PDE, HW 3 solutions

7, p.163. Suppose g is C'. The Hopf-Lax formula implies
m p—
Dy(y) oz (271,

at a inverse Lagrangian point y. By problem 6, this is is equivalent to

r—y
. € 0H(Dg(y)),
which implies y € B(x, Rt). O

8,p.163. The Hamiltonian is H(p) = |p|?, thus L = H* = |q|?/4. The
Hopf-Lax formula says

o (=l
u(x,t) ylEan ( pm + uo(y)

If y € R"\E, the right hand side is +oo. Thus, it suffices to consider the
infimum over E where uo(y) = 0. Hence,

2
— 1
u(z,t) = yneljfz% = Edist(m,E)Q.
O
13, p. 291. We compute
1 1 1
Du(x)| = —,
[Du(@) log (1+1/|z]) 1 + |z| |z
so that
1 00
1 1 1 1
Du(z)|"dr =w —dr <w — dt
/3(071)| (@) "/0 log(l+1/r)1+rr — "/10g2 tn
after the change of variables ¢t = log(1 + 1/r). O

18, p. 291. Let u(§) denote the Fourier transform of u(z). By the Fourier
inversion formula ||u||ze < Cy||@||z1, which is controlled by the H® norm,

) 1 1/2 b 1/2
[rades ([ aiamde) ([ a+iepriafa) .

The first term is finite if s > n/2, the second is ||u| = by Parseval’s equality.
O



2,p.563. This is hard work. The problem requires that you absorb Kruzkov’s
proof for conservations laws, and adapt it to viscosity solutions. While this
is a worthy goal, I am not going to do it here. The proof may be found in
§V.2, Crandall and Lions, Trans. AMS, Vol. 277, (1983), pp.1-42. O

3,p.563. Suppose u — v has a global maximum at (zg,tp). Without loss of
generality, we may suppose u(zg, tg) = v(xo,to). Define

ee = [[0F — ullo, 12 = dec, v (2, t) = v(@, 1) + ne(|w — ol + |t — to]).
Observe that if |x — zo|? + |t — to|? = r? with 72 > 1. we have

(u® —v%)(z,t) = (u° —u)(z,t) + (v —0°)(x,t) + (u —v)(z,1)
<e.— nETQ <e.— 77? = —3e..

On the other hand, (u® — v®)(zo,t9) = u® — u(xg,t9) > —e.. Therefore,
u® — v° has a global maximum (z.,.) in the ball B((xo,%0), /7). At this
point, uf = vy and Du® = Dv® and since

ui + H(Du®,2%) = ea;jDiju® <0,

we have the inequality
vi + H(Dv",2%) <0

Now let € — 0 using 7. — 0, (2., te) — (zo,t0), v — vy, DVE — DV. O

4, p. 563. (a) It will suffice to check the definition of viscosity solution at
xo = 0. Suppose u — v has a maximum at 0. Then, (v —v)(z) < (u —v)(0)
for all z € (—1,1) which implies

1 — |z| = (v(0) + v'(0)z + o(z)) <1 —0(0).

First suppose = > 0. We simplify, the expression and let x — 0 to obtain
—v'(0) < 1. Considering x < 0 yields v'(0) < 1, or taken together |v/(0)| < 1.
(b) Suppose u = |z| — 1. Let v be a smooth function such that u — v has a
maximum at zero. An argument as above yields ¢'(0) > 1 and v'(0) < —1,
that is [v'(0)| > 1, contradicting the definition of viscosity solution.

(c) Here the Hamiltonian is H(p) = —|p| + 1, and the requirement is
|v'(zg)] > 1 when u — v has a maximum at zy. This is clearly satisfied
as seen in (b).

(d) The Hamiltonian in (a) is H(p) = |p| — 1, not 1 — |p|. O



