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PDE, HW 1 solutions

For future reference, here is a computation of ωn (you did not need to turn
this in). You can compute ωn directly by induction. A slick approach uses
the Gaussian integral

∫

R

e−|x1|2/2 dx1 =
√

2π.

Let us compute the Gaussian integral in R
n two different ways. First, since

the integral factors we have

∫

Rn

e−|x|2/2 dx =

∫

Rn

e−(x2

1
+...+x2

n)/2 dx1 . . . dxn = (2π)n/2 .

On the other hand, one may switch to polar coordinates to obtain

∫

Rn

e−|x|2/2 dx = ωn

∫ ∞

0
e−r2/2rn−1dr

= ωn

∫ ∞

0
e−t(2t)n/2−1dt = 2n/2−1Γ(

n

2
),

after the change of variables r2 = 2t. Equate the two calculations to find,

ωn =
2πn/2

Γ(n/2)
.

The volume of a ball of radius r is given by

|B(0, r)| = ωn

∫ r

0
ρn−1 dρ =

ωn

n
rn.

One of the reasons these exact values are of interest is that we can now
compute the sharp constant in the isoperimetric inequality. A loose form of
the isoperimetric inequality is “of all domains with a fixed surface area, the
ball has the most volume”. More precisely, for sufficiently regular bounded
domains U ⊂ R

n, there is a constant γn such that

|U |n ≤ γn|∂U |n/(n−1)
n−1 .

Here |G|k denotes the k-dimensional volume of a set G. The inequality is
sharp precisely when U is a ball. In this case, we have

|B(x, r)|n =
ωn

n
rn = γn

(

ωnrn−1
)n/(n−1)

= γnωn/n−1
n rn.
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Observe that rn cancels (this is scale-invariance) and we are left with

γn = ω−1/(n−1)
n /n.

The behaviour of this constant as n → ∞ is surprisingly relevant. You can
use Stirling’s approximation

Γ(α) ∼
√

2παα+1/2e−α

to show that

γn ∼ 1√
2πen

, n → ∞.

1. The mean value inequality can be used to define subharmonic func-
tions. Henceforth, we will use the following definition.

Definition 0.1. A function u ∈ C(U) is subharmonic if for every x ∈ U
there exists δ(x) > 0 such that S(x, δ) ⊂ U and

u(x) ≤ −
∫

S(x,r)
u(y)dSy , 0 < r ≤ δ.

Yet another definition is the following.

Definition 0.2. A function u ∈ C(U) is subharmonic if for every B(x, r) ⊂⊂
U and every harmonic function v defined on a domain containing B(x, r)
such that u ≤ v on S(x, r), we have u ≤ v in B(x, r).

Show that these definitions are equivalent; that is, each implies the other.
You may assume the existence and uniqueness of solutions for the Dirichlet
problem in the ball.

Proof. Assume Defn. 2. Let δ(x) = dist(x, ∂U)/2, so that B(x, r) ⊂ U
for 0 < r ≤ δ. Let v be the harmonic function in B(x, r) defined by the
boundary values v = u on S(x, r). Then Defn 2 implies at once that

u(x) ≤ v(x) = −
∫

S(x,r)
v(y)dSy = −

∫

S(x,r)
u(y)dSy.

Assume Defn. 1. Consider any ball B(x, r) ⊂ U and a harmonic function v
defined on a domain that includes this ball. Then the difference w = u−v is
subharmonic in the sense of Defn 1, continuous on B(x, r) and satisfies the
mean value inequality obtained by integrating over the radial coordinate

w(y) ≤ −
∫

B(y,δ(y))
w(z)dSz , y ∈ B(x, r).
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It then follows that w satisfies the strong, and hence weak maximum prin-
ciple, so that w ≤ 0 in B(x, r). (See the proof in the lecture notes, only the
continuity of w is needed once one has the mean-value inequality. The C2

assumption was used only to derive the mean value inequality)

2. Let f : R → R be convex; that is f(ax + (1− a)y) ≤ af(x) + (1− a)f(y)
for every a ∈ [0, 1]. Convex functions are continuous and satisfy Jensen’s
inequality (look this up, if you haven’t seen it before). Let u : U → R

be harmonic. Show that f ◦ u is subharmonic. Deduce that the functions
|u|p, p ≥ 1 and |Du|2 are subharmonic.

Proof. Jensen’s inequality states that if G is a bounded domain, and the
average of a function u : G → R defined by

−
∫

G
u(y) dy =

1

|G|

∫

U
u(y) dy,

then

f(−
∫

G
u(y) dy) ≤ −

∫

G
f(u(y)) dy.

If u is harmonic, and B(x, r) ⊂ U the mean value equality states that
u(x) = −

∫

B(x,r) u(y) dy. It is then immediate from Jensen’s inequality that

f(u(x)) ≤ −
∫

B(x,r)
f(u(y)) dy.

The function f(x) = |x|p is convex for p ≥ 1, and Du is harmonic if u is
(well, strictly speaking we haven’t proved this yet, but most of you assumed
this).

3. Use Harnack’s inequality to prove Liouville’s theorem: a harmonic func-
tion on R

n that is bounded below is constant.

Proof. Let m = infRn u. Replacing u by u−m we may suppose that m = 0.
In the proof of Harnack’s inequality we obtained the following estimate

sup
B(0,r)

u ≤ 3n inf
B(0,r)

u.

The factor 3n is independent of r and we may take r → ∞ to obtain
supRn u ≤ 3n infRnu = 0. Thus, u ≡ 0.
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4. Inversion in the unit sphere is the map f : R
n\{0} → R

n defined by

f(x) =
x

|x|2 .

(The origin is mapped to the point at infinity). Show that this map is
conformal. Interpret the gradient Df geometrically.

Proof. It may help to do the calculation in coordinates. If fi = xi/|x|2, then

fi,j := ∂xj
fi =

δij

|x|2 − 2xixj

|x|4 ,

where δij is 1 if i = j and 0 otherwise (this is called Kronecker’s symbol).
In coordinate independent notation, this is the matrix

Df = |x|−2

(

I − 2xxt

|x|2
)

.

x is a column vector, and xxt is the outer or tensor product of x with itself.
Now compute,

(Df)tDf = |x|−4
(

I − 4|x|−2xxt + 4|x|−4xxtxxt
)

= |x|−4I.

To interpet Df geometrically, suppose for simplicity that x = (1, 0, . . . 0).
Then in coordinates, Df is the matrix diag (−1, 1, . . . , 1). This corresponds
to reflection in the plane normal to x. In general, Df is reflection in the
plane normal to x composed with rescaling by |x|−2.

5. Suppose n = 2. Let f = (f1(x), f2(x)) be a C2 conformal map from
an open subset R

2 ⊃ U → R
2. Show that f1 and f2 are harmonic, that is

4f1 = 4f2 = 0. Thus, show that if u : U → R is harmonic, so is v = u ◦ f .

Proof. Conformal matrices in two dimensions are always in one of the fol-
lowing two forms

(

a b
−b a

)

, or

(

a b
b −a

)

, a2 + b2 > 0.

Confusingly enough, these are sometimes called conformal and anti-conformal
matrices respectively (for us, conformal always means F tF = λI, λ > 0).
The first has positive determinant and the second negative.
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Let us first prove this. Suppose F is a conformal matrix. Then we have
F tF = λI, and we also have F tF = λI. If

F =

(

a b
c d

)

,

then the diagonal terms in the matrix equations F tF = λI = FF t yield

a2 + c2 = λ a2 + b2 = λ

c2 + d2 = λ b2 + d2 = λ.

Therefore, c = ±b and d = ±a. Now the vanishing of the off-diagonal terms
requires d = a, c = −b or c = b, d = −a.

On any connected component of U , det(DF ) is a continuous function,
thus det(Df) is either always positive, or always negative. Consequently,
Df is always in one of the two standard forms. If det(Df) > 0 we obtain
the Cauchy-Riemann equations

f1,1 = f2,2 f1,2 = −f2,1,

and if det(Df) < 0, the anti-Cauchy-Riemann equations

f1,1 = −f2,2 f1,2 = f2,1.

Since f is C2 we may equate cross-derivatives. Differentiate the first equa-
tion with respect to x1, the second relative to x2, and add to obtain 4f1 = 0.
Similarly, 4f2 = 0. Finally, if v = u ◦ f , the chain rule implies

4v = tr(Df t D2uDf) + Du · 4f.

Since f is conformal, Df t = λDf−1, therefore,

tr(Df t D2uDf) = λtr(Df−1 D2uDf) = λtr(D2u) = λ4u = 0.

In two dimensions, we have also shown that conformality implies 4f = 0.
Thus, 4v = 0.

6. Show that inversion is not harmonic for n ≥ 3 (a vector field is harmonic
if each of its components is harmonic). The fix for this is in the following
problem.
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Proof. We will show that

4f = 2(2 − n)
x

|x|4 (0.1)

which vanishes only if n = 2. Again, it may help to work with indices.
Continuing from problem 4, we have

fi,jk = −2|x|−4 (δijxk + δikxj + δjkxi) + 8|x|−6xixjxk.

The Laplacian 4fi is obtained by summing
∑n

j=1 fi,jj. Since this operation
is so common, the Einstein summation convention is usually adopted: we
sum over any repeated index. For example, fi,jj means

∑n
j=1 fi,jj. Apply

this calculation to the derivative above, and use δjj = n to obtain (0.1).

7. Kelvin’s transformation. Let u be a harmonic function on R
n. Show that

v(x) = |x|2−nu(x/|x|2) is a harmonic function for x 6= 0.

Proof. For future reference, here is a general identity for change of variables.
If v(x) = λ(x)u(f(x)), then

4v = u4λ + 2DuDf Dλt + λDu · 4f + λTr((Df)t D2uDf). (0.2)

The convention is that f is a column vector, Dλ and Du are row vectors.
Please derive this formula using the chain rule to be sure you understand it.

Apply this formula with λ = |x|2−n and f = x/|x|2. First note, that the
first and last terms in (0.2) vanish. Since λ is a multiple of the fundamental
solution, 4λ = 0 for x 6= 0. The calculations in problem 4 show that f is
conformal, therefore

Tr((Df)t D2uDf) = |x|−44u = 0.

Now use the computation of problem 6 to find that

λDu · 4f = 2(2 − n)|x|−(n+2)Du · x.

On the other hand,

2DuDf Dλt = 2Du
1

|x|2 (I−2
xxt

|x|2 )(2−n)|x|−nx = −2(2−n)|x|−(n+2)Du ·x.
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Remark 0.3. The sense in which Kelvin’s transformation is a replacement
for transformation by conformal maps is the following. Let’s suppose the
goal is to generate new harmonic functions from old by transformations
v = u ◦ f , that is λ ≡ 1. Now we find that

4v = tr((Df)t D2uDf) + Du · 4f.

Therefore, in order that 4v = 0 the conditions Df tDf = λI (f is confor-
mal), and 4f = 0 (f is harmonic) are clearly sufficient. It turns out that
the conditions that f be conformal and f be harmonic are also necessary
for every harmonic function u to be taken to a harmonic function v (try to
prove this, you will learn something). So it would seem that by choosing
maps that are both harmonic and conformal we can generate new harmonic
functions. This is fine for n = 2 since conformality even implies harmonicity.
Things are more interesting when n ≥ 3: the only conformal transforma-
tions for n ≥ 3 are Möbius transformations; that is a finite composition of
inversions, rotations, and translations. This is another famous theorem of
Liouville. As we have seen, inversion is not harmonic, thus v = u ◦ f cannot
be harmonic for all but linear conformal maps. In order to obtain a new
harmonic map, we must also rescale as in Kelvin’s transformation.

8. Nonuniqueness for the exterior problem. Let U = {x||x| > 1} be the
exterior of the unit ball in R

n, n ≥ 3. Consider the Dirichlet problem

4v = 0, x ∈ U, v = 1, |x| = 1.

Show that there are infinitely many solutions to this problem. Which, if
any, is the most appropriate solution?

Proof. Any function of the form v(x) = a|x|2−n + b is harmonic in U . In
order to satisfy the boundary condition we only need a + b = 1.

Surprisingly, the most natural solution is not v ≡ 1. In fact, the ‘appro-
priate’ solution to the exterior problem is the one determined by Kelvin’s
transformation because it reflects the conformal invariance of Laplace’s equa-
tion. If we were solving the interior problem with the same boundary condi-
tions, the unambiguous solution is u = 1, x ∈ B(0, 1). Then Kelvin’s trans-
formation yields the solution v(x) = |x|n−2 for the exterior problem.

This solution turns out to be the unique solution to the exterior problem
if a decay condition is imposed along with the PDE. The moral is that
in order to obtain uniqueness for the exterior problem, we must impose
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decay conditions at infinity. There are infinitely many solutions in two
dimensions also. Simply take u = 1 + a log |x|, for any a ∈ R. In this case,
the ‘appropriate’ solution is u = 1 (Kelvin again).


