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PDE, HW 3 solutions

7, p.163. Suppose g is C1. The Hopf-Lax formula implies

Dg(y) ∈ ∂L

(

x − y

t

)

,

at a inverse Lagrangian point y. By problem 6, this is is equivalent to

x − y

t
∈ ∂H(Dg(y)),

which implies y ∈ B(x,Rt).

8,p.163. The Hamiltonian is H(p) = |p|2, thus L = H∗ = |q|2/4. The
Hopf-Lax formula says

u(x, t) = inf
y∈Rn

( |x − y|2
4t

+ u0(y)

)

.

If y ∈ R
n\E, the right hand side is +∞. Thus, it suffices to consider the

infimum over E where u0(y) = 0. Hence,

u(x, t) = inf
y∈E

|x − y|2
4t

=
1

4t
dist(x,E)2.

13, p. 291. We compute

|Du(x)| =
1

log (1 + 1/|x|)
1

1 + |x|
1

|x| ,

so that
∫

B(0,1)
|Du(x)|n dx = ωn

∫ 1

0

1

log(1 + 1/r)

1

1 + r

1

r
dr ≤ ωn

∫

∞

log 2

1

tn
dt

after the change of variables t = log(1 + 1/r).

18, p. 291. Let û(ξ) denote the Fourier transform of u(x). By the Fourier
inversion formula ‖u‖L∞ ≤ Cn‖û‖L1 , which is controlled by the Hs norm,

∫

Rn

|û| dξ ≤
(

∫

Rn

1

(1 + |ξ|2)s dξ

)1/2 (
∫

Rn

(1 + |ξ|2)s |û|2 dξ

)1/2

.

The first term is finite if s > n/2, the second is ‖u‖Hs by Parseval’s equality.
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2,p.563. This is hard work. The problem requires that you absorb Kruzkov’s
proof for conservations laws, and adapt it to viscosity solutions. While this
is a worthy goal, I am not going to do it here. The proof may be found in
§V.2, Crandall and Lions, Trans. AMS, Vol. 277, (1983), pp.1-42.

3,p.563. Suppose u − v has a global maximum at (x0, t0). Without loss of
generality, we may suppose u(x0, t0) = v(x0, t0). Define

eε = ‖uε − u‖∞, η2
ε = 4eε, v

ε(x, t) = v(x, t) + ηε(|x − x0|2 + |t − t0|2).

Observe that if |x − x0|2 + |t − t0|2 = r2 with r2 ≥ ηε we have

(uε − vε)(x, t) = (uε − u)(x, t) + (v − vε)(x, t) + (u − v)(x, t)

≤ eε − ηεr
2 ≤ eε − η2

ε = −3eε.

On the other hand, (uε − vε)(x0, t0) = uε − u(x0, t0) ≥ −eε. Therefore,
uε − vε has a global maximum (xε, tε) in the ball B((x0, t0),

√
ηε). At this

point, uε
t = vε

t and Duε = Dvε and since

uε
t + H(Duε, xε) = εaijDiju

ε ≤ 0,

we have the inequality
vε
t + H(Dvε, xε) ≤ 0.

Now let ε → 0 using ηε → 0, (xε, tε) → (x0, t0), vε
t → vt, DV ε → DV .

4, p. 563. (a) It will suffice to check the definition of viscosity solution at
x0 = 0. Suppose u − v has a maximum at 0. Then, (u − v)(x) ≤ (u − v)(0)
for all x ∈ (−1, 1) which implies

1 − |x| −
(

v(0) + v′(0)x + o(x)
)

≤ 1 − v(0).

First suppose x > 0. We simplify, the expression and let x → 0 to obtain
−v′(0) ≤ 1. Considering x < 0 yields v′(0) ≤ 1, or taken together |v′(0)| ≤ 1.
(b) Suppose u = |x| − 1. Let v be a smooth function such that u − v has a
maximum at zero. An argument as above yields v′(0) ≥ 1 and v′(0) ≤ −1,
that is |v′(0)| ≥ 1, contradicting the definition of viscosity solution.
(c) Here the Hamiltonian is H(p) = −|p| + 1, and the requirement is
|v′(x0)| ≥ 1 when u − v has a maximum at x0. This is clearly satisfied
as seen in (b).
(d) The Hamiltonian in (a) is H(p) = |p| − 1, not 1 − |p|.


