
1 Introduction

We shall consider continuous maps f of an interval I into itself and the
discrete dynamical system

xn+1 = f(xn), n ≥ 0. (1.1)

We apply (1.1) to an initial condition x0 to generate its orbit , the sequence
{x0, x1, x2, . . .}. A convenient way to visualize the orbit is to draw the cobweb

diagram, bouncing between the graph of f and the line y = x (see the figures
below). The orbit is generated by repeated composition of functions. We
denote k-fold composition by fk, that is f2(x) = f(f(x)),f3(x) = f(f(f(x)))
etc. A fixed point or equilibrium is a solution to

x = f(x). (1.2)

A periodic orbit with minimal or prime period p is an orbit such that xk =
xk mod p, and x0, x1, . . . , xp−1 are distinct. Clearly, fp(xk) = xk, 0 ≤ k ≤
p − 1. Graphically, fixed points are given by the intersection between the
graph of f and the line y = x. An intersection between the graph of fp and
the line y = x give points with period not greater than p.

We typically study questions of asymptotic behavior, such as convergence
to a fixed point or periodic orbit. Let us note at the outset that the dynamics
are trivial if f is monotone and I is bounded. In this case, the orbit is a
bounded monotone sequence, and every initial condition converges to a fixed
point. We thus consider unimodal maps (ie. maps with a single hump). The
fundamental example is the family of logistic maps

f(x) = rx(1 − x), r ∈ [0, 4]. (1.3)

f takes a unique maximum value r/4 at the critical point x = 1/2, thus the
restriction to r ≤ 4. The orbit diagram of the logistic map has become an
icon for chaos (see Figure 1.1). This is a numerically generated picture that
describes the asymptotic behavior of a typical initial condition as r is varied.
The complexity of the orbit diagram for this simple example is striking.

1.1 Stability and bifurcations

Linear maps f(x) = ax admit the exact solution xn = anx0. The origin is
an attracting fixed point if |a| < 1 and repelling if |a| > 1. Observe that
if a < 0 the dynamics are oscillatory, that is xk and xk+1 have opposite
sign. In particular, there are two distinct forms of neutral stability: if a = 1
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Figure 1.1: Orbit diagrams for the logistic and sine maps

every point is fixed, and if a = −1 every orbit is of period 2. Linear maps
are used to describe the stability of fixed points. If x∗ is a fixed point, the
characteristic multiplier at x∗ is f ′(x∗). If |f ′(x∗)| 6= 1, the fixed point is
hyperbolic and the characteristic multiplies determines stability (Exercise
1). We may expect bifurcations when |f ′(x∗)| = 1.

In the logistic family, the fixed point x∗(r) = 1− 1/r loses stability to a
period-2 orbit in a period-doubling bifurcation at r = 3. This is illustrated
graphically in Figures 1.2– 1.4. When r < 3 trajectories spiral into the fixed
point. The rate of approach is very slow as r approaches 2 (as is seen from
the density of orbits in Figure 1.3). When r > 3 the fixed point has lost
stability to period-2 orbit. This corresponds to new fixed points of f2 seen
in the lower-half of Figure 1.4.

The period-2 orbit then loses stability in another period-doubling bifur-
cation at r = 1 +

√
6 (Exercise 2). Trajectories when r is just below this

bifurcation point are illustrated in Figure 1.5.
These are the first two steps in a period-doubling cascade at parameter

values rn. At this value, an orbit with period 2n−1 loses stability to an orbit
with period 2n in a period-doubling bifurcation. The first few terms in the
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Figure 1.2: A stable fixed point with r < 3.
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Figure 1.3: Slow approach to the fixed point as r → 3.
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Figure 1.4: Birth of a stable period-2 orbit for r > 3.
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Figure 1.5: Loss of stability of period-2 orbit near r = r1.
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increasing sequence rn are

3, 1 +
√

6, 3.54409 . . . , 3.5644 . . . , 3.568759, . . .

The bifurcation values accumulate at r∞ = 3.566946 . . .. The orbit diagram
of the logistic map include windows of chaos and chaotic bands beyond r∞.

1.2 Universality and renormalization

The most remarkable feature of the orbit diagram of the logistic is that its
essential features depend only on ‘minimal’ properties. That is all families
of the form rf1(x) where f1 : I → I is unimodal with a nondegenerate
maximum have similar orbit diagrams. Roughly speaking, this is what is
meant by universality.

To illustrate this point, Figure 1.1 compares the orbit diagram for the
sine family (f(x) = r̃ sin πx, r̃ ∈ [0, 1]) and the logistic map. In both orbit
diagrams we see the same period-doubling cascade, and similar windows of
order and chaos. Metropolis, Stein and Stein discovered that the ordering
of these periodic orbits depends only on the fact that f is unimodal and
continuous. This is an example of qualitative (or combinatorial) universality.

A more dramatic quantitative feature is the following. Let rn and r̃n

denote the values of the period-doubling bifurcations for the logistic and
sine map respectively. Numerical experiments reveal the amazing fact that

lim
n→∞

rn+1 − rn

rn − rn−1

= lim
n→∞

r̃n+1 − r̃n

r̃n − r̃n−1

= δ = 4.669201609102290 . . . (1.4)

The number δ is known as Feigenbaum’s constant in honor of his penetrating
analysis of this quantitative universality.

The central feature of Feigenbaum’s analysis is the notion of renormaliza-

tion. To explain this idea, we consider a family of maps f(r, x) undergoing
a cascade of period-doubling bifurcation at the values rn. We assume f(r, ·)
maps the interval I = [−1, 1] into itself, and has a critical point at 0. The
characteristic multiplier of the orbit with period 2n decreases from 1 at rn to
−1 at rn+1. We focus on the superstable orbit with characteristic multiplier
0 at the value Rn ∈ (rn, rn+1). It is easy to compute the values R0 and R1

for the logistic map (Exercise 4).
Let us compare the graphs of f(R0, x) (Figure 1.6) and f2(R1, x) (the

lower half of Figure 1.7). The main idea is that by restricting the graph
of f2(R1, x) to a smaller interval we again obtain a unimodal map. More
precisely, the assumption that the period-2 orbit of f2(R1, x) is superstable
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Figure 1.6: Superstable fixed point at r = R0.
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implies that the interval [0, f(R1, 0)] is positively invariant (consider an orbit
diagram in the upper half of Figure 1.7). Let α1 = f(R1, 0) denote the
length of this interval. We restrict f2(R1, ·) to the interval [−α1, α1] and
rescale the x-axis by the factor α1, and the y-axix by −α1 to obtain a new
unimodal map with a superstable fixed point at the origin. This operation
is renormalization, and we denote it by R.

This procedure may now be iterated. Feigenbaum discovered that suc-
cessive rescaling factors αk converge to a universal constant

α = 2.5029 . . . (1.5)

Thus, to a good approximation, the operation of renormalization may be
described by a shift in the parameter R, iteration, and rescaling of the axes.
This yields the sequence

Rf ≈ −αf2
(

R1,
x

α

)

, . . . ,Rnf ≈ (−α)nf2n

(

Rn,
x

αn

)

.

The fundamental assumption (verified by careful numerical calculations) is
that there is a limiting function g0 such that

lim
n→∞

(−α)nf2n

(

Rn,
x

αn

)

= g0(x).

Since the approximating sequence has a superstable fixed point at the origin,
so does g0. The effect of rescaling is to blow-up a neighborhood of the critical
point. Thus, only the nature of the critical point near the origin determines
the universal function g0.

The analysis is incomplete at this point, because we would like to have
an equation for g0. In fact, g0 is the first term in a sequence of universal
functions obtained as follows. Instead of focusing on a superstable fixed
point, we may focus on a superstable period-2 orbit . In this case, we
begin with the unimodal map f(R1, x) (the upper half of Figure 1.7) and
then consider the restriction of f2(R2, x) to an interval on which it has a
superstable period-2 orbit (inset in the upper half of Figure 1.8). That is,
we seek the limit of the R-shifted sequence

(−α)nf2n

(

Rn+1,
x

αn

)

.

The limiting universal function, denoted g1 has a superstable period-2
orbit. This procedure may be generalized and yields the universal hierarchy

gk(x) = lim
n→∞

(−α)nf2n

(

Rn+k,
x

αn

)

, (1.6)
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Figure 1.7: Superstable period-2 orbit at r = R1.
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Figure 1.8: Superstable period-4 orbit at r = R2. On a restricted interval,
we obtain a superstable period-2 orbit as in Fig 1.7.
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where gk has a superstable orbit of period 2k. It is easy to verify that the
different levels of the hierarchy are linked by the equation

gk−1(x) = −αg2
k(

x

α
), k ≥ 1. (1.7)

The index does go the right way here! This means that if we know gm for
some m we can determine gk, 0 ≤ k < m, but not the other way around.
To rectify this, we must pass to the limit k → ∞ when the R-shift ceases
to matter since limk→∞ Rn+k = r∞. We therefore, expect the existence of a
universal function g = limk→∞ gk. This yields the Feigenbaum-Cvitanović
fixed point equation

g(x) = −αg2
(x

α

)

. (1.8)

This is a functional equation. The determination of α is part of the problem.
This equation is scale-invariant: If g is a solution, so is ag(x/a) for any a > 0.
It is conventional to normalize by setting g(0) = 1. Some indication of the
complicated nature of the universal hierarchy is indicated by a numerically
computed plot of g1 in Figure 1.9.

1.3 The block-spin analogue

Feigenbaum’s notion of renormalization has its origins in Kadanoff and Wil-
son’s renormalization group approach to phase transitions. Kadanoff’s key
idea in the study of the Ising model was to coarse grain spin interactions and
replace them with an effective interaction of the same form. The following
calculation is an analogue of this ‘block-spin’ idea. We shall consider only
quadratic functions of the form

xn+1 = −(1 + r)xn + ax2
n. (1.9)

The renormalization transformation consists of three steps – shift pa-
rameters, iterate and rescale. We begin with a quadratic polynomial, carry
out these operations and truncate the result at second order to obtain a
new quadratic polynonial. This will yield an approximate renormalization
transformation. The calculation is approximate because of the truncation
– iteration does not preserve quadratic polynomials. Nevertheless, the an-
swers are surprisingly good.

Without loss of generality, we may set a = 1 by rescaling x 7→ x/a.
Thus, we begin with the dynamical system

xn+1 = −(1 + r)xn + x2
n, (1.10)
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Figure 1.9: Numerical computation of g1.
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which undergoes a period-doubling bifurcation at r = 0. Let us denote the
period-2 orbit by p(r) and q(r). We solve the equation x = f2(r, x) to obtain

p =
1

2

(

r +
√

r2 + 4r
)

, q =
1

2

(

r −
√

r2 + 4r
)

. (1.11)

We next consider the second order truncation of the Taylor series of f2(r, ·)
about p. Let xn = p + ξn. Then to second-order we have

ξn+1 = (1 − 4r − r2)ξn + a1ξ
2
n, (1.12)

where
a1 = 4r + r2 − 3

√

r2 + 4r. (1.13)

We now rescale by setting ηn = ξn/a1 to obtain the dynamical system

ηn+1 = (1 − 4r − r2)ηn + η2
n. (1.14)

If we define a new parameter r̃ by

−(1 + r̃) = 1 − 4r − r2 (1.15)

we again obtain a dynamical system of the form we started with (1.10).
Thus, in this approximation, the renormalization transformation is com-
pletely described by a change in parameter values.

For example, since r̃ = 0 corresponds to a period-doubling bifurcation in
(1.10) we may set r̃ = 0 in (1.15) to find r1, the value at which the period-2
orbit loses stability to a period-4 orbit. This gives r1 = −2 +

√
6 (this value

is exact, and corresponds to r = 1 +
√

6 in the logistic family). Similarly,
the next bifurcation value r2 is found by setting r̃ = r1 in (1.15). Thus, the
renormalization transformation is determined completely by the recursion
relation

rk−1 = 1 − 4rk − r2
k, k ≥ 1, r0 = 0. (1.16)

We may rewrite this transformation in the form

rk+1 = −2 +
√

6 + rk, k ≥ 0, r0 = 0. (1.17)

The fixed point of the recursion relation is

r∞ =
1

2

(

−3 +
√

17
)

≈ 0.56.

This is very close to the true value. The approximate value of δ is given by
the linearization of (1.17) at r∞ and is 1+

√
17 ≈ 5.12. The rescaling factor

α = (1 +
√

17)/2 ≈ −2.24.
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