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Self-assembly has emerged as a paradigm for highly parallel fab-
rication of complex three-dimensional structures. However, there
are few principles that guide a priori design, yield, and defect tol-
erance of self-assembling structures. We examine with experiment
and theory the geometric principles that underlie self-folding of
submillimeter-scale higher polyhedra from two-dimensional nets.
In particular, we computationally search for nets within a large set
of possibilities and then test these nets experimentally. Our main
findings are that (i) compactness is a simple and effective design
principle for maximizing the yield of self-folding polyhedra; and
(ii) shortest paths from 2D nets to 3D polyhedra in the configura-
tion space are important for rationalizing experimentally observed
folding pathways. Our work provides a model problem amenable
to experimental and theoretical analysis of design principles and
pathways in self-assembly.

microfabrication ∣ origami ∣ programmable matter ∣ viral capsid

Nature uses hierarchical assembly to construct essential bio-
molecules such as proteins and nucleic acids and biological

containers such as viral capsids. Our increased understanding of
biological systems has inspired several synthetic methods of self-
assembly (1). Conversely, part of the promise of synthetic self-
assembly has been that it may yield essential insights into the for-
mation of biological structure. In order to realize these ambitions,
it is necessary to develop model experimental systems and theo-
retical analyses that make precise the analogies between natural
and synthetic self-assembly. Abstraction of the essentials of com-
plex biochemical processes is an important step in this process,
and perhaps the simplest abstraction is of the geometric form
of a biological structure. Two such abstractions are the Caspar–
Klug (CK) theory of viral structure (2) and hydrophobic-polar
(HP) lattice models for protein folding (3). The consequences
of geometry alone can be striking in such models: The CK theory
provides a valuable classification of virus shapes by T number,
and much of the detailed architecture of compact proteins such
as helices, and antiparallel and parallel sheets emerges from
purely steric restrictions on long chain molecules (4). Building
such geometric models is, of course, part of a long tradition in
biochemistry. What is now striking is the ability to build basic geo-
metric structures such as polyhedra in laboratory self-assembly
experiments using molecules such as DNA (5–8) or 100-nm to
1-mm scale lithographically interconnected panels (9). In addi-
tion to the intellectual value of such experiments, many of the
self-assembled structures realized cannot be fabricated by alter-
nate methods, and they are of technological relevance in optics,
electronics, and medicine. In order to translate these self-assem-
bly processes from the laboratory to a manufacturing setting,
there is a need to uncover rules that govern yield and defect tol-
erance. Several experiments, in combination with a growing body
of theory, point the way to a future of algorithmic design of bio-
mimetic devices and materials of increasing complexity (10–16).

Our focus in this work is on the role of discrete geometry in
self-assembly. We present an experimental and theoretical study
of surface-tension driven self-folding of the dodecahedron, ico-
sahedron, and truncated octahedron starting from a two-dimen-
sional template called a net. In geometry, a net is an unfolding of

the polyhedron that consists of a single, simply connected, non-
overlapping polygon made up of faces of the polyhedron attached
at edges (17, chap. 21). The polyhedron is constructed by folding
the net at the edges according to prescribed rules. In our experi-
ments, the nets are realized as patterned panels of side length
300 μm, connected by solder hinges. We study how the choice of
initial net determines the folding pathway and yield for these
polyhedra. A combinatorial explosion in the set of nets makes
this study challenging. Our main finding is that compactness is a
simple and effective design principle to maximize the yield of self-
folding of polyhedra. We also find that shortest paths between 2D
nets and the 3D polyhedron in a discrete model of the configura-
tion space of foldings are a useful idealization of experimentally
observed folding pathways. We comment on common themes
with other self-assembly models at the end of this article.

Design Criterion for Synthesis by Self-Folding
Nets and Self-Folding Polyhedra. Nets have traditionally been used
to build models of polyhedra from a stiff material such as card-
board. They first appear explicitly in Dürer’s work in the 15th
century (18) and have been used to build a complete set of
Archimedean and Platonic solids (19, 20). Despite their impor-
tance in classical geometry, a systematic investigation of nets is
quite recent and several basic questions are poorly understood
(17, chap. 21–23). It is not known if every convex polyhedron
has a net (21), nor are there systematic estimates of the number
of nets for a given polyhedron, though the number is known for
Platonic solids (22). The tetrahedron has two nets, the cube and
octahedron have 11 nets each, and the dodecahedron and icosa-
hedron have 43,380 nets each. (Strictly speaking, the calculation
of ref. 22 allows overlapping nets for the dodecahedron and ico-
sahedron, but we tabulated all 43,380 nets and found no overlap;
this was independently verified in ref. 23.) We have also estimated
that the truncated octahedron has approximately 2.3 million nets.
Such a combinatorial explosion creates an interesting conundrum
for engineering design: What criteria determine self-folding with
high yield? How do we search efficiently for the “best” net within
such a large set?

In our experiments, nets are used as templates for the surface-
tension-driven self-folding of polyhedra on the submillimeter
scale. The nets are made up of polygonal panels patterned with
hinges (Fig. 1) and are fabricated using wafer scale processes such
as photolithography, wet etching, and electrodeposition, as de-
scribed in detail elsewhere (24). Here, we utilized metallic hinges
(lead-tin solder) and panels (nickel), but it is noteworthy that
elsewhere we have shown that polyhedra can be self-assembled
with polymeric panels and hinges (25), suggesting that this self-
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assembly paradigm would apply to diverse materials. Polyhedral
self-assembly occurs after patterned nets are released from the
silicon substrate on which they are fabricated and heated above
the melting point of the hinge material, which in the present case
requires that the templates are heated in a high boiling point sol-
vent (N-methylpyrrolidone) above the melting point of solder
(183 °C). Assembly is driven by the minimization of surface ten-
sion of the liquid hinges both at the folding hinges which rotate
the panels and at the locking hinges which self-align (26) and fuse
the self-folding panels into place (Fig. 1 and Movie S1).

The use of liquid locking hinges at the edges of the panels is
critical to enable self-assembly of higher order polyhedra with
large numbers of panels, because they introduce favorable sec-
ondary interactions at the edges of the panels. As compared
to solid mechanical latches utilized in earlier self-folding studies
of optoelectronic structures on substrates (27), the introduction
(28) of liquefiable locking hinges has lead to the facile assembly
of polyhedra with high yields (9). The reason is that liquid locking
hinges are deformable, and hence allow for small relative motions
of the panels, thereby increasing fabrication defect tolerance. The
small panel fluctuations are driven primarily by convective agita-
tion of the solvent during heating. Our experimental methodol-
ogy is also amenable to the use of alternate agitation schemes
such as stirring or bubbling of an inert gas during heating. Be-
cause molten solder has a relatively high surface energy, large
motions or complete separation of panels during assembly is rare.
The angles between panels can be controlled by the volume of
solder deposited, but panels are not programmed to fold in a par-
ticular sequence, nor are they actively controlled externally.

When building polyhedra from nets, a prescription of folding
rules is essential. Simple examples show that the same net may
sometimes be folded into different polyhedra. Thus it is surpris-
ing that, in many of our experiments, nets self-fold with high yield
into a specified 3D polyhedron.

Compactness as a Design Criterion. The nets were rarely varied in
the first experiments on self-folding polyhedra. For example, a
cruciform was almost always chosen to self-fold a cube. However,
a recent study of the self-folding of all 11 nets for the cube and
octahedron revealed that different nets fold through different
pathways and have different yield (29). In particular, it was found
that compact nets had higher yield. Both metric and topological
measures of compactness were used. A metric measure of com-
pactness is the radius of gyration, Rg, defined in Eq. 1 below. A
topological measure of compactness, denoted Vc, is defined as
follows. A vertex shared by two faces in the net that do not share
an edge is called a vertex connection, and we say that the faces are
topological neighbors. Vc is defined to be the total number of
distinct vertex connections in a net. For example, the reader
may count that nets in Fig. 2 A–C have Vc ¼ 2, 6, and 10, respec-
tively. These notions of compactness are correlated but distinct.

In this work, we test compactness as a design criterion for high-
er polyhedra, specifically the dodecahedron, icosahedron, and
truncated octahedron. The number of nets for these polyhedra
is too large for a complete experimental study. Instead, we com-
putationally search the set of all nets, choose representative nets
according to compactness, and test the selected nets for self-fold-
ing in experiments.

Summary of Results
We tabulated all 43,380 nets for the dodecahedron and icosahe-
dron, and 123,452 nets (of 2.3 million estimated nets) for the
truncated octahedron, using a Monte Carlo scheme. We then
chose three nets for each polyhedron: the most compact, the least
compact, and the median for each of the two compactness criter-
ion. Several nets may have the same Vc, so when choosing nets
according to Vc we made the following choice: Among all max-
imum Vc nets, we chose the net with smallest Rg; among all mini-
mum Vc nets, we chose the net with highest Rg; and among all
nets with the median Vc, we chose the net with median Rg. Fifty
samples of each of these nets were self-folded experimentally and
the resulting 3D structures were graded in three categories—A,

Fig. 1. Schematic diagram of net geometry in experiments. Folding hinges
melt and cause panels to rotate. Locking hinges meet and fuse when panels
linked at the vertex connection have rotated through approximately the
dihedral angle about a folding hinge.

Fig. 2. Self-folding experiments on nets with varying Vc and Rg. Optical and SEM images showing photolithographically fabricated panels connected by solder
hinges and the corresponding self-folded 3D structures respectively. (A–F) Dodecahedra in the order Vc ¼ 2, 6, and 10, and Rg ¼ 1;102.2, 800.9, and 693.7 μm,
respectively. (G–L) Truncated octahedra in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm, respectively. (M–R) Icosahedra in the order
Vc ¼ 26, 38, and 50, and Rg ¼ 711.1, 514.6, and 445.4 μm, respectively. (Scale bar: 300 μm.)
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B, and C—and the yield tabulated. “A” polyhedra were defect-
free, “B” had minor defects, and “C” were defective. The experi-
ments, grading scheme, and mathematics involved are described
in greater detail in Materials and Methods.

Optical and SEM images showing the photolithographically
fabricated 2D panels connected by solder hinges and representa-
tive self-folded 3D structures for all three polyhedra for both
compactness criteria are shown in Fig. 2. Histograms of the yield
are shown in Fig. 3. The yield is tabulated in Tables S1 and S2. We
observe that both measures of compactness determine yield for
these higher polyhedra just as for the cube and octahedron. Of
the two measures, Vc is a better predictor. For the dodecahedron,
the percentage of A-grade self-folded polyhedra from nets with
the maximum Vc is more than five times that from nets with the
lowest Rg, Rg ¼ 693.7 μm. In addition, almost 80% of the max-
imum Vc samples are of grade A and B as compared with about
20% for the minimum Rg samples. For the truncated octahedron,
the percentage of grade-A self-folded polyhedra from nets with
the maximum Vc net is two times that of A-grade samples for
minimum Rg , Rg ¼ 795 μm. Moreover, almost 60% of the max-
imum Vc samples are of grade A and B as compared with about
30% for the minimum Rg samples. In contrast with these polyhe-
dra, we were unable to fold any of the icosahedral nets. However,
it is still the case that the more compact nets are less malformed
than the others. Typical optical and SEM images for the icosahe-
dron are shown in Fig. 2. SEM images of pathways are shown in
Figs. S1 and S2.

There are 21 dodecahedron nets that have maximal Vc and
we found four truncated octahedron nets that have maximal
Vc (Fig. S3). As we have remarked above, the maximum Vc nets
in Figs. 2 and 3 were chosen to have the lowest Rg among all nets
with the same Vc. A finer investigation of maximum Vc nets was
carried out in a second round of experiments. We repeated the
self-folding experiments with 50 samples and the same grading
scheme for four new dodecahedron nets (nets denoted 2, 5,
17, and 21 from Fig. S3A) and all four high Vc truncated octahe-
dron nets (Fig. S3B). Images for these experiments are presented
in Fig. 4 and histograms for the yield in Fig. 5. The yield is tabu-
lated in Tables S3 and S4. We find again that the compact nets (as
measured by low Rg now) have higher yield. We note that there is
one common net (Fig. 2I and Fig. 4H for truncated octahedra).
The yields of A-grade polyhedra from this net in two 50-sample
experiments done months apart was 24% and 30%. This variation

in the yield corresponds to a standard deviation of 4.2% in the
plots of Figs. 3 and 5 and is consistent with the variation in our
experiments.

Discussion
Algorithmic Design for Self-Assembly. We have found that the
optimality criterion best suited to our experiments is to first max-
imize Vc and then minimize Rg. The superior performance of
nets satisfying this criterion illustrates the importance of an algo-
rithmic search. Of 123,452 truncated octahedron nets found, only
four had Vc ¼ 12. In contrast, the expected Vc for a random net
chosen uniformly is approximately seven. Similarly, of the 43,380
dodecahedron nets, only 21 had Vc ¼ 10 and the expected Vc is
approximately six. For these polyhedra, Fig. 3 shows that the dif-
ference in yield between an optimal net and a uniformly chosen
random net is dramatic.

Vertex Connections and Error-Correction. The effectiveness of com-
pactness as a design criterion stems from its influence on the
self-folding pathway. In experiments, we observe that topological
compactness has two main consequences: (i) error correction at
edges, and (ii) error correction in the pathway through partially
rigid intermediates.
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Fig. 3. Yield measured in self-folding experiments on nets with varying Vc

and Rg. (A–F) Dodecahedral nets in the order Vc ¼ 2, 6, and 10, and
Rg ¼ 1;102.2, 800.9, and 693.7 μm, respectively. (G–L) Truncated octahedral
nets in the order Vc ¼ 2, 7, and 12, and Rg ¼ 1;306.3, 912.7, and 795.0 μm,
respectively.

Fig. 4. Self-folding experiments on high Vc nets with varying Rg. Optical and
SEM images. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4,
755.4, and 747.7 μm, respectively. (E–H) Truncated octahedral nets with
Vc ¼ 12 and Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively. (Scale
bar: 300 μm.)
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Fig. 5. Yieldmeasured in self-folding experiments on highVc nets with vary-
ing Rg. (A–D) Dodecahedral nets with Vc ¼ 10 and Rg ¼ 810.2, 797.4, 755.4,
and 747.7 μm, respectively. (E–H) Truncated octahedral nets with Vc ¼ 12 and
Rg ¼ 911.6, 870.2, 867.4, and 852.8 μm, respectively.
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i. Outer panels are observed to fold before inner panels. When
two outer panels are joined at a vertex connection, they begin
by folding independently about their respective folding hinges.
When the outer panels have folded by approximately the
dihedral angle, the locking hinges meet and fuse. The liquid
hinges then allow small readjustment so that the panels meet
at the correct dihedral angles.

ii. Pathways that start with compact nets have intermediates that
are more rigid. We say a mechanical linkage of panels is rigid if
it cannot be deformed continuously while keeping each panel
rigid. For example, a linkage of two square panels joined at a
hinge is not rigid, but a linkage of three square panels joined at
90° at a corner is rigid. Dodecahedra and truncated octahedra
that self-fold successfully from compact nets typically form
rigid modules that mate with one another (Movie S1). Similar
rigid intermediates are seen for the cube (29) (Fig. S2). In con-
trast, the pathway for the low Vc nets consists of more steps
and involves the movement of long, floppy segments consist-
ing of several panels (Fig. S1). Misalignment errors propagate
during the motion of these segments. The absence of rigidity is
a particular problem for the icosahedron. The icosahedron has
12 symmetric five-valent vertices and these must form as the
net folds. Models of the pathways for the icosahedra show that
even though high Vc nets eventually form symmetric halves
that mate, neither these halves nor the intermediates that lead
to them have rigid corners (Fig. S4). Intermediates have par-
tially formed corners with three-, four-, or five-valent vertices.
These corners are not rigid and can get misaligned as the net
self-folds, even for the most compact nets.

Modeling Folding Pathways. In experiments, self-folding is a con-
tinuous transformation of a net into a polyhedron. However, it is
useful to model self-folding as a discrete sequence of elementary
steps, each of which corresponds to the gluing of locking hinges at
vertex connections. First note that, to obtain a net from a convex
polyhedron, we may cut it apart in a sequence of steps. At each
step, we pick a face and cut along its edges until it is free to rotate
and then rotate it to lie flat, as illustrated for the cube in Fig. 6B.
In reverse, we may fold a net into a convex polyhedron by a pro-
cess we call gluing at vertex connections: At each step, (i) a vertex
connection on the boundary is chosen, and (ii) all faces linked by
this vertex connection are glued at the locking hinges that meet at
the chosen vertex connection. When gluing locking hinges, faces
are only allowed to rotate rigidly through the dihedral angle
about the folding hinges that meet at the vertex connection. If
these rotations force other edges to meet, these are also glued.
At each step of this process, new vertex connections may form,
which may be used as new vertices for gluing. For all nets we con-
sider, this procedure transforms the net into the polyhedron
through a sequence of nonintersecting, partially folded intermedi-
ates (Fig. S4). We say that the discrete configuration space consists
of all such intermediates, including the net and polyhedron.

The discrete configuration space is a graph. Each node in the
graph corresponds to an intermediate, and its neighbors are in-
termediates to which it can be folded or unfolded. We define a
distance between two intermediates in Eq. 1 below. This distance
is defined using the geometric constraint that rotations about the
folding hinges are required to fold or unfold one intermediate to
another. Shortest paths between 2D nets and the 3D polyhedron
are called geodesics.

The discrete configuration space and geodesics for the cube
are illustrated in Fig. 7. An interesting feature is that the geode-
sics pass through only a small subset of the set of possible inter-
mediates. For example, in row three of Fig. 7, we see that two
dominant intermediates (states 1 and 5) “focus” the geodesics.
State 5 consists of two rigid mating halves and three of the nets
with maximum Vc (nets 2, 5, 9, with Vc ¼ 4) fold through this
intermediate. The configuration space of foldings is much larger

for the dodecahedron and truncated octahedron and cannot be
represented as simply as Fig. 7. However, we have computed geo-
desics that originate at the nets chosen in our experiments. In
particular, for the compact nets (Figs. 2 C and F and 4 A–D
for the dodecahedron, and Figs. 2 I and L and 4 E–H for the trun-
cated octahedron), we find that all computed geodesics pass
through two dominant intermediates consisting of two mating
half-dodecahedron or half-truncated octahedron (Fig. S4 A
and B). These computed geodesic pathways may be compared
visually with the experimentally observed folding pathways. When
making this comparison, we focus on the later intermediates
because, in the discrete model, folding occurs at one vertex at
a time, whereas in experiments, outer panels can fold simulta-
neously. So it is only in the later stages that we can compare
the model and experiment. In each case, we find that the domi-
nant intermediates in the theoretically computed geodesics are
typically also seen in experimentally observed pathways starting
at the same net.

Some Common Themes in Self-Assembly. Our main objective in this
work is algorithmic design to maximize yield and understand
the pathways of self-folding. However, some central underlying
questions arise in other mathematical models of self-assembly:
What is the geometry of the configuration space of a self-assem-
bling system? How can it be explored with experiment and com-
putation?What are the pathways of assembly? Two examples that
motivated us are compared with self-folding polyhedra in Fig. 6.
A common feature shared by folding of HP chains on a lattice
and self-folding a net through vertex connections is that in both
cases the process of folding is driven by the formation of second-
ary links between topological neighbors. A common feature of
self-folding pathways for nets and viral capsid assembly is that

Fig. 6. Comparison of the discrete geometry of three self-assembly models.
(A) Unfolding an HP chain. A compact HP chain on a 2D lattice is unfolded by
breaking secondary HH bonds between topological neighbors. At each step,
secondary bonds break and/or the chain reduces its discrete curvature. The
compact configuration is chosen from ref. 31. The motion of the chain
through kink jumps and rigid rotations is adapted from ref. 32. (B–D) Several
representations of unfolding a cube. At each step, all edges linked at a vertex
connection are cut so that a face is free to rotate rigidly through the dihedral
angle, which gives faces linked through vertices but not edges (topological
neighbors). (B) A perspective view. (C) A convenient schematic for the plan
view that is used in Fig. 7. (D) Unfolding as two-color evolution on the graph
of the cube: Cut edges are red and constitute a tree that grows at each step.
Unfolding is complete when the tree is spanning. (E) Viral capsid assembly.
Intermediate stages in the formation of a dodecahedral viral capsid following
refs. 30 and 33. At each stage, a new face is added and congruent arrange-
ments correspond to the same intermediate.
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both can be modeled by similar evolutions of a two-color graph
coloring on the polyhedron as explained in Fig. 6. In all three
models, the configuration space is a graph and self-assembly
may be modeled as a path on this graph between two special
states: from the flat HP string, the net, and the empty polyhedral
shell to an accessible compact string, the polyhedron, and the
filled polyhedral shell. The structure of the configuration space
is determined by an HP string (for the HP model) or polyhedron
(for folding or capsid assembly). An explicit description (as in
Fig. 7) is only possible in very small systems. The size of the con-
figuration space explodes combinatorially as the length of the HP
string grows or as the size of the polyhedron increases. A great
deal of further computation on larger systems is necessary to
establish whether the geometry of the configuration space in
these examples shares some essential structure. The concentra-
tion of geodesics on a few dominant intermediates is a suggestive
link; a similar collapse from all intermediates into a few dominant
intermediates has also been observed for the assembly of viral
capsids (30).

Conclusions
Our goal was to elucidate the geometric principles that underlie
self-folding of polyhedron from nets. We have verified that com-
pactness is an effective design criterion for several polyhedra by
computationally exploring a large set of possible nets and testing
selected nets experimentally. We also introduced a discrete con-
figuration space of foldings and found that the geodesic between
the 2D net and 3D polyhedron is a useful idealization of experi-
mentally observed pathways.

These findings suggest further studies of self-folding in order
to build more complex shapes and to minimize errors through the
loss of rigidity. Although the number of nets is large for the poly-
hedra we considered, it was still amenable to an exhaustive

search, which ceases to be the case for more complex polyhedra
such as models for viral capsids. In seeking nets for realistic virus
shapes, we have encountered polyhedra with approximately 1030
spanning trees (a number obtained from Kirchhoff’s matrix tree
theorem). It is impossible to find an optimal net and geodesics by
an exhaustive search for such polyhedra, and suitable randomized
algorithms must be used instead. On the experimental side, the
ability to observe folding pathways provides additional insight
into self-assembly. In combination, these techniques serve as a
template for the emerging area of algorithmic design of self-as-
sembly.

Materials and Methods
Experiments. Regular polyhedra were fabricated using a previously estab-
lished process that enabled us to fabricate 3D polyhedra from 2D nets
(24). Nets were chosen according to an algorithm described below. Fifty sam-
ples of each net were self-folded in the experiments. We used Autodesk
AutoCAD to draw nets and then printed them on transparent sheets to make
photomasks. Sides of a panel measured 300 μm, with two adjacent panels
spaced apart by a width equal to 10% of the panel edge length. Optical litho-
graphy was used to develop features on a silicon wafer, and nickel and solder
were electrodeposited on the panels and hinges, respectively. All Vc and Rg

nets for a fixed polyhedron were processed across the same wafer with a uni-
form random distribution of nets to minimize processing variations during
lithography. We released the nets from the substrate with nickel panels con-
nected with solder hinges and heated the free-standing structures until they
folded. All the nets for a fixed polyhedra were self-folded in close proximity
in order to minimize the effect of variation in temperature and fluidic
agitation. After self-folding, the solution was allowed to cool gradually.
The molten solder solidified and the polyhedra were held robustly in place.
Self-folded 3D structures realized from each net were carefully examined un-
der an optical microscope and graded into three categories—A, B, and C.
Grade-A polyhedra had no discernible defects when examined under an
optical microscope. The dihedral angles were well formed (116.56° for dode-
cahedra, 125.27° for square and hexagonal panels of truncated octahedra,
and 109.47° for two hexagonal panels of truncated octahedra). Grade-B
polyhedra had the desired shapes but had faces that were misaligned with
amaximum tolerance of 20° misalignment. Samples with defects more severe
than 20° misalignment were graded as C polyhedra.

Mathematical Methods. LetΩ be a polygon inR2. The center of mass (x̄, ȳ) and
the radius of gyration Rg of Ω are given by the area integrals

ðx̄;̄yÞ ¼
Z

Ω
ðx;yÞdA; R2

g ¼
Z

Ω
ðx − x̄Þ2 þ ðy − ȳÞ2dA: [1]

We used a Monte Carlo scheme to generate random spanning trees and ta-
bulate nets for each polyhedron. The main steps were as follows: (i) random
spanning trees of the face-edge graph were found as follows. Independent
weights uniformly distributed in (0,1) were assigned to the edges of the face-
edge graph and a minimum weight spanning tree was found using either
Kruskal’s or Prim’s algorithm. (ii) A traverse order of the spanning tree was
chosen at random. A net was generated in this traverse order by linking each
face with its connected neighbors using the face-edge graph. (iii) The planar
boundary of the net was generated as a list of vertices. Because all edge
lengths are equal here, the boundary was represented as a list of angles.
Two such lists were compared to determine congruence (accounting for re-
flections and rotations). The main bottleneck in the algorithm is congruence
testing. In practice, comparison of a list of angles is inefficient and hash tables
were used. (iv) For the icosahedron and dodecahedron, the algorithm was
run until all 43,380 nets had been found and we were satisfied that the algo-
rithm did not generate any spurious nets. For the truncated octahedron, the
algorithm was run until 123,452 nets had been found (an arbitrary number
based on limitations on computer time). The Monte Carlo algorithm was also
tested on the cube and octahedron and two smaller regular polyhedron (the
pentagonal dipyramid and a square antiprism). These polyhedra have a
smaller number of nets (98 and 231, respectively) intermediate between
the cube (11) and the dodecahedron (43,380). The algorithm also yields a
rough estimate of the total number of nets as follows: Let N denote the total
number of nets, r ¼ 1 − 1∕N and μn the expected number of nets found after
step n. Under the assumption that all nets are equally likely, μn ¼ Nð1 − rnÞ
and this may be used to estimate N by linear regression. A posteriori we
found that the assumption that all nets are equally likely in a trial is not valid,
nevertheless the assumption was approximately valid, and the estimator

A

B

Fig. 7. (A) Computed configuration space and folding pathways for the
cube. Partially folded intermediates and all folding pathways for the cube
computed by the gluing at vertex connections algorithm. Multiplicity of
edges connecting intermediates is not shown. Double bars denote vertically
stacked faces. (B) Geodesics and dominant intermediates. Geodesic pathways
between each net and the cube computed using Eq. 1. The dominant inter-
mediates are 1 and 5 in the third row. In this discrete model, nets 1, 3, 6, 10,
and 11 fold through intermediate 1, and nets 2, 4, 5, 7, 8, and 9 fold through
intermediate 5.
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predicts accurate answers for the Platonic solids and dipyramid and anti-
prism. Based on this assumption, we estimate that the truncated octahedron
has roughly 2.3 million nets.

When gluing at vertex connections, an intermediate is transformed to its
neighbors through a sequence of rotations about folding hinges that meet at
the vertex connection. For example, to transform intermediate 11, row 1 to
intermediate 10, row 2 in Fig. 7A, we must rotate two panels one after the
other by 90°. More formally, an intermediate I is folded into a neighbor J
through a chain of states (S0;S1;…;Sk), S0 ¼ I, Sk ¼ J each of which differ
by a single rotation about a folding hinge. We first define the distance be-
tween two states Sj and Sjþ1 as follows. Assume Sj is transformed to Sjþ1 by a
rotation about a folding hinge through an angle θ. The folding hinge sepa-
rates the starting configuration Sj into two connected domains denoted Ω1

and Ω2. If the domainΩi rotates through an angle θi about the folding hinge,
each point in Ωi at a distance r from the axis travels on a circular arc of length
rθi . The total squared distance traveled by Ωi is then ∫ Ωi

ðrθiÞ2dA ¼ Iiθ2i ,

where Ii is the second moment of area of the domain Ωi about the folding
hinge. We minimize the total distance I1θ21 þ I1θ22 subject to the constraint
θ1 þ θ2 ¼ θ to obtain d2ðSj ;Sjþ1Þ ¼ ðI1I2∕ðI1 þ I2ÞÞθ2. The distance between
two intermediates I and J in the configuration space is then defined to be

d2ðI;JÞ ¼ min
∑

k−1

j¼0

d2ðSj;Sjþ1Þ; [2]

where the minimum is taken over all sequences of admissible rotations
(S0;S1;…;Sk), S0 ¼ I, Sk ¼ J that transform I into J.

ACKNOWLEDGMENTS. This work was supported by National Science Founda-
tion Grants Division of Mathematical Sciences 0748482, Emerging Frontiers in
Research and Innovation (EFRI) 1022638, and EFRI 1022730.

1. Whitesides G, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421.
2. Caspar D, Klug A (1962) Physical principles in the construction of regular viruses. Cold

Spring Harb Symp Quant Biol 27:1–24.
3. Lau K, Dill K (1989) A lattice statistical mechanics model of the conformational and

sequence spaces of proteins. Macromolecules 22:3986–3997.
4. Chan H, Dill K (1990) The effects of internal constraints on the configurations of chain

molecules. J Chem Phys 92:3118–3135.
5. Chen J, Seeman N (1991) Synthesis from DNA of a molecule with the connectivity of a

cube. Nature 350:631–633.
6. He Y, et al. (2008) Hierarchical self-assembly of DNA into symmetric supramolecular

polyhedra. Nature 452:198–201.
7. Zimmermann J, Cebulla M, Mönninghoff S, von Kiedrowski G (2008) Self-assembly of a

DNA dodecahedron from 20 trisoligonucleotides with c3h linkers. Angew Chem Int Ed
Engl 47:3626–3630.

8. Douglas S, et al. (2009) Self-assembly of DNA into nanoscale three-dimensional shapes.
Nature 459:414–418.

9. Leong T, Zarafshar A, Gracias D (2010) Three-dimensional fabrication at small size
scales. Small 6:792–806.

10. Boncheva M, Gracias D, Jacobs H, Whitesides G (2002) Biomimetic self-assembly of a
functional asymmetrical electronic device. Proc Natl Acad Sci USA 99:4937–4940.

11. Mahadevan L, Rica S (2005) Self-organized origami. Science 307:1740.
12. Rechtsman M, Stillinger F, Torquato S (2006) Designed interaction potentials via in-

verse methods for self-assembly. Phys Rev E Stat Nonlin Soft Matter Phys 73:011406.
13. Cohn H, Kumar A (2009) Algorithmic design of self-assembling structures. Proc Natl

Acad Sci USA 106:9570–9575.
14. Bassik N, Stern G, Gracias D (2009) Microassembly based on hands free origami with

bidirectional curvature. Appl Phys Lett 95:091901.
15. Barish R, Schulman R, Rothemund P, Winfree E (2009) An information-bearing seed for

nucleating algorithmic self-assembly. Proc Natl Acad Sci USA 106:6054–6059.
16. Hormoz S, Brenner M (2011) Design principles for self-assembly with short-range in-

teractions. Proc Natl Acad Sci USA 108:5193–5198.
17. Demaine E, O’Rourke J (2007) Geometric Folding Algorithms. Linkages, Origami, Poly-

hedra (Cambridge Univ Press, New York), pp 299–338.

18. Dürer A, Strauss W (1977) The Painter’s Manual (Abaris, New York) p 433.
19. Cromwell P (1999) Polyhedra (Cambridge Univ Press, Cambridge, UK), pp 126–127.
20. Wenninger M (1974) Polyhedron Models (Cambridge Univ Press).
21. Shephard G (1975) Convex polytopes with convex nets. Math Proc Cambridge Philos

Soc 78:389–403.
22. Buekenhout F, Parker M (1998) The number of nets of the regular convex polytopes in

dimension 4. Discrete Math 186:69–94.
23. Horiyama T, Shoji W (2011) Edge unfoldings of Platonic solids never overlap. Proc 23rd

Canadian Conf Computational Geom (CCCG2011), www.2011.cccg.ca.
24. Leong T, Lester P, Koh T, Emma K, Gracias D (2007) Surface tension-driven self-folding

polyhedra. Langmuir 23:8747–8751.
25. Azam A, Laflin K, Jamal M, Fernandes R, Gracias D (2011) Self-folding micropatterned

polymeric containers. Biomed Microdevices 1–8.
26. Wale M, Edge C, Randle F, Pedder D (1989) A new self-aligned technique for the

assembly of integrated optical devices with optical fibre and electrical interfaces.
Proceedings of the 15th European Conference on Optical Communications (ECOC)
(Novum Grafiska AB, Stockholm), pp 368–371.

27. Syms R (1999) Surface tension powered self-assembly of 3-D micro-optomechanical
structures. J Microelectromech Syst 8:448–455.

28. Gimi B, et al. (2005) Self-assembled three dimensional radio frequency (RF) shielded
containers for cell encapsulation. Biomed Microdevices 7:341–345.

29. AzamA, Leong T, Zarafshar A, Gracias D (2009) Compactness determines the success of
cube and octahedron self-assembly. PloS One 4:e4451.

30. Endres D, Miyahara M, Moisant P, Zlotnick A (2009) A reaction landscape identifies
the intermediates critical for self-assembly of virus capsids and other polyhedral
structures. Prot Sci 14:1518–1525.

31. Dill K, Chan H (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19.
32. Verdier P, Stockmayer W (1962) Monte Carlo calculations on the dynamics of polymers

in dilute solution. J Chem Phys 36:227–235.
33. Wales D (1987) Closed-shell structures and the building game. Chem Phys Lett

141:478–484.

19890 of 19890 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1110857108 Pandey et al.

www.2011.cccg.ca
www.2011.cccg.ca
www.2011.cccg.ca
www.2011.cccg.ca


Supporting Information
Pandey et al. 10.1073/pnas.1110857108

Fig. S1. Folding pathway for the dodecahedron (Vc). Optical microscopy images showing a folding pathway of a dodecahedral net with Vc ¼ 2 as in Fig. 2A.

Fig. S2. Folding pathways for the icosahedron. Optical microscopy images showing folding pathways of icosahedral nets with 3D structure for the icosahe-
dron. A i–iv, Vc ¼ 26; Bi–iv, Vc ¼ 38; C i–iv, Vc ¼ 50.
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A

B

Fig. S3. (A) High Vc nets for the dodecahedron. All Vc ¼ 10 nets (21 out of all 43,380) arranged in order of increasing Rg; (B) High Vc nets for the truncated
octahedron. All Vc ¼ 4 nets (four out of the 123,452 nets found) are shown.

Fig. S4. Models illustrating the gluing at vertex connections algorithm. Manually folded centimeter-scale models. (A) Vc ¼ 10 dodecahedron; (B) Vc ¼ 12
truncated octahedron; (C) Vc ¼ 50 icosahedron; (D) Vc ¼ 2 dodecahedron. A–C are high Vc nets. They have the common feature that the penultimate inter-
mediate consists of two mating halves. The same intermediates are also see in experiments with these nets for the dodecahedron and truncated octahedron
and also in computed geodesics. However, these halves are rigid only for A and B. Both C and D are not rigid. The five-valent vertices in C, though fully formed,
are not rigid. D has long floppy segments that lead to misaligned structures. Surprisingly, it does yield some ‘‘B-grade’’ specimens (see Figs. 2 and 4).
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Movie S1. Folding pathway for the dodecahedron (Vc ¼ 10). Optical microscopy movie of self-folding for a dodecahedral net with Vc ¼ 10 as in Fig 2C.

Movie S1 (WMV)

Table S1. Yields for all 300-μm dodecahedron nets

Net %A %B %C

Vc ¼ 2 0 14 86
Vc ¼ 6 16 34 50
Vc ¼ 10 34 44 22
Rg ¼ 1;102.2 μm 0 8 92
Rg ¼ 800.9 μm 4 10 86
Rg ¼ 693.7 μm 6 16 78

Fifty samples were tested for each net.

Table S2. Yields for all 300-μm truncated octahedron nets

Net %A %B %C

Vc ¼ 2 0 0 100
Vc ¼ 7 0 22 78
Vc ¼ 12 24 34 42
Rg ¼ 1;306.3 μm 0 0 100
Rg ¼ 912.7 μm 0 18 82
Rg ¼ 795.0 μm 12 22 66

Fifty samples were tested for each net.

Table S3. Yields of 300-μm dodecahedron nets with same number
of vertex connections (Vc ! 10) and different radius of gyration
(Rg)

Net, μm %A %B %C

Rg ¼ 810.2 8 56 36
Rg ¼ 797.4 8 60 32
Rg ¼ 755.4 22 50 28
Rg ¼ 747.7 20 62 18

Table S4. Yields of 300-μm truncated octahedron nets with same
number of vertex connections (Vc ! 12) and different radius of
gyration (Rg)

Net, μm %A %B %C

Rg ¼ 911.6 16 30 54
Rg ¼ 870.2 22 24 54
Rg ¼ 867.4 20 28 52
Rg ¼ 852.8 30 38 32
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