PDE, HW 6 solutions

(1) Problem 1, p. 45, John. Suppose f and g have support within [-M.M]. If |x| > M + ct we have

$$u(x,t) = \frac{1}{2} \left(f(x+ct) + f(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(y) \, dy = 0.$$

Suppose F and G have compact support. We then use (4.12) to find

$$0 = \lim_{x \to \infty} F(x) = \frac{1}{2c} \int_0^\infty g(y) \, dy + \delta.$$

Similarly,

$$0 = \lim_{x \to \infty} F(x) = \frac{1}{2c} \int_0^{-\infty} g(y) \, dy + \delta.$$

Thus, $\int_{-\infty}^{\infty} g(y) dy = 0$. A similar calculation holds for G.

(2) Problem 1, p. 132, John. (a) If u is radial and continuous, we have $M_u(0,r,t)=u(r,t)$. Thus, we only need apply the general solution formula with x=0. As for the 1-D wave equation the solution may be written as

$$u(r,t)=rac{F(r+ct)+G(r-ct)}{r},\quad r=|x|,$$

where

$$F(x) = \frac{1}{2}xf(x) + \frac{1}{2c} \int_0^x yg(y) \ dy + c, \quad G(x) = -\frac{1}{2}xf(x) - \frac{1}{2c} \int_0^x yg(y) \ dy - c,$$

for a constant $c \in \mathbb{R}$. Here we use $M_f(0,r) = f(r)$ and $M_g(0,r) = g(r)$. We may suppose c = 0 if we are only interested in u.

(b). If f = 0 we have immediately

$$u(r,t) = \frac{1}{2cr} \int_{r-ct}^{r+ct} \rho g(\rho) d\rho.$$

(c). Here $g_{\rho} = \mathbf{1}_{|\rho| \leq a}$ so we have

$$u(r,t) = \frac{1}{2cr} \int_{\max(r-ct,-a)}^{\min(r+ct,a)} \rho d\rho = \frac{1}{4cr} \left((\min(r+ct,a))^2 - (\max(r-ct,-a))^2 \right).$$

More explicitly, we compute the solution in two different time ranges. First suppose, 0 < t < a/c. Then we have

$$u(r,t) = \begin{cases} (2cr)^{-1} \int_{r-ct}^{r+ct} \rho d\rho = t, & r \in [0, a-ct), \\ (2cr)^{-1} \int_{r-ct}^{a} \rho d\rho = (4cr)^{-1} \left(a^2 - (r-ct)^2\right), & r \in [a-ct, a+ct), \\ 0, & r \in [a+ct, \infty). \end{cases}$$

For t > a/c since $\rho g(\rho)$ is odd, we have

$$u(r,t) = \begin{cases} 0, & r \in [0, ct - a), \\ (2cr)^{-1} \int_{ct - r}^{a} \rho d\rho = (4cr)^{-1} \left(a^2 - (ct - r)^2\right), & r \in [ct - a, ct + a), \\ 0, & r \in [ct + a, \infty). \end{cases}$$

In particular, we have the discontinuity

$$u(0,t) = \begin{cases} t, & t < a/c \\ 0, & t > a/c. \end{cases}$$

(3) Problem 4, p. 133, John. (a) The problem is false as stated. We do have $|u(x,t)| \leq Kt^{-1}$ for every t > 0, but K is not independent of the initial data. The estimate stated does hold for large t however. We follow the hint and write u as a volume integral,

$$u(x,t) = \frac{1}{4\pi c^2 t^2} \int_{S(x,ct)} \sum_{i=1}^n \left[(tg(y) + f(y)) \frac{y_i - x_i}{ct} + ct f_{y_i} \right] \xi_i dS_y$$
$$= \frac{1}{4\pi c^2 t^2} \int_{B(x,ct)} \left[\sum_{i=1}^n \partial_{y_i} \left((tg(y) + f(y)) \frac{(y_i - x_i)}{ct} \right) + ct \Delta f \right] dx.$$

Now take absolute values, and replace the domain B(x,ct) by \mathbb{R}^n to obtain

$$|u(x,t)| \leq \frac{1}{4\pi c^2 t} \int_{\mathbb{R}^n} \left[|\triangle f| + |Dg| + \frac{1}{ct} \left(c \left| Df \right| + n \left| g \right| \right) + \frac{n}{c^2 t^2} \left| f \right| . \right] dx.$$

For ct > 1 we then have a universal constant K such that

$$|u(x,t)| \le \frac{K}{t}U(0).$$

(b) This is a very useful trick. Since the wave equation is invariant under reflection in time $t \to -t$, if u(x,t) is a solution for t > 0, then for any

fixed T > 0, v(x, t, T) = u(x, T - t) is a solution for $t \in [0, T]$. Initially v(x, 0, T) = u(x, T), therefore for any $t \in (0, T)$,

$$|u(x,t)|=|v(x,T-t,T)|\leq rac{K}{T-t}U(T).$$

We let $T \to \infty$ to obtain |u(x,t)| = 0.

(4) Problem, p. 139, John. This is a direct, but worthwhile, computation. We may as well suppose that the problem is one dimensional to simplify notation. If v(x',t') = u(x,t) then we have

$$\partial_t^2 u = \partial_{x'}^2 v \left(\frac{\partial x'}{\partial t}\right)^2 + \partial_{t'}^2 v \left(\frac{\partial t'}{\partial t}\right)^2 + 2\partial_{t'} \partial_{x'} v \frac{\partial x'}{\partial t} \frac{\partial t'}{\partial t}$$
$$\partial_x^2 u = \partial_{x'}^2 v \left(\frac{\partial x'}{\partial x}\right)^2 + \partial_{t'}^2 v \left(\frac{\partial t'}{\partial x}\right)^2 + 2\partial_{t'} \partial_{x'} v \frac{\partial x'}{\partial x} \frac{\partial t'}{\partial x}.$$

Now compute

$$\frac{\partial x'}{\partial t} = \frac{-\gamma c^2}{\sqrt{1 - \gamma^2 c^2}}, \qquad \frac{\partial x'}{\partial x} = \frac{1}{\sqrt{1 - \gamma^2 c^2}},$$
$$\frac{\partial t'}{\partial t} = \frac{1}{\sqrt{1 - \gamma^2 c^2}}, \qquad \frac{\partial t'}{\partial x} = \frac{-\gamma}{\sqrt{1 - \gamma^2 c^2}}.$$

Finally, we substitute these expressions to find

$$\left(\partial_{t'}^2 - c^2 \partial_{x'}^2\right) v = \left(\partial_t^2 - c^2 \partial_x^2\right) u = 0.$$

(5) Problem 1, Rauch p. 162. Assume c = 1 for simplicity. We may use the solution computed in Problem 2 (even if it is not in $\S(\mathbb{R}^n)$). We have

$$||u_t(0)||_{L^p}^p = \omega_3 \int_0^\infty \rho^2 g(\rho) d\rho = \frac{\omega_3}{3} a^3.$$

Observe that u(r,t) given in Problem 2,(c) is piecewise differentiable. We hold t fixed and consider solutions with $0 < a \ll t$. We then have

$$u_t(r,t) = \frac{(t-r)}{2r} \mathbf{1}_{t-a < r < a+t},$$

which may be integrated to yield

$$||u_t(t)||_{L^p}^p = \omega_3 \int_{a-t}^{a+t} \left| \frac{t-r}{2r} \right|^p r^2 dr.$$

If p=2, the integral may be computed exactly. It is

$$\frac{\omega_3}{12}\left(a^3-(a-2t)^3\right).$$

If $p \neq 2$ we have the lower estimate.

$$||u_t(t)||_{L^p}^p \ge \omega_3 2^{-p} \left| \frac{t}{t-a} - 1 \right|^p \int_{t-a}^{a+t} r^2 dr$$

$$= \frac{\omega_3}{3} 2^{-p} a^p (t-a)^{3-p} \left(\left(1 + \frac{2a}{t-a}\right)^3 - 1 \right) = a^{p+1} t^{2-p} \left(2^{1-p} \omega_3 + o(1) \right).$$

Therefore, the ratio

$$\frac{\|u_t(t)\|_{L^p}}{\|u_t(0)\|_{L^p}} \geq a^{p-2}t^{2-p}\left(\frac{2^{1-p}}{3} + o(1)\right).$$

If p < 2, we consider a sequence of solutions with initial data $\mathbf{1}_{|\rho| \leq a_k}$ such that $a_k \to 0$. It then follows that

$$\lim_{k \to \infty} \frac{\|u_t^{(k)}(t)\|_{L^p}}{\|u_t^{(k)}(0)\|_{L^p}} = +\infty.$$

If p > 2 we have $a_k^{p-2} \to 0$ for the same sequence of initial data. This still suffices, since the wave equation is reversible. A calculation as above shows that we also have the upper estimate

$$||u_t(t)||_{L^p}^p \le \omega_3 2^{-p} \left| \frac{t}{t+a} - 1 \right|^p \int_{t-a}^{a+t} r^2 dr = a^{p+1} t^{2-p} \left(2^{1-p} \omega_3 - o(1) \right).$$

We then have

$$\lim_{k \to \infty} \frac{\|u_t^{(k)}(0)\|_{L^p}}{\|u_t^{(k)}(t)\|_{L^p}} = +\infty,$$

and since the wave equation is reversible in time, we may treat $u_t(t)$ as initial data, to complete the proof. (If the bound held in $\mathcal{S}(\mathbb{R}^n)$ the above example would not be possible).