PDE, HW 5 solutions

1. Define the logarithm in C with a branch cut along the negative real axis.
In polar coordinates, we then have

weTel 2 = r(cos @ logr + fsin6)
N logz) (logr)2 + 62
The boundary 92 = {u = 0} is given parametrically by,
2(0) = r(0) cos 0, y(0) =r(0)sind, @) =e O e (—n/2,7/2).
As 0 — +7/2, r(0) — 0, thus 09 is a closed curve defined on [—m/2,7/2].
Observe also that the tangent vector is continuous at /2 since
dr  dx/df cos 0% — rsin 6
dy — dy/do sin@% +rcost
—2tanf — fsec? §
= —
—tan? 0 — @ tan @ sec? 6 + 1

Finally, since u is harmonic in the interior, we have

u(x,0)

T
0 0 — +—.
, as — 5

= Tog s’ and uz(0,0) =0.

2. Let us denote the linear operator by

L:A—I—b%Dzju, b:—1+711:)1\.
First check that L is uniformly elliptic. For any £ € R"™ we have
A@)E = (6 +bT3 > e
since n—1 n+A
b:—1+1_)\=m20,

provided A < 1 as assumed. This may also be written as the condition
2(2 — A\) > 2. Now verify that ug is a solution. Differentiate to find

Dijug = A\ = 2)[z|* Yziz; + N[ 26,5, Du= A\ — 2+ n)|z|} 2,

and substitute to see that Lus = 0. In order that uy € W22 we require (see
HW 4, #3) A—2> —n/2or n > 2(2 — \).

This does not contradict the uniqueness theorem, because the equation
Lu =0 is not in divergence form with L°° coefficients. ]



6, Fvans, 1 ed., p. 346. A warning: Evan’s definition of L is really —L in
Gilbarg and Trudinger’s definition.

Some smoothness assumption on 0 is necessary to make sense of terms
such as Ou/0v. It will suffice to assume 9 is C* (C? would imply an interior
ball condition, which is too strong). The main observation is that a barrier
yields both a sub and supersolution. Let M = ||f|/~ and consider vy =
utMw. We then have Lvy > 0in 2, and vy > 0 on 0f2. Similarly Lv_ <0,
and v_ < 0 on 0f2. By the weak maximum and minimum principles, this
implies vy > 0, and v_ < 0 in . Since the maximum and minimum are
attained at 20, we also have the inequalities

%gO, %20, or Ma—w<@<—Ma—w.

ov ov
We may also apply the weak minimum principle to w to obtain w > 0 in
Q and Ow/dv < 0. Finally, since 9Q is C' and v = 0 on 9 we have
|Du| = |0u/0v|. O

7, Evans, led, p. 346. This is routine. A proof may be found in the notes
on Laplace equation from last semester. ]

4. Here is the proof of (c¢), which is the most interesting. Without loss of
generality, suppose [2| = 1 and fQ |u|Po dx < oo, some pg > 0. The function

pr—>/ |u|pd$:/eploglu
Q Q

is then an analytic function of p on (—o0,pg) (the convention is e™>° = 0).
It is only necessary to justify the first derivative but this follows by taking
finite differences and the dominated converegence theorem. We have

dfolufde 1 /\uv’log\umx.
dp Jo lulPdz Jq

We now consider ®,(u) as a function of p defined on the interval (—oo, po).

We write )
¢, (u) = exp <— log/ |ulP dm) ,
p Q

and observe that the limit p — 0 is the same as evaluating the derivative at
p=0. ]




5. Fix r > 0. The oscillation w(r) = maxg, g, u(r,01) — u(r,02). As always
the basic inequality uses the fundamental theorem of calculus,

Ou

do.
00

0>
lu(r, 01) —u(r,02)] < /

01

Since the maximum distance between two points on the circle is 7w, we have

01+7 | 9y, 2 2 1/2
w(r) < sup/ % o < = / o :
01 0

01
This inequality holds for every 0 < r < R and may be integrated to yield

R N2 R 27
1
/ —w(r,) dr’ SW/ / i
r r r 0 r

If we further assume that w(r) is non-decreasing, the left-hand side is no
greater than w(r)?log(R/r) and we obtain the desired inequality.

(b) Let a(r) = ming u(r, ), b(r) = maxg u(r,#). By the maximum principle
b(r) is non-decreasing, and a(r) is non-increasing so that w(r) = b(r) — a(r)
is non-decreasing. Suppose M(R) := fBR |Dlogu|? dr < oo (redefine R as
R/2 if necessary) . Then

ou

00

ou

2
T, dodr’ < w/ |Du|? dz := wD(R).

Br

B | Dul? D(R w(r)log(R/T)
M(R)_/BR 2 TINRET T a@®)

for any 0 < r < R by part(a). Since w(r) = b(r) — a(r) we obtain after
simplifying and using 0 < a(R) < a(r)

b(r) <14 M (R) b(R) 7
a(r) log(R/r) a(R)
which implies the Harnack inequality. The bound on M(R) is obtained by
Moser’s method, and I refer to equation (8.53) in Gilbarg and Trudinger. O

O0<r<R




