PDE, HW 4 solutions

1. We only need show W(}’p(R") > WLHP(R™). Let u € WHP(R™). For any
€ > 0, there exists R > 0 such that

/ (Jul? + |DulP) dz < .
R\ B(0,R)

Let x be a smooth cut-off function with x =1 in B(0, R) and x = 0 outside
B(0, R+2) and |Dy| < 1. One may then compute that for every 1 < p < oo,
there is a constant C}, such that

lu — ux|lwir@ny < Cpe.

Let v be a standard mollifier, and for any 1 > 0 consider w7 = 1, x (uy).
Then v € C°(R"), and v — uy in WHP(R™) as n — 0. Thus, we have for
sufficiently small n > 0

[ — ul] < (Cp + 1.
O

2. Suppose there is A > 0 such that |u(y) — u(z)| < Aly — z|* for y,z € Q.
We then have for y € B(x,r)
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s][ fuly) — u(z)] dz < A][ ly— 2% dz < A@2r)?,
B(z,r) B(z,r)

|u(y) — up| =

using the uniform estimate |y — z| < 2r for y, z € B(x,r). We integrate this
estimate over y € B(x,r) to obtain Campanato’s inequality. O

3. If u = |z|* we need [ (|ul? + |Dul?) dz < co. Here

1

n

/ |ulP dx = wn/ roPr Tl dr < 0o, = a > ——.

B 0 p
Similarly, Du = D|z|* = a|z|* 2z, and |Du| = |a||z|*~! which is in LP(B)
if and only if

n
a>1-——.
p



4. This is a good illustration of scale-invariance. We have to show that

log |y| —][ log |z] dz| dy < oc.
B(x,r

)

sup ][
z€R",r>0J B(z,r)

It is instructive to compute the integrand explicitly when x = 0 to see the
cancellation of logr that shows the supremum over r is irrelevant. This is a
particular manifestation of invariance under the rescaling. If we set

the integral above is

I(2)) = ][
B(z’',1)

and we now have to show that the supremum over 2’ € R" is finite. Since
log |z| € L, .(R™), I(z') is a continuous function of ’, and it will suffice to
'l = oo. We clearly have

show it stays bounded as |z
/
log m dz'dy’.
|2']

i, ]
B(z',1) JB(2',1)

For ¢,z € B(2/,1) we have |2/| = 1 < |¢/|,|2'| < || + 1, thus for large
enough |z'| we have

'] — 1 v '] +1
I <1 2 ) <] .
°g<\x'|+1 =8 z) =B e =1

Both sides converge uniformly to zero, which shows that I(z’) — 0 uniformly
as z/ — oo. O

dy',

log [y/| —][ log |2'| dz'
B(z

)

5. A ‘soft’ function-analytic proof (ie. deferring to harder theorems proved
in analysis) is the following. The set of nowhere differentiable functions in
C% is of full category; however functions in WP are differentiable a.e (this
part of Rademacher’s theorems works for any p). Thus, ‘most’ functions in
C% are not in WP, O

6. The hard part of showing BV (2) is a Banach space is completeness. This
requires a proof that BV functions have measures as derivatives. Precisely,
suppose u € BV (). Define the linear functional L : C1(Q;R") — R

L(v):= —/ udiv v dx.
Q



Observe that by the definition of [, |Du|dx, we have

Ll < ( [ 1Dulds) ol

Therefore, L extends to a continuous linear functional on Cy(2; R™) and by
the Riesz Representation theorem (a vector-valued version), there exists a
positive finite Radon measure, u(dz) (the magnitude), and a unit vector
o(x) (the direction) representing the extension of L. In particular,

L(v) = —/Qudivv de = /QV co(x)u(dr), veCHYRY).

Completeness is obtained by using completeness of the space of vector-valued

Radon measures. You must check that ug is a Cauchy sequence in BV if

and only if u, is a Cauchy sequence in L'(2) and the measures oypuz(dx)

are a Cauchy sequence in the space of vector-valued Radon measures on {2.
If u € WH(Q), we have

/ udivvdr = —/ Du - vdr < [|Dul| 1)l V]l co-
Q Q

Chasing definitions, we see that for u € WhH1(Q)

|Dull 1 = /Q | Dulda.

That is, total variation is the L' norm of Du in this case. Hence, W11(Q) C
BV (Q) and a Cauchy sequence (in the BV norm) of a sequence in Wh! is
also a Cauchy sequence in W1, Thus, W' is a closed subspace. Note that
it is a proper closed subspace. For example, the function 1< is in BV
but not in W1, O

7. As always, we have to mollify the uy. However, things are a little tricky
because of the boundary, and you have to consider a partition of unity.
A detailed proof may be found in ‘Measure theory and fine properties of
functions’ by L. C. Evans and R. F. Gariepy, p. 172. O



