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PDE, HW 4 solutions

Problem 2, John p. 213. Let α be a multi-index with |α| ≤ s. Formally,

∂α
x u(x, t) =

∫

Rn

∂α
x k(x − y, t)f(y) dy

=

∫

Rn

(−1)|α|∂α
y k(x − y, t)f(y) dy =

∫

Rn

k(x − y, t)∂α
y f(y) dy. (0.1)

The formal calculation is justified as follows. As explained on p.218, u is
analytic in x for every t > 0, thus ∂α

x u(x, t) exists and equals the first term
in (0.1) for every t > 0. Integration by parts |α| times is legitimate because
of the assumption that supx |∂αf | < ∞ for |α| ≤ s. The issue here is the
continuity at t = 0, and here we may apply the theorem on p. 209 with f
replaced by ∂αf .

Problem 3, John p. 213. The first step is to show that u(x, t) is well-defined
for x = ξ+iη, t = σ+iτ in the given range, that is

∫

Rn
|k(x, y, t)f(y)|dy < ∞.

Combine the assumption |f(x)| ≤ Mea|x|2 with the estimate above (1.16)
on p.211 to obtain

∫

Rn

|k(x, y, t)f(y)|dy

≤ M

(4π)n/2

e|η|
2/4σ

(σ2 + τ2)n/4

∫

Rn

exp(a|y|2 − |σ(ξ − y) + τη|2
4(σ2 + τ2)σ

dy.

The integral is finite if and only if the coefficient of |y|2 in the exponent is
negative, that is

a − σ

σ2 + τ2
< 0. (0.2)

To prove analyticity, we must check that u is (complex) differentiable in
x and t. The derivatives of the kernel are the analytic functions

Dxk(x, y, t) =
x − y

t
k(x, y, t), ∂tk(x, y, t) =

(

− n

2t
+

(x − y)t(x − y)

2t2

)

k(x, y, t).

Formally, the derivatives of u are obtained by differentiating under the in-
tegral sign

Dxu(x, t) =

∫

Rn

Dxk(x, y, t)f(y) dy, ∂tu(x, t) =

∫

Rn

∂tk(x, y, t)f(y) dy.
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Now observe that we may combine the estimate on f and the estimates on k
as above to show that these integrals are well-defined if (0.2) holds. Finally,
to justify this calculation, one may use finite differences and pass to the limit
via the mean value theorem and the dominated convergence theorem.

Problem 7, John p.213. (a) Since f and k(x, y, t) are positive, for ξ ∈ R

|u(ξ, t)| ≤
∫

R

k(ξ, y, t)f(y) dy = u(ξ, t) ≤ |u(ξ, t)|.

Now use estimate (1.16) on p.218 with σ = t, τ = 0 to obtain directly,

|u(ξ + iη, t)| ≤ eη2/4t

∫

Rn

k(ξ, y, t)f(y) dy = eη2/4tu(ξ, t).

(b) The estimate in part (a) tells us that u is an entire function in x. There-
fore, for any x ∈ C and r > 0 we have by Cauchy’s integral formula

Dxu(x, t) =
1

2πi

∫

|x−z|=r

u(z)

(x − z)2
dz.

This always yields the estimate

|Dxu(x, t)| ≤ 1

r
sup

|x−z|=r
|u(z)| =

1

r
sup
|z|=r

|u(x + z)|.

In particular, if x ∈ R, and z = ξ′ + iη′, by part (a)

sup
|z|=r

|u(x + z)| ≤ sup
ξ′2+η′2=r2

eη′2/4tu(x + ξ′) ≤ er2/4t sup
|ξ′|≤r

u(x + ξ′).

If we choose r =
√

ct we obtain an estimate independent of time. The
constant c = 2 is simply convenient.

|Dxu(x, t)| ≤
√

e

2t
sup

|ξ′|≤2t
u(x + ξ′, t).

Problem 12. John p. 214. (a) This is called the Cole-Hopf transformation.
Once discovered, it is routine to verify: plug and chug.

θx = −2µ

(

uxx

u
− u2

x

u2

)

θxx = −2µ

(

uxxx

u
− 3uxuxx

u2
+

2u3
x

u3

)

(0.3)

θt = −2µ
(uxt

u
− utux

u2

)

= −2µ2
(uxxx

u
− uxuxx

u2

)

, (0.4)
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using ut = µuxx. Now combine terms to find that θ solves Burgers equation

θt + θθx = µθxx.

(b) The change of variables is inverted as follows. Since θ = −2µux/u =
−2µ(log u)x we have

u(x, t) = exp

(

− 1

2µ

∫ x

−∞
θ(y, t) dy

)

.

(The antiderivative can be defined on a finite interval too, if the integral is
divergent). The inner integral

∫ x
−∞ θ(y, t) dy is called the potential. Suppose

θ(x, 0) = ϕ(x) with ϕ ∈ C2
0 (R). Let Φ(x) =

∫ x
−∞ ϕ(y) dy, and u(x, 0) =

exp(−(2µ)−1Φ(x)). The solution to the heat equation with this initial data
is

u(x, t) =
1√

4πµt

∫

R

exp

(

− 1

2µ

(

(x − y)2

2t
+ Φ(y)

))

dy.

Since θ = −2µux/u we have

θ(x, t) =
1

t

∫

R
y exp(−(2µ)−1A(x, y, t)) dy

∫

R
exp(−2µ)−1A(x, y, t) dy.

,

where we have defined

A(x, y, t) =
y2

2t
+ Φ(x − y).

Since ϕ ∈ C2
0 (R), the integral supx |Φ(x)| < ∞, and there is a constant

C > 0 such that

−C

∫

R
|y|e−y2/4µt dy

∫

R
e−y2/4µt dy

≤ tθ(x, t) ≤ C

∫

R
|y|e−y2/4µt dy

∫

R
e−y2/4µt dy

.

Rescale by setting y′ = y/
√

4µt in the integrals to obtain the decay estimate,

−2C

√

µ

t
≤ θ(x, t) ≤ 2C

√

µ

t
.

The assumption that ϕ ∈ C2
0 (R) is not necessary. As long as Φ is bounded

we have the estimate above. In fact, one can trade in a growth assumption
on Φ as x → ∞ for a weaker decay estimate in time than the one above.
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Problem, John p.220. Suppose u solves the heat equation in an open subset
Ω of the x, t plane. Suppose (x, t) ∈ Ω. Since u(x, t) is analytic in x, there
is a neighborhood B(x, r) ⊂ C and M > 0 such that

∣

∣

∣
∂l

xu
∣

∣

∣
≤ Ml!

rl
, l ∈ Z+.

Iterate the heat equation to obtain ∂k
t u = ∂2k

x u, for every k ∈ Z+; thus

∣

∣

∣
∂k

t u
∣

∣

∣
≤ M(2k)!

r2k
.

Problem 6. There are several examples of solutions that are defined for all t.
For example, (i) u ≡ constant, (ii) any Tychonoff solution defined to be zero
for t < 0. A more interesting class of solutions is provided by exponentials
(see John (1.4), p. 207). Examples of positive solutions defined for all time
are the traveling waves u(x, t) = ebx+b2t for any b ∈ R. Things are more
interesting when we consider superpositions of the traveling waves

u(x, t) =

∫

R

ebx+b2tµ(db),

for some positive measure µ on R. As long as µ decays fast enough, that is
∫

R
eb2tµ(db) < ∞ for every t ∈ R, the integral is finite and u(x, t) is well-

defined. Quite remarkably, it was shown by Widder that these are the only
positive solutions of the heat equation defined for all t ∈ R. If you assume
this result, you obtain a Liouville theorem: every bounded positive solution
of the heat equation on the entire plane (x, t) ∈ R

2 is constant.

Problem 7. Assertion: Assume f is integrable, and
∫

Rn
f(x)dx = 1, and

u(x, t) =
∫

Rn
k(x − y, t)f(y)dy. Then

lim
t→∞

(4πt)n/2u(2x
√

t, t) = e−|x|2,

uniformly for x ∈ R
n.

Here the standard meaning of integrable is adopted: f is measurable
and ‖f‖L1 =

∫

Rn
|f(y)|dy < ∞. The main step is to recognize that every

integrable function gives rise to an approximate identity through rescaling.
It is also necessary to recall the following: for every ε > 0 there exists R > 0
such that

∫

|x|>R |f(x)|dx < ε. This is an immediate consequence of the
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monotone convergence theorem and
∫

Rn
|f(x)|dx < ∞. By the definition of

u we have

(4πt)n/2u(x
√

4t, t) =

∫

Rn

exp

(

−|2x
√

t − y′|2
4t

)

f(y′) dy′ =

∫

Rn

e−|x−y|2ft(y)dy,

where we have rescaled y′ = 2y
√

t and defined

ft(y) = (4t)n/2f(2y
√

t).

The properties of an approximate identity required of ft are

∫

Rn

ft(y)dy = 1,

∫

|y|>R/2
√

t
|ft(y)|dy < ε.

Now consider the difference

∣

∣

∣
(4πt)n/2u(x

√
2t, t) − e−|x|2/2

∣

∣

∣
=

∣

∣

∣

∣

∫

Rn

(

e−|x|2 − e−|x−y|2
)

ft(y) dy

∣

∣

∣

∣

≤
∫

Rn

∣

∣

∣
e−|x|2 − e−|x−y|2

∣

∣

∣
|ft(y)| dy.

As always, consider the integral separately on |y| ≤ R/2
√

t and |y| > R/2
√

t.
In the first region, the integral is bounded by

sup
|y|≤R/2

√
t

|e−|x|2 − e−|x−y|2|‖ft‖L1 ≤ sup
x

|Dxe−x2|‖ft‖L1

R

2
√

t
= R‖f‖L1

√

e

2t
.

On the region |y| > R/2
√

t we have

sup
y∈Rn

∣

∣

∣
e−|x|2 − e−|x−y|2

∣

∣

∣

∫

|y|>R/
√

4t
|ft(y)|dy < 2ε.


