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PDE, HW 4 solutions

1. We only need show W
1,p
0 (Rn) ⊃ W 1,p(Rn). Let u ∈ W 1,p(Rn). For any

ε > 0, there exists R > 0 such that
∫

Rn\B(0,R)
(|u|p + |Du|p) dx < ε.

Let χ be a smooth cut-off function with χ = 1 in B(0, R) and χ = 0 outside
B(0, R+2) and |Dχ| ≤ 1. One may then compute that for every 1 ≤ p <∞,
there is a constant Cp such that

‖u− uχ‖W 1,p(Rn) ≤ Cpε.

Let ψ be a standard mollifier, and for any η > 0 consider uη = ψη ? (uχ).
Then uη ∈ C∞

c (Rn), and uη → uχ in W 1,p(Rn) as η → 0. Thus, we have for
sufficiently small η > 0

‖uη − u‖ ≤ (Cp + 1)ε.

2. Suppose there is A > 0 such that |u(y) − u(z)| ≤ A|y − z|α for y, z ∈ Ω.
We then have for y ∈ B(x, r)

|u(y) − ūB| =

∣

∣

∣

∣

∣

u(y) −−

∫

B(x,r)
u(z) dz

∣

∣

∣

∣

∣

≤ −

∫

B(x,r)
|u(y) − u(z)| dz ≤ A−

∫

B(x,r)
|y − z|α dz ≤ A(2r)α,

using the uniform estimate |y− z| ≤ 2r for y, z ∈ B(x, r). We integrate this
estimate over y ∈ B(x, r) to obtain Campanato’s inequality.

3. If u = |x|α we need
∫

B
(|u|p + |Du|p) dx <∞. Here

∫

B

|u|p dx = ωn

∫ 1

0
rαprn−1 dr <∞,⇐⇒ α > −

n

p
.

Similarly, Du = D|x|α = α|x|α−2x, and |Du| = |α||x|α−1 which is in Lp(B)
if and only if

α > 1 −
n

p
.
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4. This is a good illustration of scale-invariance. We have to show that

sup
x∈Rn,r>0

−

∫

B(x,r)

∣

∣

∣

∣

∣

log |y| − −

∫

B(x,r)
log |z| dz

∣

∣

∣

∣

∣

dy <∞.

It is instructive to compute the integrand explicitly when x = 0 to see the
cancellation of log r that shows the supremum over r is irrelevant. This is a
particular manifestation of invariance under the rescaling. If we set

x′ =
x

r
, y′ =

y

r
, z′ =

z

r
,

the integral above is

I(x′) := −

∫

B(x′,1)

∣

∣

∣

∣

∣

log |y′| − −

∫

B(x′,1)
log |z′| dz′

∣

∣

∣

∣

∣

dy′,

and we now have to show that the supremum over x′ ∈ R
n is finite. Since

log |x| ∈ L1
loc(R

n), I(x′) is a continuous function of x′, and it will suffice to
show it stays bounded as |x′| → ∞. We clearly have

I(x′) ≤ −

∫

B(x′,1)
−

∫

B(x′,1)

∣

∣

∣

∣

log

(

|y′|

|z′|

)
∣

∣

∣

∣

dz′dy′.

For y′, z′ ∈ B(x′, 1) we have |x′| − 1 ≤ |y′|, |z′| ≤ |x′| + 1, thus for large
enough |x′| we have

log

(

|x′| − 1

|x′| + 1

)

≤ log

(

|y′|

|z′|

)

≤ log

(

|x′| + 1

|x′| − 1

)

.

Both sides converge uniformly to zero, which shows that I(x′) → 0 uniformly
as x′ → ∞.

5. A ‘soft’ function-analytic proof (ie. deferring to harder theorems proved
in analysis) is the following. The set of nowhere differentiable functions in
C0,α is of full category; however functions in W 1,p are differentiable a.e (this
part of Rademacher’s theorems works for any p). Thus, ‘most’ functions in
C0,α are not in W 1,p.

6. The hard part of showing BV (Ω) is a Banach space is completeness. This
requires a proof that BV functions have measures as derivatives. Precisely,
suppose u ∈ BV (Ω). Define the linear functional L : C1

c (Ω; Rn) → R

L(v) := −

∫

Ω
udivv dx.
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Observe that by the definition of
∫

Ω |Du| dx, we have

|L(v)| ≤

(
∫

Ω
|Du| dx

)

‖v‖∞.

Therefore, L extends to a continuous linear functional on C0(Ω; Rn) and by
the Riesz Representation theorem (a vector-valued version), there exists a
positive finite Radon measure, µ(dx) (the magnitude), and a unit vector
σ(x) (the direction) representing the extension of L. In particular,

L(v) = −

∫

Ω
udivv dx =

∫

Ω
v · σ(x)µ(dx), v ∈ C1

c (Ω; Rn).

Completeness is obtained by using completeness of the space of vector-valued
Radon measures. You must check that uk is a Cauchy sequence in BV if
and only if uk is a Cauchy sequence in L1(Ω) and the measures σkµk(dx)
are a Cauchy sequence in the space of vector-valued Radon measures on Ω.

If u ∈W 1,1(Ω), we have

∫

Ω
udivv dx = −

∫

Ω
Du · v dx ≤ ‖Du‖L1(Ω)‖v‖∞.

Chasing definitions, we see that for u ∈W 1,1(Ω)

‖Du‖L1(Ω) =

∫

Ω
|Du|dx.

That is, total variation is the L1 norm of Du in this case. Hence, W 1,1(Ω) ⊂
BV (Ω) and a Cauchy sequence (in the BV norm) of a sequence in W 1,1 is
also a Cauchy sequence in W 1,1. Thus, W 1,1 is a closed subspace. Note that
it is a proper closed subspace. For example, the function 1|x|≤1 is in BV

but not in W 1,1.

7. As always, we have to mollify the uk. However, things are a little tricky
because of the boundary, and you have to consider a partition of unity.
A detailed proof may be found in ‘Measure theory and fine properties of
functions’ by L. C. Evans and R. F. Gariepy, p. 172.


