PDE, HW 4 solutions

1. We only need show $W_0^{1,p}(\mathbb{R}^n) \supset W^{1,p}(\mathbb{R}^n)$. Let $u \in W^{1,p}(\mathbb{R}^n)$. For any $\varepsilon > 0$, there exists R > 0 such that

$$\int_{\mathbb{R}^n \setminus B(0,R)} \left(|u|^p + |Du|^p \right) \, dx < \varepsilon$$

Let χ be a smooth cut-off function with $\chi = 1$ in B(0, R) and $\chi = 0$ outside B(0, R+2) and $|D\chi| \leq 1$. One may then compute that for every $1 \leq p < \infty$, there is a constant C_p such that

$$||u - u\chi||_{W^{1,p}(\mathbb{R}^n)} \le C_p \varepsilon.$$

Let ψ be a standard mollifier, and for any $\eta > 0$ consider $u^{\eta} = \psi_{\eta} \star (u\chi)$. Then $u^{\eta} \in C_c^{\infty}(\mathbb{R}^n)$, and $u^{\eta} \to u\chi$ in $W^{1,p}(\mathbb{R}^n)$ as $\eta \to 0$. Thus, we have for sufficiently small $\eta > 0$

$$||u^{\eta} - u|| \le (C_p + 1)\varepsilon.$$

2. Suppose there is A > 0 such that $|u(y) - u(z)| \le A|y - z|^{\alpha}$ for $y, z \in \Omega$. We then have for $y \in B(x, r)$

$$|u(y) - \bar{u}_B| = \left| u(y) - \int_{B(x,r)} u(z) \, dz \right|$$

$$\leq \int_{B(x,r)} |u(y) - u(z)| \, dz \leq A \int_{B(x,r)} |y - z|^{\alpha} \, dz \leq A(2r)^{\alpha},$$

using the uniform estimate $|y - z| \leq 2r$ for $y, z \in B(x, r)$. We integrate this estimate over $y \in B(x, r)$ to obtain Campanato's inequality.

3. If $u = |x|^{\alpha}$ we need $\int_{B} (|u|^{p} + |Du|^{p}) dx < \infty$. Here

$$\int_{B} |u|^{p} dx = \omega_{n} \int_{0}^{1} r^{\alpha p} r^{n-1} dr < \infty, \iff \alpha > -\frac{n}{p}$$

Similarly, $Du = D|x|^{\alpha} = \alpha |x|^{\alpha-2}x$, and $|Du| = |\alpha||x|^{\alpha-1}$ which is in $L^p(B)$ if and only if

 α

$$> 1 - \frac{n}{p}.$$

4. This is a good illustration of scale-invariance. We have to show that

$$\sup_{x \in \mathbb{R}^n, r > 0} \oint_{B(x,r)} \left| \log |y| - \oint_{B(x,r)} \log |z| \, dz \right| \, dy < \infty.$$

It is instructive to compute the integrand explicitly when x = 0 to see the cancellation of $\log r$ that shows the supremum over r is irrelevant. This is a particular manifestation of invariance under the rescaling. If we set

$$x' = \frac{x}{r}, \quad y' = \frac{y}{r}, \quad z' = \frac{z}{r},$$

the integral above is

$$I(x') := \oint_{B(x',1)} \left| \log |y'| - \oint_{B(x',1)} \log |z'| \, dz' \right| \, dy',$$

and we now have to show that the supremum over $x' \in \mathbb{R}^n$ is finite. Since $\log |x| \in L^1_{loc}(\mathbb{R}^n)$, I(x') is a continuous function of x', and it will suffice to show it stays bounded as $|x'| \to \infty$. We clearly have

$$I(x') \leq \int_{B(x',1)} \int_{B(x',1)} \left| \log \left(\frac{|y'|}{|z'|} \right) \right| \, dz' dy'.$$

For $y', z' \in B(x', 1)$ we have $|x'| - 1 \le |y'|, |z'| \le |x'| + 1$, thus for large enough |x'| we have

$$\log\left(\frac{|x'|-1}{|x'|+1}\right) \le \log\left(\frac{|y'|}{|z'|}\right) \le \log\left(\frac{|x'|+1}{|x'|-1}\right).$$

Both sides converge uniformly to zero, which shows that $I(x') \to 0$ uniformly as $x' \to \infty$.

5. A 'soft' function-analytic proof (ie. deferring to harder theorems proved in analysis) is the following. The set of nowhere differentiable functions in $C^{0,\alpha}$ is of full category; however functions in $W^{1,p}$ are differentiable a.e (this part of Rademacher's theorems works for any p). Thus, 'most' functions in $C^{0,\alpha}$ are not in $W^{1,p}$.

6. The hard part of showing $BV(\Omega)$ is a Banach space is completeness. This requires a proof that BV functions have measures as derivatives. Precisely, suppose $u \in BV(\Omega)$. Define the linear functional $L: C_c^1(\Omega; \mathbb{R}^n) \to \mathbb{R}$

$$L(\mathbf{v}) := -\int_{\Omega} u \operatorname{div} \mathbf{v} \, dx.$$

Observe that by the definition of $\int_{\Omega} |Du| dx$, we have

$$|L(\mathbf{v})| \le \left(\int_{\Omega} |Du| \, dx\right) \|v\|_{\infty}.$$

Therefore, L extends to a continuous linear functional on $C_0(\Omega; \mathbb{R}^n)$ and by the Riesz Representation theorem (a vector-valued version), there exists a positive finite Radon measure, $\mu(dx)$ (the magnitude), and a unit vector $\sigma(x)$ (the direction) representing the extension of L. In particular,

$$L(\mathbf{v}) = -\int_{\Omega} u \operatorname{div} \mathbf{v} \, dx = \int_{\Omega} \mathbf{v} \cdot \sigma(x) \mu(dx), \quad \mathbf{v} \in C_c^1(\Omega; \mathbb{R}^n).$$

Completeness is obtained by using completeness of the space of vector-valued Radon measures. You must check that u_k is a Cauchy sequence in BV if and only if u_k is a Cauchy sequence in $L^1(\Omega)$ and the measures $\sigma_k \mu_k(dx)$ are a Cauchy sequence in the space of vector-valued Radon measures on Ω .

If $u \in W^{1,1}(\Omega)$, we have

$$\int_{\Omega} u \operatorname{div} \mathbf{v} \, dx = -\int_{\Omega} Du \cdot \mathbf{v} \, dx \le \|Du\|_{L^{1}(\Omega)} \|\mathbf{v}\|_{\infty}$$

Chasing definitions, we see that for $u \in W^{1,1}(\Omega)$

$$\|Du\|_{L^1(\Omega)} = \int_{\Omega} |Du| dx$$

That is, total variation is the L^1 norm of Du in this case. Hence, $W^{1,1}(\Omega) \subset BV(\Omega)$ and a Cauchy sequence (in the BV norm) of a sequence in $W^{1,1}$ is also a Cauchy sequence in $W^{1,1}$. Thus, $W^{1,1}$ is a closed subspace. Note that it is a proper closed subspace. For example, the function $\mathbf{1}_{|x|\leq 1}$ is in BV but not in $W^{1,1}$.

7. As always, we have to mollify the u_k . However, things are a little tricky because of the boundary, and you have to consider a partition of unity. A detailed proof may be found in 'Measure theory and fine properties of functions' by L. C. Evans and R. F. Gariepy, p. 172.