PDE, HW 2 solutions

1. Heuristically, the fundamental solution provides a prototype of a sub-
harmonic function bounded above. However, this requires a more general
definition of subharmonic functions than we have adopted, since the funda-
mental solution is not continuous. To find subharmonic functions bounded
above you could solve Au = p where p > 0 is a smooth function with
fRn pdx = 1, that is a smoothed version of dy. An analytic solution is

u@) = [ Kol de.
All you need to check is that the integral is well defined. Since K < 0
and p > 0, we then have u© < 0. Here is a concrete example. Choose
p = (21) /2~ 12*/2 {6 find
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Split the integral into a piece where |x —¢| > 1 and |z — £| < 1. Then
/ |z — §|2_”e_‘gc‘2/2 dx < / e 1712 gy = (2m)"/2,
lz—£|>1 "

As for the singular part, we have
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Problem 1, p. 106. (a) The importance of this problem is that it arises in
the solution of the wave equation Av = dyv. If one looks for standing waves
v = ¢y one is led to the reduced wave equation Au + A2u = 0, or more
generally Au + cu = 0. Radially symmetric solutions u = ¢ (r) must solve

the ODE

W+ nT_lzp’ Y e = 0. (0.1)

It is hard to solve this equation explicitly (even for n = 3) without some
knowledge of Bessel functions (this is outlined below). For the purposes of
this question, it suffices to take a hint from parts (b) and (c) and verify that
cos y/cr/r and sin\/cr/r are solutions to (0.1). Once we have two linearly
independent solutions, we know that any solution to (0.1) is of the form

b= cos (y/cr) s sin (y/c ) 0.2)

r r




Note though that the first solution works only on a punctured domain. (b).
Use Green’s identity in the form
<v8_u - u@> dS;. (0.3)
n

Apply this to the domain U\B(¢,¢) with v = K(«,§), and take e — 0. The
calculation is essentially the same as on p.96, with minor modifications. (c)
Use the hint provided, and choose the Green’s function

cos(v/2p) _sin (ve(r — p))

1 .
G(z,&) = T <— cos(ver) + W s1n(\/Er)> " darsin (Vep)

/_(U(AU+CU)—U(AU+CU)) dm:/
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On S(§, p) we have
oG Ve Vep 1

Ong  Amp sin(y/cp)  sin (y/cp) 4mp?’

which gives the modified mean value equality. (d). In case, ¢ < 0, we have

Vep
U = ) T, O <, uwas,
since t < sinht. If ¢ = 0 u is harmonic. In either case, u is subharmonic.
If u =0 on S(§p) we find u(§) = 0 = maxg ,yu. Thus, u is constant by
the strong maximum principle. In case ¢ > 0 the solution u = r~!sin(y/cr)
is non-constant and is 0 when /cr = nn. (e). Suppose u € C?(U) satisfies
Lu = 01in U. Since regularity is a local property, we as well assume that U =
B(&,r) and u € C?(U) (this is needed for the following integral identity).
The fundamental solution yields the representation

w0 = [ (PR - ke ) dsi

We observe that K(z,€) is analytic in any domain such that » > 0 (use

r? = (x — ¢)!(x — ¢)). Thus, u is complex differentiable, hence analytic. [

Remark 0.1. Bessel’s equation with parameter v € R is the differential
equation

"+ rf + (1 = v?) f = 0. (0.4)
The standardized linearly independent solutions to (0.4) are denoted J,, and

Y, and are called Bessel functions of the first and second kind respectively.
Y, is divergent as r — 0. The change of variables f = ¢r?, yields

"+ Qu+ 1)y +9 =0,



Thus, if we choose v = n/2 — 1, the solutions to (0.1) (with ¢ = 1) are
W(r) = r”(c1Jy(r) + coJy(r)). This connects with the special solution for
n = 3 through the Bessel function identities

2 . 2
Jija(r) =1/ —-sinr, Yija(r) =4/ —CoST.

If ¢ # 1 one only needs to rescale, say r’ = \/cr.

A somewhat more direct route to the solution is as follows. Suppose ¥,
solves (0.1). If we set ¢ = 9} /r then we find that ¢ solves (0.1) with n
replaced by n + 2. Therefore, we find that ¢ = ,49. This allows us to
find solutions for odd n rather easily. When n = 1 we have (when ¢ = 1)
"+ = 0 with solution 1) = ¢; cosr+cysinr. By succcessive differentiation

we have L gnn
Yont1(r) = (; $> (crcosr +cysinr).

If n = 2, Bessel functions are unavoidable, and the simplest solution is
Ya(r) = e1Jo(r) +c2Yy(r), and the rest are obtained by the operation above.
The gap between odd and even dimensions is interesting, and will be reap-
pear in the absence of a sharp Huygen’s principle for the wave equation in
even dimensions.

Problem 4, p. 106. Let U denote the open half-plane zo > 0, and M =
supgu < 0o and m = supgy u < M. Fix € > 0, and let

v (21, 22) = u(x1,22) — €log \/(:13% + (1 + x2)?).
Observe that v* < u in U. Apply the weak maximum principle to the
domain U, := az% + (14 22)? < a?, 22 > 0 to deduce that

sup v® < sup v°.

U, U,
On the curved part of 9U,, v* = u —cloga < M —eloga < m if a is large
enough. On the flat part of the boundary we have v < u < m. In either
case, we have the uniform estimate

sup v°(z1, z2) < m.
U,

We now take a — oo to find supgv® < m. But then, for any (z1,z2) € U.

u(zy,9) < m+elogy/a? + (1 + z2)2.

The left hand side is independent of €, so we may take ¢ — 0 to obtain
u(xy, xe) < m. O



Remark 0.2. A similar proof can be used to prove Liouville’s theorem
for subharmonic functions in R2. Suppose u : R?> — R is subharmonic
and bounded above. Consider the function v* = u — €logr in the domain
r = |z| > 1. Observe that v < u here. Arguing as above, we then have

sup v = max v®* = max v = max u.
|z|>1 5(0,1) 5(0,1) B(0,1)

Thus, for any x with |z| > 1 we have

u(x) =v%(x) + elogr < max u+ elogr.
B(0,1)

Since the left hand side is independent of &, we have u(x) < max gy U, and
taking the sup over x we have supgn u = maxgq 1y U- Thus, the maximum
is attained in the interior and u is constant.

5, p.110. (a) This is known as the Schwartz reflection principle. To show
u : B — R is harmonic, it is enough to verify the mean value property for
sufficiently small balls for every x € B. This is clearly true for x such that
xpn > 0 since we start with a function that is harmonic in B.. Reflection
implies that it is also true for z,, < 0. Finally, when x,, = 0 the integral over
the upper half ball cancels that over the lower half ball. (b) By reflection we
obtain an entire bounded harmonic function, which is constant by Liouville’s
theorem. O

8, p.110. We begin with the mean value equality

n
0 u(0) = oy /S o FUE) S

Let M = supg¢ 4 |u|. Take absolute values to get

M M
10, u(0)] < — / 25| ds, = M7 / ;] dS,.
5(0,a) 5(0,1)

— wpantl Wna

We have rescaled in the last step. The integral can be computed exactly.
By rotational symmetry, we may suppose x; = z,,. All points in S(0,1) at
height z,, form an n — 2 dimensional sphere of radius /1 — z2. Therefore,
the n — 1-dimensional volume of an infinitesimal slice is

wn—1(v/1 — x%)”_Q\/% = wy_1(sin )" 2d6,



where 6 is the polar angle from the z,, axis and xz,, = cos#. Thus,

/ |z, |dSy = wn_l/ cos O(sin§)" 2 dh =
5(0,1) 0

2wp—1
n—1"

This gives 7,. The calculation is sharp: if u = sgnx,, on S(0,1) we find

O, u(0) == [ ] dS, =,
Wn JS5(0,1)
Strictly speaking, we have not shown that we can solve the Dirichlet problem
with discontinuous data. Observe however that Poisson’s integral formula
does define a harmonic function for this boundary data, and the estimates
on derivatives require only sup |u|. O

9, p. 110. (a) This has been worked out in lecture for the earlier constant.
(b). We need to consider convergence of the power series
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We take absolute values, and use the estimate on 9%u(§) to bound the
expression above by
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We have used the multinomial expansion in the last equation. Use Stir-
ling’s approximation m! ~ v/2mmm™e™™ to see that the above expression
converges if and only if

> 1 efyn(\ml—§1|+...+|xn—§n|)>m
n;) T ( p < .

Thus, we need

a
|1 — &+ . on — &n] < —.
Yn

I only get the strict inequality, and can’t figure out where the = comes from
in John’s book. U



3, p. 73. 2P, and thus g(z) = e~* ', is analytic in the slit plane C\(—o0,0].
Let a < z. Use Cauchy’s integral formula on the circle S(z,a) to find

k! 9(2)
k - LA S
g (x) = 2mi /S(WL) (2 — x)kt1 dz.

Therefore, on taking absolute values

!
¥ (2)| < = sup |g.
a* §(z.a)

If we use polar coordinates z = re’?, we have
g(z) = exp (—r_pe_ip‘p) = exp (—r_p(cos pp — z'sinpgo)) .

Thus, |g(z)| = exp(—r"Pcospy). When z € S(z,a) the polar angle ¢ is at
most tan~!(a/z) := g, and r is at least x —a = z(1 — tan ¢g). Thus,

max |g| < exp (—z7P(1 — tan ¢g) " cos ¢y) .
z€S(x,a)

As ¢9 — 0, the factor (1 — tanpg) Pcospg — 1 from below. We may
therefore, choose ¢g(p) such that max|g| < e=* /2 on S(z,a). Let 0(p) :=
1 —tanpg < 1. We then have

A< e (7).

Part (b) is also interesting (you didn’t have to turn this in). To find a
uniform bound in z, we must maximimize the right hand side. Differentiate
to find that the maximum is attained when 7P = 2k/p. Consequently,

k/ kN 1/ k/
19 ()] < K (2% ' = (k))'+1/p K 2 ’
ARV k! pedr

—k
~ (KNP (27 k) " 1/p (zl/pp—l/pg) 7

by Stirling’s approximation. O



