PDE, HW 4 solutions

.

Problem 2, John p. 213. Let α be a multi-index with $|\alpha| \leq s$. Formally,

$$\partial_x^{\alpha} u(x,t) = \int_{\mathbb{R}^n} \partial_x^{\alpha} k(x-y,t) f(y) \, dy$$

=
$$\int_{\mathbb{R}^n} (-1)^{|\alpha|} \partial_y^{\alpha} k(x-y,t) f(y) \, dy = \int_{\mathbb{R}^n} k(x-y,t) \partial_y^{\alpha} f(y) \, dy.$$
(0.1)

The formal calculation is justified as follows. As explained on p.218, u is analytic in x for every t > 0, thus $\partial_x^{\alpha} u(x,t)$ exists and equals the first term in (0.1) for every t > 0. Integration by parts $|\alpha|$ times is legitimate because of the assumption that $\sup_x |\partial^{\alpha} f| < \infty$ for $|\alpha| \leq s$. The issue here is the continuity at t = 0, and here we may apply the theorem on p. 209 with f replaced by $\partial^{\alpha} f$.

Problem 3, John p. 213. The first step is to show that u(x,t) is well-defined for $x = \xi + i\eta$, $t = \sigma + i\tau$ in the given range, that is $\int_{\mathbb{R}^n} |k(x,y,t)f(y)| dy < \infty$. Combine the assumption $|f(x)| \leq Me^{a|x|^2}$ with the estimate above (1.16) on p.211 to obtain

$$\int_{\mathbb{R}^n} |k(x,y,t)f(y)| dy$$

$$\leq \frac{M}{(4\pi)^{n/2}} \frac{e^{|\eta|^2/4\sigma}}{(\sigma^2 + \tau^2)^{n/4}} \int_{\mathbb{R}^n} \exp(a|y|^2 - \frac{|\sigma(\xi - y) + \tau\eta|^2}{4(\sigma^2 + \tau^2)\sigma} \, dy.$$

The integral is finite if and only if the coefficient of $|y|^2$ in the exponent is negative, that is

$$a - \frac{\sigma}{\sigma^2 + \tau^2} < 0. \tag{0.2}$$

To prove analyticity, we must check that u is (complex) differentiable in x and t. The derivatives of the kernel are the analytic functions

$$D_x k(x, y, t) = \frac{x - y}{t} k(x, y, t), \quad \partial_t k(x, y, t) = \left(-\frac{n}{2t} + \frac{(x - y)^t (x - y)}{2t^2}\right) k(x, y, t)$$

Formally, the derivatives of u are obtained by differentiating under the integral sign

$$D_x u(x,t) = \int_{\mathbb{R}^n} D_x k(x,y,t) f(y) \, dy, \quad \partial_t u(x,t) = \int_{\mathbb{R}^n} \partial_t k(x,y,t) f(y) \, dy$$

Now observe that we may combine the estimate on f and the estimates on k as above to show that these integrals are well-defined if (0.2) holds. Finally, to justify this calculation, one may use finite differences and pass to the limit via the mean value theorem and the dominated convergence theorem. \Box

Problem 7, John p.213. (a) Since f and k(x, y, t) are positive, for $\xi \in \mathbb{R}$ $|u(\xi, t)| \leq \int_{\mathbb{R}} k(\xi, y, t) f(y) \, dy = u(\xi, t) \leq |u(\xi, t)|.$

Now use estimate (1.16) on p.218 with $\sigma = t$, $\tau = 0$ to obtain directly,

$$|u(\xi + i\eta, t)| \le e^{\eta^2/4t} \int_{\mathbb{R}^n} k(\xi, y, t) f(y) \, dy = e^{\eta^2/4t} u(\xi, t).$$

(b) The estimate in part (a) tells us that u is an entire function in x. Therefore, for any $x \in \mathbb{C}$ and r > 0 we have by Cauchy's integral formula

$$D_x u(x,t) = \frac{1}{2\pi i} \int_{|x-z|=r} \frac{u(z)}{(x-z)^2} \, dz.$$

This always yields the estimate

$$|D_x u(x,t)| \le \frac{1}{r} \sup_{|x-z|=r} |u(z)| = \frac{1}{r} \sup_{|z|=r} |u(x+z)|.$$

In particular, if $x \in \mathbb{R}$, and $z = \xi' + i\eta'$, by part (a)

$$\sup_{|z|=r} |u(x+z)| \le \sup_{\xi'^2 + \eta'^2 = r^2} e^{\eta'^2/4t} u(x+\xi') \le e^{r^2/4t} \sup_{|\xi'| \le r} u(x+\xi')$$

If we choose $r = \sqrt{ct}$ we obtain an estimate independent of time. The constant c = 2 is simply convenient.

$$|D_x u(x,t)| \le \sqrt{\frac{e}{2t}} \sup_{|\xi'| \le 2t} u(x+\xi',t).$$

Problem 12. John p. 214. (a) This is called the Cole-Hopf transformation. Once discovered, it is routine to verify: plug and chug.

$$\theta_x = -2\mu \left(\frac{u_{xx}}{u} - \frac{u_x^2}{u^2}\right)$$

$$\theta_{xx} = -2\mu \left(\frac{u_{xxx}}{u} - \frac{3u_x u_{xx}}{u^2} + \frac{2u_x^3}{u^3}\right)$$
(0.3)

$$\theta_t = -2\mu \left(\frac{u_{xt}}{u} - \frac{u_t u_x}{u^2} \right) = -2\mu^2 \left(\frac{u_{xxx}}{u} - \frac{u_x u_{xx}}{u^2} \right), \qquad (0.4)$$

using $u_t = \mu u_{xx}$. Now combine terms to find that θ solves Burgers equation

$$\theta_t + \theta \theta_x = \mu \theta_{xx}.$$

(b) The change of variables is inverted as follows. Since $\theta = -2\mu u_x/u = -2\mu(\log u)_x$ we have

$$u(x,t) = \exp\left(-\frac{1}{2\mu}\int_{-\infty}^{x}\theta(y,t)\,dy\right).$$

(The antiderivative can be defined on a finite interval too, if the integral is divergent). The inner integral $\int_{-\infty}^{x} \theta(y,t) \, dy$ is called the potential. Suppose $\theta(x,0) = \varphi(x)$ with $\varphi \in C_0^2(\mathbb{R})$. Let $\Phi(x) = \int_{-\infty}^{x} \varphi(y) \, dy$, and $u(x,0) = \exp(-(2\mu)^{-1}\Phi(x))$. The solution to the heat equation with this initial data is

$$u(x,t) = \frac{1}{\sqrt{4\pi\mu t}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2\mu}\left(\frac{(x-y)^2}{2t} + \Phi(y)\right)\right) dy.$$

Since $\theta = -2\mu u_x/u$ we have

$$\theta(x,t) = \frac{1}{t} \frac{\int_{\mathbb{R}} y \exp(-(2\mu)^{-1} A(x,y,t)) \, dy}{\int_{\mathbb{R}} \exp(-2\mu)^{-1} A(x,y,t) \, dy}.$$

where we have defined

$$A(x, y, t) = \frac{y^2}{2t} + \Phi(x - y).$$

Since $\varphi \in C_0^2(\mathbb{R})$, the integral $\sup_x |\Phi(x)| < \infty$, and there is a constant C > 0 such that

$$-C\frac{\int_{\mathbb{R}} |y|e^{-y^2/4\mu t} \, dy}{\int_{\mathbb{R}} e^{-y^2/4\mu t} \, dy} \le t\theta(x,t) \le C\frac{\int_{\mathbb{R}} |y|e^{-y^2/4\mu t} \, dy}{\int_{\mathbb{R}} e^{-y^2/4\mu t} \, dy}.$$

Rescale by setting $y' = y/\sqrt{4\mu t}$ in the integrals to obtain the decay estimate,

$$-2C\sqrt{\frac{\mu}{t}} \le \theta(x,t) \le 2C\sqrt{\frac{\mu}{t}}$$

The assumption that $\varphi \in C_0^2(\mathbb{R})$ is not necessary. As long as Φ is bounded we have the estimate above. In fact, one can trade in a growth assumption on Φ as $x \to \infty$ for a weaker decay estimate in time than the one above. \Box Problem, John p.220. Suppose u solves the heat equation in an open subset Ω of the x, t plane. Suppose $(x, t) \in \Omega$. Since u(x, t) is analytic in x, there is a neighborhood $B(x, r) \subset \mathbb{C}$ and M > 0 such that

$$\left|\partial_x^l u\right| \le \frac{Ml!}{r^l}, \qquad l \in \mathbb{Z}_+$$

Iterate the heat equation to obtain $\partial_t^k u = \partial_x^{2k} u$, for every $k \in \mathbb{Z}_+$; thus

$$\partial_t^k u \Big| \le \frac{M(2k)!}{r^{2k}}.$$

Problem 6. There are several examples of solutions that are defined for all t. For example, (i) $u \equiv \text{constant}$, (ii) any Tychonoff solution defined to be zero for t < 0. A more interesting class of solutions is provided by exponentials (see John (1.4), p. 207). Examples of *positive* solutions defined for all time are the traveling waves $u(x,t) = e^{bx+b^2t}$ for any $b \in \mathbb{R}$. Things are more interesting when we consider superpositions of the traveling waves

$$u(x,t) = \int_{\mathbb{R}} e^{bx + b^2 t} \mu(db),$$

for some positive measure μ on \mathbb{R} . As long as μ decays fast enough, that is $\int_{\mathbb{R}} e^{b^2 t} \mu(db) < \infty$ for every $t \in \mathbb{R}$, the integral is finite and u(x,t) is well-defined. Quite remarkably, it was shown by Widder that these are the only positive solutions of the heat equation defined for all $t \in \mathbb{R}$. If you assume this result, you obtain a Liouville theorem: every bounded positive solution of the heat equation on the entire plane $(x,t) \in \mathbb{R}^2$ is constant.

Problem 7. Assertion: Assume f is integrable, and $\int_{\mathbb{R}^n} f(x) dx = 1$, and $u(x,t) = \int_{\mathbb{R}^n} k(x-y,t) f(y) dy$. Then

$$\lim_{t \to \infty} (4\pi t)^{n/2} u(2x\sqrt{t}, t) = e^{-|x|^2},$$

uniformly for $x \in \mathbb{R}^n$.

Here the standard meaning of integrable is adopted: f is measurable and $||f||_{L^1} = \int_{\mathbb{R}^n} |f(y)| dy < \infty$. The main step is to recognize that every integrable function gives rise to an approximate identity through rescaling. It is also necessary to recall the following: for every $\varepsilon > 0$ there exists R > 0such that $\int_{|x|>R} |f(x)| dx < \varepsilon$. This is an immediate consequence of the

monotone convergence theorem and $\int_{\mathbb{R}^n} |f(x)| dx < \infty$. By the definition of u we have

$$(4\pi t)^{n/2}u(x\sqrt{4t},t) = \int_{\mathbb{R}^n} \exp\left(-\frac{|2x\sqrt{t}-y'|^2}{4t}\right)f(y')\,dy' = \int_{\mathbb{R}^n} e^{-|x-y|^2}f_t(y)dy,$$

where we have rescaled $y' = 2y\sqrt{t}$ and defined

$$f_t(y) = (4t)^{n/2} f(2y\sqrt{t}).$$

The properties of an approximate identity required of f_t are

$$\int_{\mathbb{R}^n} f_t(y) dy = 1, \quad \int_{|y| > R/2\sqrt{t}} |f_t(y)| dy < \varepsilon.$$

Now consider the difference

$$\left| (4\pi t)^{n/2} u(x\sqrt{2t}, t) - e^{-|x|^2/2} \right| = \left| \int_{\mathbb{R}^n} \left(e^{-|x|^2} - e^{-|x-y|^2} \right) f_t(y) \, dy \right|$$

$$\leq \int_{\mathbb{R}^n} \left| e^{-|x|^2} - e^{-|x-y|^2} \right| |f_t(y)| \, dy.$$

As always, consider the integral separately on $|y| \le R/2\sqrt{t}$ and $|y| > R/2\sqrt{t}$. In the first region, the integral is bounded by

$$\sup_{|y| \le R/2\sqrt{t}} |e^{-|x|^2} - e^{-|x-y|^2}| ||f_t||_{L^1} \le \sup_x |D_x e^{-x^2}| ||f_t||_{L^1} \frac{R}{2\sqrt{t}} = R ||f||_{L^1} \sqrt{\frac{e}{2t}}$$

On the region $|y| > R/2\sqrt{t}$ we have

$$\sup_{y \in \mathbb{R}^n} \left| e^{-|x|^2} - e^{-|x-y|^2} \right| \int_{|y| > R/\sqrt{4t}} |f_t(y)| dy < 2\varepsilon.$$