PDE, HW 4 solutions

Problem 2, John p. 213. Let o be a multi-index with |a] < s. Formally,
ou(et) = | Ohla —y.007 ) dy

— [ (0 0gks - v ) dy = [ be - .00 £(w) dy. (0.
The formal calculation is justified as follows. As explained on p.218, u is
analytic in x for every t > 0, thus 0%u(x,t) exists and equals the first term
in (0.1) for every t > 0. Integration by parts |«/| times is legitimate because
of the assumption that sup, |0%f| < oo for |a| < s. The issue here is the

continuity at ¢ = 0, and here we may apply the theorem on p. 209 with f
replaced by 9“f. O

Problem 8, John p. 213. The first step is to show that u(z,t) is well-defined
for © = £+in, t = o+i7 in the given range, that is [, [k(x,y,t) f(y)|dy < co.
Combine the assumption |f(z)| < Me*” with the estimate above (1.16)
on p.211 to obtain
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The integral is finite if and only if the coefficient of |y|? in the exponent is

negative, that is
o
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To prove analyticity, we must check that u is (complex) differentiable in
x and t. The derivatives of the kernel are the analytic functions

< 0. (0.2)
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Formally, the derivatives of u are obtained by differentiating under the in-
tegral sign

Dmu(aj> t) = - D:Ek(xa Y, t)f(y) dyv 8tU(ZL', t) = - atk‘(ﬂf, Y, t)f(y) dy



Now observe that we may combine the estimate on f and the estimates on k
as above to show that these integrals are well-defined if (0.2) holds. Finally,
to justify this calculation, one may use finite differences and pass to the limit
via the mean value theorem and the dominated convergence theorem. [

Problem 7, John p.213. (a) Since f and k(z,y,t) are positive, for £ € R
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Now use estimate (1.16) on p.218 with o = ¢, 7 = 0 to obtain directly,
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(b) The estimate in part (a) tells us that u is an entire function in . There-
fore, for any z € C and r > 0 we have by Cauchy’s integral formula

1 u(z
Dyu(z,t) = 3 /|:c—z:r ﬁ dz.

This always yields the estimate

1 1
|Dyu(z,t)] < = sup |u(z)] = = sup |u(z + 2)|.

T |z—z|=r |z|=r
In particular, if z € R, and z = & + i/, by part (a)

sup [u(x +2)| < sup " Mulz+ &) < e sup u(z + ).
2l=r &2 =1 rl<r

If we choose r = +/ct we obtain an estimate independent of time. The
constant ¢ = 2 is simply convenient.

|Dyu(z,t)] < \/3 sup u(z +&',t).
2t jgr|<n
O

Problem 12. John p. 214. (a) This is called the Cole-Hopf transformation.
Once discovered, it is routine to verify: plug and chug.
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using u; = fuz. Now combine terms to find that 6 solves Burgers equation
0y + 00, = Necc:c-

(b) The change of variables is inverted as follows. Since 0 = —2puu,/u =
—2u(logu), we have

w(z, 1) = exp <—i /_lé(y,t) dy) .

(The antiderivative can be defined on a finite interval too, if the integral is
divergent). The inner integral ffoo 0(y,t) dy is called the potential. Suppose
0(x,0) = ¢(x) with ¢ € C§(R). Let ®(z) = [*__ ¢(y)dy, and u(z,0) =
exp(—(2p) ~1®(x)). The solution to the heat equation with this initial data
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Since 6 = —2pu, /u we have

1 Jgyexp(=(2p) Az, . ) dy

O(x,t) =
) = e exp(—20) 1AL, g, 1) dy.

where we have defined
y?

Since ¢ € CZ(R), the integral sup, |®(x)| < oo, and there is a constant
C > 0 such that
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<tb(x,t) < C

Rescale by setting y' = y/+/4ut in the integrals to obtain the decay estimate,

—20\/g <0(z,t) < 20\/5

The assumption that ¢ € CZ(R) is not necessary. As long as ® is bounded
we have the estimate above. In fact, one can trade in a growth assumption
on ¢ as x — oo for a weaker decay estimate in time than the one above. [



Problem, John p.220. Suppose u solves the heat equation in an open subset
Q of the z,t plane. Suppose (x,t) € Q. Since u(x,t) is analytic in x, there
is a neighborhood B(x,r) C C and M > 0 such that
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8mu < T, l S Z+.

Iterate the heat equation to obtain 8fu = 8§ku, for every k € Z; thus

M (2k)!
k
‘@u‘g r2k
O

Problem 6. There are several examples of solutions that are defined for all £.
For example, (i) u = constant, (ii) any Tychonoff solution defined to be zero
for ¢ < 0. A more interesting class of solutions is provided by exponentials
(see John (1.4), p. 207). Examples of positive solutions defined for all time
are the traveling waves u(x,t) = bt for any b € R. Things are more
interesting when we consider superpositions of the traveling waves

u(et) = [ ()
R

for some positive measure 4 on R. As long as p decays fast enough, that is
Jr Pt (db) < oo for every t € R, the integral is finite and u(z,t) is well-
defined. Quite remarkably, it was shown by Widder that these are the only
positive solutions of the heat equation defined for all ¢ € R. If you assume
this result, you obtain a Liouville theorem: every bounded positive solution
of the heat equation on the entire plane (z,t) € R? is constant. ]

Problem 7. Assertion: Assume f is integrable, and fRn f(x)dx = 1, and
= Jgn k(z —y,t)f(y)dy. Then

tlim (Amt)"?u(2zVt, t) = elel?
—00

uniformly for z € R™.

Here the standard meaning of integrable is adopted: f is measurable
and || fllz1 = Jgnu |f(y)|ldy < co. The main step is to recognize that every
integrable function gives rise to an approximate identity through rescaling.
It is also necessary to recall the following: for every € > 0 there exists R > 0
such that f 2|> rlf(z)|dr < e. This is an immediate consequence of the



monotone convergence theorem and [g, | f(z)|dz < co. By the definition of
u we have
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where we have rescaled y' = 2y+/t and defined

fily) = ()" f 2y V).

The properties of an approximate identity required of f; are

fway =1, | )y < e.
R™ ly|>R/2vt
Now consider the difference

‘(47rt)”/2u(:13\/2_t, t) — e“xP/z‘ =

</

As always, consider the integral separately on |y| < R/2+v/t and |y| > R/2V/t.
In the first region, the integral is bounded by

/Rn (e = =) 1) dy‘

[fe(y)| dy.
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On the region |y| > R/2v/t we have
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