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PDE, HW 2 solutions

1. Heuristically, the fundamental solution provides a prototype of a sub-
harmonic function bounded above. However, this requires a more general
definition of subharmonic functions than we have adopted, since the funda-
mental solution is not continuous. To find subharmonic functions bounded
above you could solve 4u = ρ where ρ ≥ 0 is a smooth function with
∫

Rn ρ dx = 1, that is a smoothed version of δ0. An analytic solution is

u(ξ) =

∫

Rn

K(x, ξ)ρ(x) dx.

All you need to check is that the integral is well defined. Since K < 0
and ρ ≥ 0, we then have u ≤ 0. Here is a concrete example. Choose
ρ = (2π)−n/2e−|x|2/2 to find

|u(ξ)| =
1

(n− 2)ωn(2π)n/2

∫

Rn

|x− ξ|2−ne−|x|2/2 dx.

Split the integral into a piece where |x− ξ| > 1 and |x− ξ| ≤ 1. Then
∫

|x−ξ|≥1
|x− ξ|2−ne−|x|2/2 dx ≤

∫

Rn

e−|x|2/2 dx = (2π)n/2.

As for the singular part, we have

∫

|x−ξ|≤1
|x− ξ|2−ne−|x|2/2 dx ≤

∫

|x−ξ|≤1
|x− ξ|2−n dx = ωn

∫ 1

0
r dr =

ωn

2
.

Problem 1, p. 106. (a) The importance of this problem is that it arises in
the solution of the wave equation 4v = ∂ttv. If one looks for standing waves
v = eiλtu one is led to the reduced wave equation 4u + λ2u = 0, or more
generally 4u + cu = 0. Radially symmetric solutions u = ψ(r) must solve
the ODE

ψ′′ +
n− 1

r
ψ′ + cψ = 0. (0.1)

It is hard to solve this equation explicitly (even for n = 3) without some
knowledge of Bessel functions (this is outlined below). For the purposes of
this question, it suffices to take a hint from parts (b) and (c) and verify that
cos

√
cr/r and sin

√
cr/r are solutions to (0.1). Once we have two linearly

independent solutions, we know that any solution to (0.1) is of the form

ψ = c1
cos (

√
cr)

r
+ c2

sin (
√
cr)

r
. (0.2)
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Note though that the first solution works only on a punctured domain. (b).
Use Green’s identity in the form

∫

U
(v (4u+ cu) − u (4v + cv)) dx =

∫

∂U

(

v
∂u

∂n
− u

∂v

∂n

)

dSx. (0.3)

Apply this to the domain U\B(ξ, ε) with v = K(x, ξ), and take ε→ 0. The
calculation is essentially the same as on p.96, with minor modifications. (c)
Use the hint provided, and choose the Green’s function

G(x, ξ) =
1

4πr

(

− cos(
√
cr) +

cos(
√
cρ)

sin(
√
cρ)

sin(
√
cr)

)

=
sin (

√
c(r − ρ))

4πr sin (
√
cρ)

.

On S(ξ, ρ) we have

∂G

∂nx
=

√
c

4πρ sin(
√
cρ)

=

√
cρ

sin (
√
cρ)

1

4πρ2
,

which gives the modified mean value equality. (d). In case, c < 0, we have

u(ξ) =

√
cρ

sinh (
√
cρ)

−
∫

S(ξ,ρ)
u(y)dSy ≤ −

∫

S(ξ,ρ)
u(y)dSy,

since t ≤ sinh t. If c = 0 u is harmonic. In either case, u is subharmonic.
If u = 0 on S(ξ, ρ) we find u(ξ) = 0 = maxS(ξ,ρ) u. Thus, u is constant by
the strong maximum principle. In case c > 0 the solution u = r−1 sin(

√
cr)

is non-constant and is 0 when
√
cr = nπ. (e). Suppose u ∈ C2(U) satisfies

Lu = 0 in U . Since regularity is a local property, we as well assume that U =
B(ξ0, r) and u ∈ C2(U ) (this is needed for the following integral identity).
The fundamental solution yields the representation

u(ξ) =

∫

∂U

(

∂K(x, ξ)

∂nx
u(x) −K(x, ξ)

∂u

∂nx

)

dSx.

We observe that K(x, ξ) is analytic in any domain such that r > 0 (use
r2 = (x− ζ)t(x− ζ)). Thus, u is complex differentiable, hence analytic.

Remark 0.1. Bessel’s equation with parameter ν ∈ R is the differential
equation

r2f ′′ + rf ′ +
(

r2 − ν2
)

f = 0. (0.4)

The standardized linearly independent solutions to (0.4) are denoted Jν and
Yν and are called Bessel functions of the first and second kind respectively.
Yν is divergent as r → 0. The change of variables f = ψrλ, yields

rψ′′ + (2ν + 1)ψ′ + ψ = 0,
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Thus, if we choose ν = n/2 − 1, the solutions to (0.1) (with c = 1) are
ψ(r) = rν(c1Jν(r) + c2Jν(r)). This connects with the special solution for
n = 3 through the Bessel function identities

J1/2(r) =

√

2

πr
sin r, Y1/2(r) =

√

2

πr
cos r.

If c 6= 1 one only needs to rescale, say r′ =
√
cr.

A somewhat more direct route to the solution is as follows. Suppose ψn

solves (0.1). If we set ϕ = ψ′
n/r then we find that ϕ solves (0.1) with n

replaced by n + 2. Therefore, we find that ϕ = ψn+2. This allows us to
find solutions for odd n rather easily. When n = 1 we have (when c = 1)
ψ′′+ψ = 0 with solution ψ = c1 cos r+c2 sin r. By succcessive differentiation
we have

ψ2n+1(r) =

(

1

r

d

dr

)n

(c1 cos r + c2 sin r) .

If n = 2, Bessel functions are unavoidable, and the simplest solution is
ψ2(r) = c1J0(r)+c2Y0(r), and the rest are obtained by the operation above.
The gap between odd and even dimensions is interesting, and will be reap-
pear in the absence of a sharp Huygen’s principle for the wave equation in
even dimensions.

Problem 4, p. 106. Let U denote the open half-plane x2 > 0, and M =
supU u <∞ and m = sup∂U u ≤M . Fix ε > 0, and let

vε(x1, x2) = u(x1, x2) − ε log
√

(x2
1 + (1 + x2)2).

Observe that vε < u in U . Apply the weak maximum principle to the
domain Ua := x2

1 + (1 + x2)
2 < a2, x2 > 0 to deduce that

sup
Ua

vε ≤ sup
∂Ua

vε.

On the curved part of ∂Ua, v
ε = u− ε log a ≤ M − ε log a ≤ m if a is large

enough. On the flat part of the boundary we have v ≤ u ≤ m. In either
case, we have the uniform estimate

sup
Ua

vε(x1, x2) ≤ m.

We now take a→ ∞ to find supU v
ε ≤ m. But then, for any (x1, x2) ∈ U .

u(x1, x2) ≤ m+ ε log
√

x2
1 + (1 + x2)2.

The left hand side is independent of ε, so we may take ε → 0 to obtain
u(x1, x2) ≤ m.
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Remark 0.2. A similar proof can be used to prove Liouville’s theorem
for subharmonic functions in R

2. Suppose u : R
2 → R is subharmonic

and bounded above. Consider the function vε = u − ε log r in the domain
r = |x| > 1. Observe that vε < u here. Arguing as above, we then have

sup
|x|>1

vε = max
S(0,1)

vε = max
S(0,1)

u = max
B(0,1)

u.

Thus, for any x with |x| > 1 we have

u(x) = vε(x) + ε log r ≤ max
B(0,1)

u+ ε log r.

Since the left hand side is independent of ε, we have u(x) ≤ maxB(0,1) u, and

taking the sup over x we have supRn u = max
B(0,1)

u. Thus, the maximum

is attained in the interior and u is constant.

5, p.110. (a) This is known as the Schwartz reflection principle. To show
u : B → R is harmonic, it is enough to verify the mean value property for
sufficiently small balls for every x ∈ B. This is clearly true for x such that
xn > 0 since we start with a function that is harmonic in B+. Reflection
implies that it is also true for xn < 0. Finally, when xn = 0 the integral over
the upper half ball cancels that over the lower half ball. (b) By reflection we
obtain an entire bounded harmonic function, which is constant by Liouville’s
theorem.

8, p.110. We begin with the mean value equality

∂ξi
u(0) =

n

ωnan+1

∫

S(0,a)
xiu(x) dSx.

Let M = supS(ξ,a) |u|. Take absolute values to get

|∂ξi
u(0)| ≤ Mn

ωnan+1

∫

S(0,a)
|xi| dSx =

Mn

ωna

∫

S(0,1)
|xi| dSx.

We have rescaled in the last step. The integral can be computed exactly.
By rotational symmetry, we may suppose xi = xn. All points in S(0, 1) at
height xn form an n − 2 dimensional sphere of radius

√

1 − x2
n. Therefore,

the n− 1-dimensional volume of an infinitesimal slice is

ωn−1(
√

1 − x2
n)n−2 dxn

√

1 − x2
n

= ωn−1(sin θ)
n−2dθ,
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where θ is the polar angle from the xn axis and xn = cos θ. Thus,
∫

S(0,1)
|xn| dSx = ωn−1

∫ π

0
cos θ(sin θ)n−2 dθ =

2ωn−1

n− 1
.

This gives γn. The calculation is sharp: if u = sgnxn on S(0, 1) we find

∂ξn
u(0) =

n

ωn

∫

S(0,1)
|xn| dSx = γn.

Strictly speaking, we have not shown that we can solve the Dirichlet problem
with discontinuous data. Observe however that Poisson’s integral formula
does define a harmonic function for this boundary data, and the estimates
on derivatives require only sup |u|.

9, p. 110. (a) This has been worked out in lecture for the earlier constant.
(b). We need to consider convergence of the power series

∑

α

∂αu(ξ)

α!
(x− ξ)α.

We take absolute values, and use the estimate on ∂αu(ξ) to bound the
expression above by

∞
∑

m=0

∑

|α|=m

(mγn

a

)m 1

α!
|x1 − ξ1|α1 . . . |xn − ξn|αn

=

∞
∑

m=0

1

m!

(mγn

a

)m ∑

|α|=m

m!

α!
|x1 − ξ1|α1 . . . |xn − ξn|αn

=

∞
∑

m=0

mm

m!

(

γn(|x1 − ξ1| + . . .+ |xn − ξn|)
a

)m

.

We have used the multinomial expansion in the last equation. Use Stir-
ling’s approximation m! ∼

√
2πmmme−m to see that the above expression

converges if and only if

∞
∑

m=0

1√
2πm

(

eγn(|x1 − ξ1| + . . .+ |xn − ξn|)
a

)m

<∞.

Thus, we need

|x1 − ξ1| + . . . |xn − ξn| <
a

eγn
.

I only get the strict inequality, and can’t figure out where the = comes from
in John’s book.
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3, p. 73. zp, and thus g(z) = e−z−p

, is analytic in the slit plane C\(−∞, 0].
Let a < x. Use Cauchy’s integral formula on the circle S(x, a) to find

gk(x) =
k!

2πi

∫

S(x,a)

g(z)

(z − x)k+1
dz.

Therefore, on taking absolute values

|gk(x)| ≤ k!

ak
sup

S(x,a)
|g|.

If we use polar coordinates z = reiϕ, we have

g(z) = exp
(

−r−pe−ipϕ
)

= exp
(

−r−p(cos pϕ− i sin pϕ)
)

.

Thus, |g(z)| = exp(−r−p cos pϕ). When z ∈ S(x, a) the polar angle ϕ is at
most tan−1(a/x) := ϕ0, and r is at least x− a = x(1 − tanϕ0). Thus,

max
z∈S(x,a)

|g| ≤ exp
(

−x−p(1 − tanϕ0)
−p cosϕ0

)

.

As ϕ0 → 0, the factor (1 − tanϕ0)
−p cosϕ0 → 1 from below. We may

therefore, choose ϕ0(p) such that max |g| ≤ e−x−p/2 on S(x, a). Let θ(p) :=
1 − tanϕ0 < 1. We then have

|g(k)(x)| ≤ k!

(θx)k
exp

(−x−p

2

)

.

Part (b) is also interesting (you didn’t have to turn this in). To find a
uniform bound in x, we must maximimize the right hand side. Differentiate
to find that the maximum is attained when x−p = 2k/p. Consequently,

|g(k)(x)| ≤ k!

θk

(

2k

pe

)k/p

= (k!)1+1/p

(

kk

k!

)1/p (

2

peθp

)k/p

∼ (k!)1+1/p(2πk)−1/p
(

21/pp−1/pθ
)−k

,

by Stirling’s approximation.


