α−1)), | arg z| ≤ π − ε.

Similar calculations must be completed for the Hankel functions. The simplest way to obtain expansions, is
to use the fact that for | arg z| ≤ π/3

H(1)
α (z) =

2

πi
e−απi/2 Kα(ze−iπ/2),

H(1)
α

′
(z) = − 2

π
e−απi/2 K′α(ze−iπ/2),

H(2)
α (z) = − 2

πi
eαπi/2 Kα(zeiπ/2),

H(2)
α

′
(z) = − 2

π
eαπi/2 K′α(zeiπ/2).

Then, | arg(±zi)| ≤ π/3 + π/2 < π and we can use the expansions for Kα above as they are still uniformly
valid. We are ready to compute the asymptotics of PBessel with α both tending to infinity, scaling ξ in
appropriate way. We compute:

• For ξ ∈ I ∪ IV we have

PBessel(M
2ξ) =

[
1
2

(
1
πM

)1/2
ξ−1/4e2Mξ1/2e−cξ

−1/2 i
2

(
1
πM

)1/2
ξ−1/4e−2Mξ1/2ecξ

−1/2

i (πM)
1/2

ξ1/4e2Mξ1/2e−cξ
−1/2

(πM)
1/2

ξ1/4e−2Mξ1/2ecξ
−1/2

]
× (I +O(α−1)).

• For ξ ∈ II we have (e−iπ/2(−ξ)1/2)−1/2 = eiπ/4(ξe−iπ)−1/4 = ξ−1/4eiπ/2 = iξ−1/4 and

PBessel(M
2ξ)

=

[
1
2e−απi/2

(
1
πM

)1/2
ξ−1/4e2Mξ1/2e−cξ

−1/2 i
2eαπi/2

(
1
πM

)1/2
ξ−1/4e−2Mξ1/2ecξ

−1/2

ie−απi/2 (πM)
1/2

ξ1/4e2Mξ1/2e−cξ
−1/2

eαπi/2 (πM)
1/2

ξ1/4e−2Mξ1/2ecξ
−1/2

]
e

1
2απiσ3 × (I +O(α−1)).
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• For ξ ∈ III we have (eiπ/2(−ξ)1/2)1/2 = eiπ/4(ξeiπ)1/4 = ξ1/4eiπ/2 = iξ1/4 and

PBessel(M
2ξ)

=

[
1
2eαπi/2

(
1
πM

)1/2
ξ−1/4e2Mξ1/2e−cξ

−1/2 i
2e−απi/2

(
1
πM

)1/2
ξ−1/4e−2Mξ1/2ecξ

−1/2

ieαπi/2 (πM)
1/2

ξ1/4e2Mξ1/2e−cξ
−1/2

e−απi/2 (πM)
1/2

ξ1/4e−2Mξ1/2ecξ
−1/2

]
e−

1
2απiσ3 × (I +O(α−1)).

B.3 Proof of Lemma 3.1

We consider

PAi(M
2/3f←(z)) =

1

2
√
π

(M2/3f←(z))−
1
4σ3EAi(M

2/3f←(z))e−Mφ←(z)σ3 ,

and seek a function MAi(z) so that

S←(z) := MAi(z)PAi(M
2/3f←(z))e

1
2 ŵ(z)σ3eNφ←(z)σ3

matches with the outer solution S∞. We make the ansatz

MAi(z) := 2
√
πD−1
∞ N (z)(ψ←(z))−σ3

[
ω−1/4 ω1/2

−ω−1/4 ω1/2

]−1

(M2/3f←(z))
1
4σ3 .

Using M = N + 1
2 (α+ 1), (2.17),(2.18) and (2.26) we find uniformly for |z − 1| = δ

S←(z) = D−1
∞ N (z)(ψ←(z))−σ3

[
ω−1/4 ω1/2

−ω−1/4 ω1/2

]−1

EAi(M
2/3f←(z))e−

1
2 (α+1)φ←(z)σ3e

1
2 ŵ(z)σ3

= D−1
∞ ĚAi(z)N (z)e(− logψ←(z)− 1

2 (α+1)φ←(z)+(α+1)z− 1
2α log z)σ3

= D−1
∞ ĚAi(z)D∞S∞(z), (B.4)

ĚAi(z) = N (z)(ψ←(z))−σ3

[
ω−1/4 ω1/2

−ω−1/4 ω1/2

]−1

EAi(M
2/3f←(z))(ψ←(z))σ3N−1(z) (B.5)

= I +O(M−1).

This calculation depends critically on (2.26).
We now show that MAi(z) is analytic in a neighborhood of z = 1. First note that[

ω−1/4 ω1/2

−ω−1/4 ω1/2

]
= ω−1/4

[
0 1
−1 0

] [
1 −i
1 i

]
.

Then by direct calculation

N (z)(ψ←(z))−σ3

[
1 −i
1 i

]−1 [
0 1
−1 0

]
=

[
− 1

2 0
i(z − 1

2 ) i

]
(z(z − 1))−σ3/4.

From this we find that

MAi(z) = 2
√
πω1/4D−1

∞

[
− 1

2 0
i(z − 1

2 ) i

]
Mσ3/6

(
f←(z)

z(z − 1)

)σ3/4

←
.

Then, it remains to show that the ratio f←(z)
z(z−1) is analytic and does not vanish in a neighborhood of z = 1.

But this follows directly from the expression for f←(z) in terms of a power series.
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Finally, we check the jumps of S←(z). In the following calculations we leave of ± signs for boundary
values for functions that are analytic in a neighborhood of the point under consideration. Recall that the
contours Γ↑ and Γ↓ in a neighborhood of z = 1 are defined in Figure 6. For z ∈ Γ↑, f←(z) ∈ γ2 and therefore

S+
←(z) = MAi(z)P

+
Ai(M

2/3f←(z))e
1
2 ŵ(z)σ3eNφ←(z)σ3

= MAi(z)P
−
Ai(M

2/3f←(z))

[
1 0
1 1

]
e

1
2 ŵ(z)σ3eNφ←(z)σ3

= MAi(z)P
−
Ai(M

2/3f←(z))e
1
2 ŵ(z)σ3eNφ←(z)σ3e−

1
2 ŵ(z)σ3e−Nφ←(z)σ3

[
1 0
1 1

]
e

1
2 ŵ(z)σ3eNφ←(z)σ3

= S−←(z)

[
1 0

e2Nφ←(z)+ŵ(z) 1

]
.

The same calculation follows for z ∈ Γ↓. For z ∈ (1, 1 + δ) we have f←(z) > 0 so

S+
←(z) = MAi(z)P

+
Ai(M

2/3f←(z))e
1
2 ŵ(z)σ3eNφ←(z)σ3

= MAi(z)P
−
Ai(M

2/3f←(z))

[
1 1
0 1

]
e

1
2 ŵ(z)σ3eNφ←(z)σ3

= MAi(z)P
−
Ai(M

2/3f←(z))e
1
2 ŵ(z)σ3eNφ←(z)σ3e−

1
2 ŵ(z)σ3e−Nφ←(z)σ3

[
1 1
0 1

]
e

1
2 ŵ(z)σ3eNφ←(z)σ3

= S−←(z)

[
1 e−2Nφ←(z)−ŵ(z)

0 1

]
.

Finally, for z ∈ (1− δ, 1), f←(z) < 0 and using that φ+
←(z) = −φ−←(z)

S+
←(z) = MAi(z)P

+
Ai(M

2/3f←(z))e
1
2 ŵ(z)σ3eNφ

+
←(z)σ3

= MAi(z)P
−
Ai(M

2/3f←(z))

[
0 1
−1 0

]
e

1
2 ŵ(z)σ3eNφ

+
←(z)σ3

= MAi(z)P
−
Ai(M

2/3f←(z))e
1
2 ŵ(z)σ3eNφ

−
←(z)σ3e−

1
2 ŵ(z)σ3eNφ

+
←(z)σ3

[
0 1
−1 0

]
e

1
2 ŵ(z)σ3eNφ←(z)σ3

= S−←(z)

[
0 e−ŵ(z)

−eŵ(z) 0

]
.

We note that both S← and S−1
← are analytic in B(1, δ) \ ΓAi and are continuous up to the contour. This

follows from the fact that S−1
← has unit determinant. To see this, note that PAi has constant determinant

in each sector of C \ ΣAi by Liouville’s formula and the fact that this constant is the same in each follows
from the fact the jump matrices have unit determinant. Thus S←(z) has a determinant that is independent
of both M and z and the determinant is found to be unity by examining its asymptotics.

B.4 Proof of Lemma 3.2

We consider

S→(z) = MBessel(z)PBessel(M
2f→(z))e

1
2 w̌(z)σ3eNφ→(z)σ3 ,

MBessel(z) := D−1
∞ N (z)(ψ→(z))−σ3

[
1
2

i
2

i 1

]−1

(M2f→(z))
1
4σ3π

1
2σ3 ,

w̌(z) := (2α+ 2)z − α log→ z + (α+ 1)πi,

and

PBessel(M
2ξ) = (πM)−

1
2σ3ξ−

1
4σ3EBessel(M

2ξ)e2Mξ1/2σ3e−cξ
−1/2σ3 ,

EBessel(M
2ξ) =

[
1
2 (1 +O(α−1)) i

2 (1 +O(α−1))
i(1 +O(α−1)) 1 +O(α−1)

]
.
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We first check the asymptotic behavior for |z| bounded away from zero.

S→(z) = D−1
∞ N (z)(ψ→(z))−σ3

[
1
2

i
2

i 1

]−1

EBessel(M
2f→(z))

× e(− 1
2 (α+1)φ→(z)+(α+1)z− 1

2α log→(z)+ 1
2 (α+1)πi)σ3e2c/φ→(z)σ3

= D−1
∞ ĚBessel(z)N (z)(ψ→(z))−σ3e(− 1

2 (α+1)φ→(z)+(α+1)z− 1
2α log→(z)+ 1

2 (α+1)πi)σ3e2c/φ→(z)σ3

= D−1
∞ ĚBessel(z)D∞S∞(z)e2c/φ→(z)σ3 ,

ĚBessel(z) = N (z)(ψ→(z))−σ3

[
1
2

i
2

i 1

]−1

EBessel(M
2f→(z))(ψ→(z))σ3N−1(z) = I +O(α−1).

This follows from (2.25). Note the extra factor of e2c/φ→(z)σ3 when comparing this with (B.4).
We now check that MBessel(z) is analytic. So, we must consider

N (z)(ψ→(z))−σ3

[
1 − i

2
−i 1

2

]
=

[
1 0

i(1− 2z) 1

]
(z(z − 1))−σ3/4.

From this, the question of analyticity of MBessel(z) is reduced to the question of analyticity of the function(
f→(z)

z(z − 1)

)1/4

.

This is clearly analytic in a neighborhood of z = 0 because f→(0) = 0 but f ′→(0) < 0.
Now, we check the jumps. Recall that Γ↑ and Γ↓ in a neighborhood of z = 0 are defined in Figure 8. For

z ∈ Γ↑, f→(z) ∈ β3 (see Figure 4). The limit to Γ↑ from above (+ side) is the same as limit into β3 from
below (− side) so that

S+
→(z) = MBessel(z)P

−
Bessel(M

2f→(z))e
1
2 w̌(z)σ3eNφ→(z)σ3

= MBessel(z)P
+
Bessel(M

2f→(z))

[
1 0

−e−απi 1

]
e

1
2 w̌(z)σ3eNφ→(z)σ3

= S−→(z)e−
1
2 w̌(z)σ3e−Nφ→(z)σ3

[
1 0

−e−απi 1

]
e

1
2 w̌(z)σ3eNφ→(z)σ3

= S−→(z)

[
1 0

e−(α+1)πi+2Nφ→(z)+w̌(z) 1

]
.

Then we find that e−(α+1)πi+2Nφ→(z)+w̌(z) = e2Nφ→(z)+ŵ(z) and the jump agrees with the corresponding
jump for S(z). For z ∈ Γ↓, f→(z) ∈ β1 and

S+
→(z) = MBessel(z)P

−
Bessel(M

2f→(z))e
1
2 w̌(z)σ3eNφ→(z)σ3

= MBessel(z)P
+
Bessel(M

2f→(z))

[
1 0

−eαπi 1

]
e

1
2 w̌(z)σ3eNφ→(z)σ3

= S−→(z)e−
1
2 w̌(z)σ3e−Nφ→(z)σ3

[
1 0

−eαπi 1

]
e

1
2 w̌(z)σ3eNφ→(z)σ3

= S−→(z)

[
1 0

e(α+1)πi+2Nφ→(z)+w̌(z) 1

]
Then because log→ z = log← z + 2πi we have e(α+1)πi+2Nφ→(z)+w̌(z) = e2Nφ→(z)+ŵ(z) and again, this is the
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same as the corresponding jump for S(z). Finally, for z ∈ (0, δ) we have f→(z) ∈ β2 and

S+
→(z) = MBessel(z)P

−
Bessel(M

2f→(z))e
1
2 w̌+(z)σ3eNφ

+
→(z)σ3

= MBessel(z)P
+
Bessel(M

2f→(z))

[
0 −1
1 0

]
e

1
2 w̌+(z)σ3eNφ

+
→(z)σ3

= S−→(z)e−
1
2 w̌−(z)σ3e−Nφ

−
→(z)σ3

[
0 −1
1 0

]
e

1
2 w̌+(z)σ3eNφ

+
→(z)σ3

= S−→(z)

[
0 e−ŵ(z)

−eŵ(z) 0

]
.

This follows from φ+
→(z) + φ−→(z) = 0 for 0 < z < 1 and 1

2 (w̌+(z) + w̌−(z)) = ŵ(z) + πi. It also follows that
detS→(z) = 0, see [20, Sections 10.5 and 10.28]. Finally, we need to check that S→(z) satisfies:

• S→(z) = O(1) as z → 0 from outside the lens and

• S→(z)

[
1 0

±e2Nφ→(z)+ŵ(z) 1

]
= O(1) as z → 0 inside the lens. The (+) sign is taken for z in the

region enclosed by [0, 1] and Γ↑ and the (−) sign is taken in the region enclosed by [0, 1] and Γ↓.

From outside the lens, we have for z ∈ B(0, δ) \ (0, δ)

S→(z) = MBessel(z)

(
O
[
|z|α/2 |z|−α/2
|z|α/2 |z|−α/2

]
×O

[
|z|−α/2 0

0 |z|α/2
])

e((α+1)z+Nφ→(z))σ3 = O(1).

The statement inside the lens follows from the fact that S→(z)

[
1 0

±e2Nφ→(z)+ŵ(z) 1

]
is the analytic con-

tinuation of the function defined outside the lens.

C Estimates at the hard edge

The following facts are of use below. As α→∞ we use [20]

Jα(αt) =

(
4ζ

1− t2

)1/4

α−1/3
(

Ai(α2/3ζ) +O(α−4/3)
)
, t > 0,

Jα
′(αt) = −2

t

(
4ζ

1− t2

)−1/4

α−2/3
(

Ai′(α2/3ζ) +O(α−2/3)
)
, t > 0,

2

3
ζ3/2 =

∫ 1

t

√
1− s2

s
ds, 0 < t ≤ 1,

2

3
(−ζ)3/2 =

∫ t

1

√
s2 − 1

s
ds, t > 1,

(C.1)

This expansion is uniform for t ∈ (0,∞). In preparation for the proofs of Lemmas 4.1 and 4.2, we look to
obtain global estimates on V and W . Assume z ∈ (0, δ′) where δ′ < δ < 1/2. The following estimates are
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straightforward

−iφ+
→(z) = 2

∫ z

0

√
1− s
s

ds ≤ 4
√
z, 0 ≤ z ≤ δ′,

−iφ+
→(z) ≥ 4

√
z|1− δ|1/2 ≥ 2

√
z, 0 ≤ z ≤ δ′,

2

3
ζ3/2 =

∫ 1

t

√
1− s

√
1 + s

s
ds ≥ 4

3
(1− t)3/2, 0 ≤ t ≤ 1,

ζ ≥ 21/3(1− t), 0 ≤ t ≤ 1,

2

3
ζ3/2 ≥

∫ 1

t

√
1− s
s

ds = − log 2t+ log 2 + 2 log(1 +
√

1− t)− 2
√

1− t, 0 ≤ t ≤ 1,

ζ ≥
(

3

2

)2/3

| log 2t|2/3, 0 ≤ t ≤ 1.

(C.2)

It follows from [20, Section 9.7] that there exists a constant C > 0 such that

|(1 + |x|)1/4 Ai(x)| ≤ C
{

1, if x < 0,

e−
2
3x

3/2

, if x ≥ 0,

|(1 + |x|)−1/4 Ai′(x)| ≤ C
{

1, if x < 0,

e−
2
3x

3/2

, if x ≥ 0.

Define

A1(t) =

(
4ζ

1− t2

)1/4

Ai(α2/3ζ), A2(t) =

(
4ζ

1− t2

)−1/4

Ai′(α2/3ζ).

Let C̃ > 0 and t < C̃. For t ∈ [1− ε, C̃], A1 and A2 are bounded as follows

A1(t) ≤ C max
t∈[1−ε,C̃]

∣∣∣∣ 4ζ

1− t2

∣∣∣∣1/4 , A2(t) ≤ C(1 + |α2/3ζ|)1/4 max
t∈[1−ε,C̃]

∣∣∣∣ 4ζ

1− t2

∣∣∣∣−1/4

.

For t ∈ (0, 1− ε) and a constant Cε > 0,

|A1(t)| ≤
√

2(1− t2)−1/4|ζ|1/4|Ai(α2/3ζ)| ≤ Cεe−α
2
3 ζ

3/2

≤ Cεe−α
1
3 ζ

3/2

|A2(t)| ≤ 1√
2

(1− t2)1/4|ζ|−1/4|Ai′(α2/3ζ)|

≤ 1√
2

(1− t2)1/4 |ζ|−1/4

(1 + |α2/3ζ|)−1/4
(1 + |α2/3ζ|)−1/4|Ai′(α2/3ζ)| ≤ Cεe−α

1
3 ζ

3/2

,

because

|ζ|−1/4

(1 + |α2/3ζ|)−1/4
≤ ceα 1

3 ζ
3/2

, c > 0.

In summary, for any ζ1 > 0, there exists a constant C = C(ζ1) > 0 such that

|A1(t)| ≤ C
{

e−α
1
3 |ζ|

3/2

, if ζ ≥ 0,
1, if − ζ1α−2/3 ≤ ζ < 0,

|A2(t)| ≤ C
{

e−α
1
3 |ζ|

3/2

, if ζ ≥ 0,
1, if − ζ1α−2/3 ≤ ζ < 0.

Note that if ζ ≥ −ζ1α−2/3 then t is bounded, i.e. t < C̃. The constant ζ1 is fixed below (C.9). Note that if

ζ > 0 then |Aj(t)| ≤ Ce−α
1
3 |ζ|

3/2 ≤ C so that the second inequalities above hold for −ζ1α−2/3 ≤ ζ. Similar
remarks apply in (C.5) below.
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Define t as a function of z by t(z) = −Mα iφ+
→(z) so that Jα(αt) = Jα(−iMφ+

→(z)) to match (4.3) and

(4.4). From the estimates in (C.2) it follows that t(z) ≤ 4Mα
√
z so that if t(z∗) = 1 then

(
α

4M

)2 ≤ z∗ and

ζ(t(z)) > 0 for z ≤ z∗, as t(z) is an increasing function of z. Furthermore, we know that ζ ≥ 21/3(1− t) for
0 < t ≤ 1 so that

ζ(t(z)) ≥ 21/3

(
1− 4

M

α

√
z

)
, for z ≤

( α

4M

)2

and

−ζ1α−2/3 ≤ ζ(t(z)) if − ζ1α−2/3 ≤ 1− 4M

α

√
z.

For 4Mα
√
z ≤ 1 we obtain

e−α
1
3 |ζ|

3/2

≤ e−α
1
3 (1−4Mα

√
z)

3/2

. (C.3)

From the last line of (C.2) we have

e−α
1
3 |ζ|

3/2

≤ e−
1
2α| log 2t| ≤ (2t)α/2 ≤ eα

1
2 log[( 8M

α )
√
z]. (C.4)

As we will see (C.4) is useful near z = 0 and (C.3) is useful for slightly larger values of z. Using (C.1) we

have for a constant C1 and any 0 ≤ C2 ≤
(
α

4M

)2
| Jα(−iMφ+

→(z))| = α−1/3|A1(t)||1 +O(α−4/3)|

≤ C1α
−1/3


eα

1
2 log[( 8M

α )
√
z], if 0 ≤ z ≤ C2,

e−α
1
3 (1−4Mα

√
z)

3/2

, if C2 ≤ z ≤
(
α

4M

)2
,

1, if − ζ1α−2/3 ≤ 1− 4M
α

√
z ≤ 0,

|φ+
→(z) J′α(−iMφ+

→(z))| = 2M−1α1/3|A2(t)||1 +O(α−4/3)|

≤ C1M
−1α1/3


eα

1
2 log[( 8M

α )
√
z], if 0 ≤ z ≤ C2,

e−α
1
3 (1−4Mα

√
z)

3/2

, if C2 ≤ z ≤
(
α

4M

)2
,

1, if − ζ1α−2/3 ≤ 1− 4M
α

√
z ≤ 0,

(C.5)

and C2 is determined below in (C.10).
In what follows, we also need an estimate on W ′, see (4.4). So, we consider

W ′(z) =

[
−iMφ+

→
′
(z)Jα

′(−iMφ+
→(z))

πφ+
→
′
(z)Jα

′(−iMφ+
→(z)) + φ+

→
′
(z)(−iπMφ+

→(z))Jα
′′(−iMφ+

→(z))

]
e(N+ 1

2 )πiM1/2.

It also follows that zJα
′′(z) + Jα

′(z) = z−1(α2 − z2) Jα(z) and therefore

W ′(z) =

 −iM
φ+
→
′
(z)

φ+
→(z)

φ+
→(z)Jα

′(−iMφ+
→(z))

iπM−1φ
+
→
′
(z)

φ+
→(z)

(α2 +M2(φ+
→(z))2) Jα(−iMφ+

→(z))

 e(N+ 1
2 )πiM1/2.

Then we have for 0 < z ≤ δ′ ∣∣∣∣∣φ+
→
′
(z)

φ+
→(z)

∣∣∣∣∣ ≤ z−1
√

1− z ≤ z−1,
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so that∣∣∣∣∣Mφ+
→
′
(z)

φ+
→(z)

φ+
→(z)Jα

′(−iMφ+
→(z))

∣∣∣∣∣ ≤ C1α
1/3

×


eα

1
2 log[( 8M

α )
√
z]−log z, if 0 ≤ z ≤ C2,

e−α
1
3 (1−4Mα

√
z)

3/2−log z, if C2 ≤ z ≤
(
α

4M

)2
,

z−1, if − ζ1α−2/3 ≤ 1− 4M
α

√
z < 0,∣∣∣∣∣M−1φ

+
→
′
(z)

φ+
→(z)

(α2 +M2(φ+
→(z))2) Jα(−iMφ+

→(z))

∣∣∣∣
≤ C1M

−1α−1/3|α2 +M2(φ+
→(z))2|

×


eα

1
2 log[( 8M

α )
√
z]−log z, if 0 ≤ z ≤ C2,

e−α
1
3 (1−4Mα

√
z)

3/2−log z, if C2 ≤ z ≤
(
α

4M

)2
,

z−1, if − ζ1α−2/3 ≤ 1− 4M
α

√
z < 0.

We write B(y) = B(x) + (x− y)
∫ 1

0
B′(tx+ (1− t)y)dt and then

KN (x, y) = − 1

2πi

V (x)W (y)

x− y
− 1

2πi
V (x)

(∫ 1

0

B−1(x)B′(tx+ (1− t)y)dt

)
W (y).

Recall the scaling operator

x̂ =
c2

α2
+ x

c222/3

α8/3
=
c2

α2

(
1 + x

(
2

α

)2/3
)
,

and we make the transformation

KN (x, y)dy → KN (x̂, ŷ)dŷ = K̂N (x, y)dy.

We find

KN (x̂, ŷ)dŷ = − 1

2πi

V (x̂)W (ŷ)

x− y
dy − 1

2πi

c2

α2

(
2

α

)2/3

V (x̂)

(∫ 1

0

B−1(x̂)B′(tx̂+ (1− t)ŷ)dt

)
W (ŷ)dy. (C.6)

C.1 Proof of Lemma 4.2

We prove Lemma 4.2 first. For x in a compact set Q, as N →∞ using 4Mc
α2 = 1 +O(α−1) we have

−iφ+
→(x̂) = 4

c

α

√
1 + x

(
2

α

)2/3

(1 +O(α−2)) = 4
c

α
(1 + xα−2/32−1/3 +O(α−4/3)),

−i
M

α
φ+
→(x̂) = (1 +O(α−1))(1 + xα−2/32−1/3 +O(α−4/3) = 1 + xα−2/32−1/3 +O(α−1).

Then, ζ = 21/3(1− t)(1 +O(t− 1)) so that

ζ(t(x̂)) = −α−2/3x+O(α−1),(
4ζ(t(x̂))

1− t2(x̂)

)1/4

= 21/3(1 +O(α−2/3)).

Thus by (C.1)

Jα(−iMφ+
→(x̂)) = Jα(αt(x̂)) =

(
2

α

)1/3

Ai(−x) +O(α−2/3),

πφ+
→(x̂)Jα

′(−iMφ+
→(x̂)) = πi

α

M
t(x̂)Jα

′(αt(x̂)) = −πi
α

M

(
2

α

)2/3

(Ai′(−x) +O(α−1/3)).
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Here convergence is uniform in x for x in a compact set. The following estimate also follows for −
(

2
α

)2/3 ≤
x ≤ L (recall (3.5))

α2 +M2(φ+
→(x̂))2 = α2 − 16M2c2

α2

(
1 + x

(
2

α

)2/3
)

(1 +O(α−2))2.

Then from 4Mc
α2 = 1 +O(α−1) we have

α2 +M2(φ+
→(x̂))2 = α2 − α2(1 +O(α−1))

(
1 + x

(
2

α

)2/3
)

α2 +M2(φ+
→(x̂))2 = α2 − α2 − xα4/322/3 +O(α2/3) = −α4/322/3(x+O(α−1/3)),

|α2 +M2(φ+
→(x̂))2| ≤ Cα4/3(|x|+ 1)2, (C.7)

for some C > 0. We proceed to calculate

φ+
→
′
(x̂)

φ+
→(x̂)

=
1

2

√
1− x̂
x̂

α

c
(1 + xα−2/3 +O(α−1)) =

1

2

α2

c2
(1 +O(α−2/3)),

−iM
φ+
→
′
(x̂)

φ+
→(x̂)

φ+
→(x̂)Jα

′(−iMφ+
→(x̂)) = −1

2

α3

c2

(
2

α

)2/3

(Ai′(−x) +O(α−1/3))

iπM−1φ
+
→
′
(x̂)

φ+
→(x̂)

(α2 +M2(φ+
→(x̂))2) Jα(−iMφ+

→(x̂))

= −iπ
α2

c2M
α4/3

(
1

α

)1/3

Ai(−x)(x+O(α−1/3)).

Combining this discussion we have proved Lemma 4.2

C.2 Proof of Lemma 4.1

Next, we turn to global estimates after the change of variables x̂. We must consider expression in (C.5) after
this change. To examine the components of V and W we use

1 <
4Mc

α2
≤ c4N + 2

√
4cN + 4

(
√

4cN − 1)2
≤ 1 + 2(4cN)−1/2 + 4(4cN)−1

1− 2(4cN)−1/2 + (4cN)−1
< 2, (C.8)

for sufficiently large N to see that

log

[(
8M

α

)√
x̂

]
≤ 1

2
log

[
16

(
1 + x

(
2

α

)2/3
)]

.

Now, assume −(α/2)2/3 ≤ x ≤ −1 and then for sufficiently large N

1− 4
M

α

√
x̂ = 1− 4Mc

α2

(
1 + x

(
2

α

)2/3
)1/2

= 1−

(
1 + x

(
2

α

)2/3
)1/2

+

(
1− 4Mc

α2

)(
1 + x

(
2

α

)2/3
)1/2

≥
(

2

α

)2/3
−1

2
x+

(α
2

)2/3
(

1− 4Mc

α2

)(
1 +

1

2
x

(
2

α

)2/3
)1/2


≥
(

2

α

)2/3 [
−x+

(α
2

)2/3
(

1− 4Mc

α2

)]
.
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This follows because 1− (1 + y)1/2 ≥ −y/2 for y ≤ 0. Then 1− 4Mc/α2 = O(N−1/2) and the second term
in brackets vanishes as N →∞. Thus, for sufficiently large N

1− 4
M

α

√
x̂ ≥ −

(
2

α

)2/3
x+ 1

2
≥ 0.

Then the inequality 0 ≤ x̂ ≤
(
α

4M

)2
holds and

exp

(
−α1

3

(
1− 4

M

α

√
x̂

)3/2
)
≤ exp

(
−1

6
|x+ 1|3/2

)
.

Next, for −1 ≤ x ≤ L consider the inequality

−ζ1α−2/3 ≤ 1− 4M

α

√
x̂.

The right-hand side is a decreasing function of x so we consider

−ζ1 ≤ α2/3

1− 4Mc

α2

(
1 +

(
2

α

)2/3

L

)1/2


= α2/3

1− (1 +O(N−1/2))

(
1 +

(
2

α

)2/3

L

)1/2


= α2/3

1−

(
1 +

(
2

α

)2/3

L

)1/2
+O(α−1/3)

= −2−1/3L+O(α−1/3). (C.9)

Given L, we choose ζ1 so that this condition holds and the estimate for −ζ1α−1 ≤ ζ ≤ 0 in (C.5) can be
used for −1 ≤ x ≤ L. Then

|W1(x̂)| = |V2(x̂)| ≤ C1M
1/2α−1/3


e
α
4 log

[
16
(

1+x( 2
α )

2/3
)]
, if −

(
α
2

)2/3 ≤ x < −b (α2 )2/3 ,
e−

1
6 |x+1|3/2 , if − b

(
α
2

)2/3 ≤ x ≤ −1,
1, if − 1 < x ≤ L,

|W2(x̂)| = |V1(x̂)| ≤ C1πM
−1/2α1/3


e
α
4 log

[
16
(

1+x( 2
α )

2/3
)]
, if −

(
α
2

)2/3 ≤ x < −b (α2 )2/3 ,
e−

1
6 |x+1|3/2 , if − b

(
α
2

)2/3 ≤ x ≤ −1,
1, if − 1 < x ≤ L,

for any b such that 15/16 ≤ b ≤ 1 by choosing

C2 = c2α−2(1− b). (C.10)
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We note that by (C.8) this choice of C2 satisfies C2 ≤
(
α

4M

)2
. We estimate the derivative using (C.7)

|W ′1(x̂)| ≤ M

πx̂
|W2(x̂)|

≤ C3M
1/2α1/3α

2

c2


e
α
4 log

[
16
(

1+x( 2
α )

2/3
)]
−log

[
1+x( 2

α )
2/3
]
, if −

(
α
2

)2/3 ≤ x < −b (α2 )2/3 ,
1

1− b
e−

1
6 |x+1|3/2 , if − b

(
α
2

)2/3 ≤ x ≤ −1,

1, if − 1 < x ≤ L,

|W ′2(x̂)| ≤ π|α2 +M2(φ+
→(x̂))2|

Mx̂
|W1(x̂)|

≤ C3(|x|+ 1)2M−1/2α
3

c2


e
α
4 log

[
16
(

1+x( 2
α )

2/3
)]
−log

[
1+x( 2

α )
2/3
]
, if −

(
α
2

)2/3 ≤ x < −b (α2 )2/3 ,
1

1− b
e−

1
6 |x+1|3/2 , if − b

(
α
2

)2/3 ≤ x ≤ −1,

1, if − 1 < x ≤ L,

for some C3 > 0. This proves Lemma 4.1 after choosing b sufficiently close to unity so that

(1 + |x|)2e
α
4 log

[
16
(

1+x( 2
α )

2/3
)]
−log

[
1+x( 2

α )
2/3
]
≤ 1,

for all α > 4 and −
(
α
2

)2/3 ≤ x < −b (α2 )2/3 because then W ′1 and W ′2 have bounds that are independent of
x. We use b = 1 in the estimates for V and W .

C.3 Proof of Proposition 4.1

From (C.6) we have

K̂N (x, y) = − 1

2πi

V (x̂)W (ŷ)

x− y
− 1

2πi

c2

α2

(
2

α

)2/3

V (x̂)

(∫ 1

0

B−1(x̂)B′(tx̂+ (1− t)ŷ)dt

)
W (ŷ).

We first consider the second term in the expression. We note that
∫ 1

0
B−1(x̂)B′(tx̂+(1− t)ŷ)dt is a uniformly

bounded function. Define

H(x, y) :=
1

2πi

c2

α2

(
2

α

)2/3

V (x̂)

(∫ 1

0

B−1(x̂)B′(tx̂+ (1− t)ŷ)dt

)
W (ŷ).

We use

g(x) =

{
e−

1
6 |x+1|3/2 , if −∞ < x ≤ −1,

1, otherwise.

By Lemma 4.1, for (x, y) ∈ (−∞, L]2 there is a constant DL > 0 such that

|H(x, y)| ≤ DLα
−2/3 1

2π

M

α2

(
2

α

)2/3

g(x)g(y) ≤ DLg(x)g(y).

For the first term, we assume |x− y| ≥ 1 and we have∣∣∣∣ 1

2πi

V (x̂)W (ŷ)

x− y

∣∣∣∣ ≤ C2
Lg(x)g(y).

For |x− y| < 1 we use

− 1

2πi

V (x̂)W (ŷ)

x− y
= − 1

2πi

c2

α2

(
2

α

)2/3 ∫ 1

0

V (x̂)W ′(tx̂+ (1− t)ŷ)dt. (C.11)
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Next, define tx−y = tx+ (1− t)y so that t̂x−y = tx̂+ (1− t)ŷ. It follows from Lemma 4.1 that

|V2(x̂)W ′2(t̂x−y)| ≤ C2
Lα

8/3g(x). (C.12)

Next, we consider

|V1(x̂)W ′1(t̂x−y)| ≤ C2
Lα

8/3g(x). (C.13)

From this, it follows that there is a new constant C̄L > 0 such that∣∣∣∣∣ 1

2πi

c2

α2

(
2

α

)2/3 ∫ 1

0

V (x̂)W ′(tx̂+ (1− t)ŷ)dt

∣∣∣∣∣ ≤ C̄Lg(x).

Therefore, we compute ∫
|x−y|≤1

g(x)dxdy ≤
∫ L

−∞

∫ x+1

x−1

g(x)dxdy ≤ 2

∫ L

−∞
g(x)dx.

The first part of the proposition follows by choosing

G(x, y) = DLg(x)g(y) +

{
C̄Lg(x), if |x− y| < 1,
C2
Lg(x)g(y), otherwise.

Next, for (x, y) in a compact subset of (−∞, L] we have from (4.6) and (4.7) that V (x̂) = O(Mα−2/3) = W (ŷ)
so that

H(x, y) = O(α−4/3), uniformly in x and y.

Define tx−y = tx+ (1− t)y and

K̂N (x, y) = − 1

2πi

V (x̂)W (ŷ)

x− y
+O(α−4/3)

where the error term is uniform in x and y. Using (C.11) we consider We also compute

c2

α2

(
2

α

)2/3

V (x̂)W ′(t̂x−y) = 2πi
[
Ai′(−x) Ai′(−tx−y) + tx−y Ai(−x) Ai(−tx−y)

]
+O(α−1/3),

uniformly in x and y. Therefore

K̂N (x, y)→
∫ 1

0

[
Ai′(−x) Ai′(−tx−y) + tx−y Ai(−x) Ai(−tx−y)

]
dt

= −Ai(−x) Ai′(−y)−Ai′(−x) Ai(−y)

x− y
,

uniformly for x and y in a compact set. This proves the proposition.

D Estimates at the soft edge

In this section we prove the results presented in Section 4.2. We write B(y) = B(x) + (x− y)
∫ 1

0
B′(tx+ (1−

t)y)dt and then

KN (x, y) =
V (x)W (y)

x− y
+ V (x)

(∫ 1

0

B−1
(x)B′(tx+ (1− t)y)dt

)
W (y), (x, y) ∈ (1− δ, 1 + δ]2.
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Recall that x̌ = 1 + x/(22/3M2/3). We consider ǨN (x̌, y̌) and we find

ǨN (x, y) =
V (x̌)W (y̌)

x− y
+

1

M2/322/3
V (x̌)

(∫ 1

0

B−1
(x̌)B′(ťx−y)dt

)
W (y̌), (x̌, y̌) ∈ (1− δ, 1 + δ)2, (D.1)

for ťx−y = tx̌+ (1− t)y̌. An alternate expression is

ǨN (x, y) = − 1

M2/322/3
V (x̌)

(∫ 1

0

W
′
(ťx−y)dt

)
+

1

M2/322/3
V (x̌)

(∫ 1

0

B−1
(x̌)B′(ťx−y)dt

)
W (y̌), (D.2)

because V (x)W (x) = 0. Similar expressions follow with the overline replaced with a tilde:

ǨN (x, y) =
1

M2/322/3
Ṽ (x̌)

(∫ 1

0

B̃−1(x̌)B̃′(ťx−y)dt

)
W̃ (y̌), (x̌, y̌) ∈ (1 + δ,∞)2. (D.3)

Additionally,

ǨN (x, y) =
V (x̌)B−1

(x̌)B̃(y̌)W (y̌)

x− y
, (D.4)

D.1 Proof of Lemma 4.3

For x ∈ (1− δ, 1 + δ) it follows that(
2√

1 + δ

)2/3

(x− 1) ≤ f←(x) ≤
(

2√
1− δ

)2/3

(x− 1),

so then for x ∈ (L, δM2/322/3), L < δM2/322/3 and sufficiently large N we have(
1√

1 + δ

)2/3

x ≤M2/3f←(x̌) ≤
(

1√
1− δ

)2/3

x,

We use the following estimates on Airy functions. There exists a constant C > 0 such that

|Ai(x)| ≤ C
{

1, if x < 0,

e−
2
3x

3/2

, if x ≥ 0,

|Ai′(x)| ≤ C(1 + |x|)1/4

{
1, if x < 0.

e−
2
3x

3/2

, if x ≥ 0,

Then for c
2/3
δ =

(
1√
1+δ

)2/3

and a new constant C > 0 we have

|Ai(M2/3f←(x̌))| ≤ C
{

1, if x < 0,

e−
2
3 cδx

3/2

, if x ≥ 0,

|Ai′(M2/3f←(x̌))| ≤ C(1 + |x|)1/4

{
1, if x < 0,

e−
2
3 cδx

3/2

, if x ≥ 0,

|f ′←(x̌) Ai′(M2/3f←(x̌))| ≤ C(1 + |x|)5/4

{
1, if x < 0,

e−
2
3 cδx

3/2

, if x ≥ 0,
.
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From this we have

|W 1(x̌)| = 1

2π
|V 2(x̌)| ≤ CM1/6

{
1, if x < 0,

e−
2
3 cδx

3/2

, if x ≥ 0,

|W 2(x̌)| = 1

2π
|V 1(x̌)| ≤ C(1 + |x|)1/4M−1/6

{
1, if x < 0,

e−
2
3 cδx

3/2

, if x ≥ 0,

|W ′1(x̌)| ≤ C(1 + |x|)5/4M5/6

{
1, if x < 0,

e−
2
3 cδx

3/2

, if x ≥ 0,

|W ′2(x̌)| = |f ′←(x̌)M2/3f←(x̌) Ai(M2/3f←(x̌))|

≤

(
sup

x∈(1−δ,1+δ)

|f ′←(x)|

)
Cc

2/3
δ M1/2

{
x, if x < 0,

xe−
2
3 cδx

3/2

, if x ≥ 0,
.

Note that

e−
2
3 cδx

3/2

ex = e−x( 2
3 cδx

1/2−1)

is bounded and decays as x→∞ and the first part of the lemma follows from these estimates.
Next we must consider

W̃ (z) =

[
eĥ(z)+Ng+(z)+ 1

2 `N−
1
2νz+

1
2α log z

0

]
,

Ṽ (z) =
[

0 eĥ(z)+Ng+(z)+ 1
2 `N−

1
2νz+

1
2α log z

]
,

and obtain the estimate

ĥ(z) +Ng+(z) +
1

2
`N −

1

2
νz +

1

2
α log z = −2Nz +N(2 log 2 + 1)− (z(z − 1))

1/2
← − 1

2
αφ←(z)

≤ −2N(z − 1

2
(1 + log 2)) ≤ −2N(z − 1).

This proves the last part of the lemma.

D.2 Proof of Lemma 4.4

The asymptotics for W and V follow from (4.9). For W
′

we consider

W
′
(z) = M2/3M

1
6σ3

[
f ′←(z) Ai′(M2/3f←(z))

M2/3f ′←(z)f←(z) Ai(M2/3f←(z))

]
.

Then (4.9) along with the fact that M2/3f ′←(x̌) = 22/3M2/3 +O(M−2/3) gives the asymptotics for W
′
(x̌).

D.3 Proof of Proposition 4.2

The proof of this follows Proposition 4.1. We first find the function G. Let R1 = [L, δM2/322/3] and
R2 = ((δ/2)M2/322/3,∞). Note that R2 obtained by reducing δ. We use

ḡ(x) := (1 + |x|)1/4

{
1, if x < 0,
e−x, if x ≥ 0.

The first case we consider is |x − y| ≥ 1. We use (D.1) and (D.3) along with Lemma 4.3 and the fact that
B̃, B̃′, B̃ and B̃′ are uniformly bounded functions to state that there exists a constant DL > 0 such that for
sufficiently large N

|ǨN (x, y)| ≤ DLḡ(x)ḡ(y), (x, y) ∈ (R1 ×R1) ∪ (R2 ×R2), (D.5)
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with |x − y| ≥ 1. It now suffices to consider (x, y) ∈ R1 × R2, |x − y| ≥ 1 because an estimate for
(x, y) ∈ R2 ×R1, |x− y| ≥ 1 follows from symmetry. But estimate (D.5) in this region follows immediately
from (D.3). It is clear that ḡ ∈ L1([L,∞)).

Now, for |x− y| ≤ 1 we note that {|x− y| ≤ 1} ⊂ (R1 × R1) ∪ (R2 × R2) for sufficiently large N . Then
we use (D.2) and (D.3) and find that there exists a constant GL > 0 such that

|V (x̌)W
′
(y)| ≤ GLM2/3(ḡ(x) + ḡ(x)ḡ(y)), |x− y| ≤ 1,

and by possibly increasing DL, we have

|ǨN (x, y)| ≤ DL(ḡ(x)χ|x−y|<1(x, y) + ḡ(x)ḡ(y)) ∈ L1([L,∞)2),

where χU is the characteristic function of the set U . Thus Ḡ(x, y) = DL(ḡ(x)χ|x−y|<1(x, y) + ḡ(x)ḡ(y)).

To determine the uniform limit of ǨN we use (D.2). From Lemma 4.4 we have

lim
N→∞

ǨN (x, y) = −
∫ 1

0

(tx−y Ai(tx−y) Ai(x)−Ai′(x) Ai′(tx−y))dt

where the limit is uniform for (x, y) in a compact set. Then we see

−
∫ 1

0

(tx−y Ai(tx−y) Ai(x)−Ai′(x) Ai′(tx−y))dt = −Ai(x)[Ai′(x)−Ai′(y)]

x− y
+

Ai′(x)[Ai(x)−Ai(y)]

x− y

=
Ai(x) Ai′(y)−Ai(y) Ai′(x)

x− y
.

This proves the proposition.
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