
1 1-D Wave Equation

utt = c2uxx =0 (1.1)

for x∈R and t > 0 with u(x, 0)= f(x), ut(x, 0) = g(x). D’Alembert’s formula:

u(x, t)=
1

2

[

f(x+ c t)+ f(x− c t)+
1

c

∫

x−ct

x+ct

g(y)dy

]

.

Geometric identity:

u(A)+ u(C) =u(B)+ u(D). (1.2)

x

t

C

B

A

D

Figure 1.1. Sketch for the geometric identity.

We have: C2 solution of (1.1)⇔ (1.2) for every characteristic parallogram.

1.1 Boundary conditions

Good and bad boundary conditions:

0 = ut + c ux,

supposing c> 0.

t

xx

t

goodbad (cannot prescribe values at two points)

Figure 1.2. Good and bad boundary conditions for the transport equation.

Example:

utt − c2uxx =0, x∈ (0,∞), t > 0
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u(x, 0)= f(x), ut(x, 0)= g(x) for x∈R. u(0, t)= 0 for t> 0 with the assumption that f(0) =0.

x

t

Figure 1.3. Domain of dependence.

The dependency on ICs outside of the domain is solved by the method of reflection. Extend u to all of
R, say ũ.

ũ(x, t)=
1

2

[

f̃ (x+ c t)+ f̃ (x− c t)+
1

c

∫

x−ct

x+ct

g̃(y)dy

]

.

ũ(0, t)=
1

2

[

f̃ (c t)+ f̃ (c t) +
1

c

∫

ct

ct

g̃(y)dy

]

.

Choose odd extension:

ũ(x, t) =

{

u(x, t) x> 0,
−u(− x, t) x< 0.

Similarly for f̃ , g̃ . Then ũ(0, t)= 0= u(0, t). u(x, t)= ũ(x, t) for x> 0.

t

x

Case I: x− c t> 0

Case II: x+ c t < 0

Figure 1.4. Different cases arising for the determination of the domain of dependence.

Case 1: D’Alembert as before.

Case 2:

u(x, t)=
1

2



 f(x+ c t)+ f(c t− x)�
odd ext.

+
1

c

∫

ct−x

x+ct

g(y)dy



.

If g≡ 0, this corresponds to reflection as follows:
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Figure 1.5. Series of snapshots of solutions with g =0.

Initial boundary value problem:

0 L

I

u= β(t)u=α(t)

Figure 1.6. Initial boundary value problem. We can satisfy the parallelogram identity using geometry.

For arbitrary α, β the equation need not have a continuous solution:

B

C

D

A

A′

D ′

C ′

B ′

Figure 1.7. Discontinuous solutions in corners.
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Assume u∈C((0, L]× (0,∞)).

u(B) = α(B),

u(C) = f(C).

u(A) + u(C) = u(B) + u(D). A→D⇒ u(A) → u(D), u(C) = u(B)⇒ limt→0 α(t) = limx→0 f(x). Similarly,

if we want u∈C1, this requires α′(0) = g(0), etc.

1.2 Method of Spherical Means

∂t
2u− c2∆u=0

for all x∈Rn and t > 0 with

u(x, 0) = f(x),

ut(x, 0) = g(x).

If h:Rn→R, let

Mh(x, r) =
1

ωnrn−1

∫

S(x,r)

h(y)dSy

=
1

ωn

∫

|ω |=1

h(x+ rω)dSω.

Assume that h is continuous. Then

1. limr→0Mh(x, r) =h(x) for every x∈Rn.

2. Mh(x, r) is a continuous and even function.

If h∈C2(Rn), then

∆xMh(x, r)=
∂2

∂r2
Mh +

n− 1

r

∂Mh

∂r
.

If you view Mh as a function Mh: R
n × Rn → R which is spherically symmetric, then the above equation

states that the Laplacian in the first n variables equals the Laplacian in the second n. Spherical means of

∂t
2u− c2∆xu= 0.

Then

∂t
2Mu − c2∆xMu = 0

and

∂t
2Mu −

[

∂2

∂r
2Mu

+
n− 1

r

∂Mu

∂r

]

= 0.

1.3 Wave equation in Rn

�u4 utt − c2∆u= 0 ( ∗ )

for x ∈Rn × (0,∞) with u = f and ut = g for x ∈Rn and t = 0. Now do Fourier analysis: If h ∈ L1(Rn),
consider

ĥ(ξ)4 ∫

Rn

e−ixξh(x)dx.

If we take the FT of ( ∗ ), we get

ûtt + c2|ξ |2û = 0

for ξ ∈Rn and t > 0, û(ξ, 0)= f̂ , û(ξ, 0) = ĝ . û(ξ, t)=A cos(c|ξ |t) +B sin(c|ξ |t). Use ICs to find

û(ξ, t) = f̂ (ξ)cos(c|ξ |t)+ ĝ(ξ)
sin(c|ξ |t)
c|ξ |

.

4 Section 1



Analogous caclulation for heat equation:

ut −uxx = 0⇒ ût + |ξ |2û = 0, û(ξ, 0)= f̂

yields û(ξ, t)= e−|ξ|2tf̂ (ξ). Then observe that multiplication becomes convolution.

Observe that

cos(c|ξ |t)= ∂t

(

sin(c|ξ |t)
c|ξ |

)

.

If we could find a k(x, t) such that

sin(c|ξ |t)
c|ξ |

=
1

(2π)n/2

∫

Rn

e−iξ·xk(x, t)dx,

this would lead to a solution formula

u(x, t)=

∫

Rn

k(x− y, t)g(y)dy+ ∂t

∫

Rn

k(x− y, t)f(y)dy.

Suppose n= 1, we know that our solution formula must coincide with D’Alembert’s formula

u(x, t)=
1

2

[

f(x+ c t)+ f(x− c t)+
1

c

∫

x−ct

x+ct

g(y)dy

]

.

Here

k(x, t) =
1

2c
1{|x|6ct},

∂tk(x, t) =
1

2

[

δ{x=ct}+ δ{x=−ct}

]

.

Solution formula for n= 3:

Theorem 1.1. u∈C∞(R3×R) is a solution to the wave equation with C∞ initial data f, g if and only if

u(x, t)=

∫

−
S(x,ct)

[t g(y)+ f(y)+Df(y)(y− x)]dSy.

Here,

k(x, t) =
1

4πc2t
· dSy |

|x|=ct

= t · uniform measure on {|x|= c t}.

t

(x, t)

x

Figure 1.8.
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1.4 Method of spherical means

Definition 1.2. Suppose h:Rn→R is continuous. Define Mh:Rn×R→R by

Mh(x, r)=

∫

−
S(x,r)

h(y)dSy =
1

ωn

∫

|ω�1

h(x+ rω) · dω.

Notice that

lim
r→0

Mh(x, r) =h(x)

if h is continuous.

Darboux’s equation: Suppose h∈C2(Rn). Then

∆xMh(x) =
∂2

∂r
Mh +

n− 1

r
·
∂Mh

r
.

Proof. Similar to the mean value property for Laplace’s equation.

∫

0

r

∆xMh(x, ρ)ρ
n−1 · dρ =

∫

0

r

∆x
1

ωn

∫

|ω |=1

h(x+ ρω) · dω ρn−1dρ

=

∫

B(0,r)

∆xh(x+ y) · dy=
1

ωn

∫

S(0,r)

∂h

∂ny
(x+ y)dy

(y= rω, dy= rn−1dω) =
1

ωn

∫

S(0,r)

Dh(x+ y) ·ny dy

=
rn−1

ωn

∫

|ω|=1

d

dr
(h(x+ rω) · dω= rn−1∂Mh

∂r
.

Then
∫

0

r

∆xMh(x, ρ)ρ
n−1 · dρ= rn−1 d

dr
Mh.

Differentiate

∆xMhr
n−1 =

d

dr

[

rn−1 ·
dMh

dr

]

= rn−1 ·
d2

dr2
+(n− 1)rn−2dMh

dr
.

Altogether

∆xMh =
∂2Mh

∂r2
+

(n− 1)

r

∂Mh

∂r
. �

Look at spherical means of ( ∗ ):

utt− c2∆u= 0

Assume u∈C2(Rn × (0,∞)). Take spherical means:

Mutt
= (Mu)tt,

which means

∂t
2

∫

−
S(x,r)

u(y, t)dSy =

∫

−
S(x,r)

∂t
2u(y, t)dy,

(Mu)tt = Mutt
.
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And

Mh(∆xu) =
Darboux∂2Mh

∂r2
+ (n− 1)

∂Mh

∂r
.

Therefore, we have

(Mu)tt = c2
[

∂2Mh

∂r2
+ (n− 1)

∂Mh

∂r

]

.

If n= 1, we can solve by D’Alembert. For n= 3:

∂2

∂r2
(rMh) =

∂

∂r

(

r
∂Mh

∂r
+Mh

)

= r
∂2Mh

∂r2
+ 2 ·

∂Mh

∂r
.

So if n= 3, we have

(rMu)tt = c2
∂2

∂r2
(rMh)

This is a 1D wave equation (in r!). Solve for rMh by D’Alembert.

Mh(x, r, t) =
1

2r

[

(r+ c t)Mf(x, r+ c t)+ (r− c t)�
a)

Mf(x, r− c t)

]

+
1

2c r

∫

r−ct

r+ct

r ′Mg(x, r
′)dr ′�

b)

Pass to limit r→ 0 in b)

1

2c r

∫

r−ct

r+ct

r ′Mg(x, r
′)dr ′ =

1

2c r

∫

ct−r

ct+r

r ′Mg(x, r
′)dr ′

Mg is even, rMg is odd. So

lim
r→0

b)=
1

c
· c tMg(x, c t)= tMg(x, c t).

tMg(x, c t) = t

∫

−
|x−y|=ct

g(y)dSy.

Similarly, a): (Mf even in r)

=
1

2
[Mf(x, r+ c t)+Mf(x, c t− r)] +

1

2 r
c t [Mf(x, c t+ r)−Mf(x, c t− r)]

lim
r→0

∗ = Mf(x, c t)+ c t ∂2Mf(x, c t)= ∂t(tMf(x, c t)).

For any ϕ∈C∞(R3) define

(Kt ∗ ϕ)(x)4 t

∫

|x−y |=ct

ϕ(y)dSy.

Then if f , g ∈C∞, our solution to �u= 0 is

u(x, t)= (Kt ∗ g)(x)+ ∂t(Kt ∗ f)(x).

Aside: Check that
∫

|y|=ct

e−iξ·ydSy =
sinc(c t|ξ |)

c|ξ |
.

Remark 1.3. Huygens’ principle:
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Figure 1.9. Huygens’ principle.

We consider data f , g with compact support. Let

Σ(t)= supp(u(x, t))⊂R3,

where obviously

Σ(0)= supp(f)∪ supp(g).

Then Huygens’ principle is stated as

Σ(t)⊂{x: dist(x,Σ(0))= c t}.

Example 1.4. Consider radial data g and f ≡ 0.

u(x, t)= t

∫

−
|x−y |=ct

g(y)dSy.

u(x, t)� 0⇔S(x, c t)∩B(0, ρ)� ∅.

− ρ ρ
x

t

|x|+ c t= ρ

|x| − c t= ρ

Figure 1.10. How radial data g spreads in time.
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Focusing: Assume g= 0, f radial.

u(x, t) = ∂t(tMf(x, c t))=Mf(x, c t) + t ∂tMf(x, c t)

∂tMf(x, c t) = ∂t

(

∫

−
|x−y|=ct

f(y)dSy

)

= ∂t

(

∫

−
|ω|=1

f(x+ c t ω)dω

)

=

∫

−
|ω|=1

Df(x+ c tω) · (c ω)dω

= c

∫

−
|ω|=1

∂f

∂nω
(x+ c tω)dω.

a)

b)

Figure 1.11. a) Spread of data with radial f . b) The sharp dropoff in u(0, t).

u(x, t)=

∫

−
|x−y|=ct

f(y) dSy + c t

∫

−
|x−y|=ct

∂f

∂ny
dSy.

Thus

‖u(x, t)‖∞ 
C‖u(x, 0)‖∞.

More precisely, there exists a sequence u0
ε ∈C∞(Rn) and tε such that

lim
ε↓0

supx |uε(x, tε)|
supx |u0

ε(x)
= +∞.

Contrast with solution in n= 1:

‖S(t)u0‖Lp 6 ‖u0‖Lp, 16 p6∞,

where S(t) is the shift operator. “= ” solution to the wave equation.
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Littman’s Theorem S3(t) = solution operator for wave equation in R3.

sup
f∈Lp(R3)

‖S3(t)u0‖Lp

‖u0‖Lp
= +∞.

1.5 Hadamard’s Method of Descent

Trick: Treat as 3-dimensional wave equation.
Notation: x∈R2, x̃ = (x, x3)∈R3. If h:R2→R, define h̃:R3→R by h̃(x̃) = h̃((x, x3) = h(x). Suppose

u solves ∂t
2u− c2∆xu= 0 for x∈R2 and t > 0 with u(x, 0)= f(x) and ut(x, t)= g(x). Then

∂t
2ũ − c2∆x̃ = 0

ũ(x̃ , 0) = f̃ (x)

ũt(x̃ , 0) = g̃(x)

for x̃ ∈R3, t > 0.

ũ(x̃ , t̃ ) = ∂t(K̃t ∗ f̃ )+ K̃t ∗ g̃ ,

where

=

K̃t ∗ h̃ = t

∫

−
|x̃− ỹ |=ct

h̃(y)dSy

= t

∫

−
|ω̃ |=1

h̃(x+ c t ω̃)d ω̃.

with ω̃ ∈R3 = (ω, ω3) for ω ∈R2. Then

h̃(x̃+ c t ω̃)= h(x+ c t ω).
∫

−
|ω̃ |=1

h(x+ c t ω d ω̃.

ω̃ = (ω, ω3). On |ω̃ |= 1, we have

ω3 =± 1− |ω |2
√

=± 1− (ω1
2 +ω2

2)
√

.

Then
∂ω3

∂ωi
=

−ωi

1− |ω |2
√

for i=1, 2. Thus the Jacobian is

1 +

(

∂ω3

∂ω1

)2

+

(

∂ω3

∂ω2

)2
√

=
1

1− |ω |2
√ .

Thus

t

∫

−
|ω̃ |=1

h(x+ c t ω)dω̃ =
2t

4π

∫

|ω |61

h(x+ c t ω)

1− |ω |2
√ dω1dω2.

2D 3D

Figure 1.12. Domains of dependence, conceptually, for 2D and 3D.
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1.6 Hadamard’s Solution for all odd n > 3

[cf. Evans, 4.3?] n=2k+ 1, k> 1. k= (n− 1)/2, c= 1. The general formula is

u(x, t)= ∂t(Kt ∗ f)+Kt ∗ g

where for any h∈Cc
∞ we have

(Kt ∗ h)(x)=
ωn

πk2k+1

(

1

t
·
∂

∂t

)(n−3)/2
[

tn−2

∫

−
|x−y |=t

h(y)dSy

]

.

Check: If n=3, ωn =4π, so we get our usual formula.
Now, Consider g≡ 0 in utt −∆u= 0, x∈R2k+1, t > 0, u(x, 0)= f(x), ut(x, 0) = 0. Extend u to t < 0 by

u(x,− t)= u(x, t) (which is OK because ∂tu= 0 at t= 0)
Consider for t > 0

v(x, t) 4 1

(4πt)1/2

∫

R

e−s2/4tu(x, s)ds

=

∫

R

k(s, t)u(x, s) ds

Find solution for the heat equation in 1D. Use that ∂tk= ∂s
2k.

∂tv =

∫

R

∂tk u(x, s)ds

=

∫

R

k(s, t)∂s
2u(x, s)ds

=

∫

R

k(s, t)∆xu(x, s)ds= ∆x

∫

R

k(s, t)u(x, s)ds.

∂tv= ∆xv, x∈Rn, t > 0. Also, as t→ 0, v(x, t)→ f(x). Therefore,

v(x, t) =
1

(4πt)n/2

∫

Rn

e−|y|2/4tf(x− y)dy

=
1

(4πt)n/2

∫

0

∞

e−r2/4trn−1

∫

−f(x− rω) · dω dr

=
ωn

(4πt)n/2

∫

0

∞

e−r2/4trn−1Mf(x, r)dr

Change variables using λ= 1/4t and equate ( ∗ ) and (#) (what are ∗ and #?)
∫

0

∞

e−λr2

u(x, r)dr=
ωn

2
·

1

πk

∫

0

∞

e−λr2

λkrn−1Mf(x, r)dr.

Then, use the Laplace transform for h∈L1(R+):

h#(λ)=

∫

0

∞

e−λϕh(p)dϕ.

Basic fact: h# is invertible. Observe that
d

dr
(e−λr2

) =−λe−λr2

.

In particular,
(

−
1

2r
·
d

dr

)k

e−λr2

=λke−λr2

.

Therefore
∫

0

∞

λke−λr2

rn−1Mf(x, r)dr =
(− 1)k

2k

∫

0

∞ ( 1

r
·
d

dr

)k

e−λr2

(r2kMf(x, r))dr

=
1

2k

∫

0

∞

e−λr2

[

r ·

(

1

r
·
d

dr

)k

(r2k−1Mf(x, r))

]

dr.
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Now have Laplace transforms on both sides, use uniqueness of the Laplace transform to find

u(x, t) =
ωn

πk2k+1
t

(

1

t
·
∂

∂t

)k
[

tn−2Mf(x, t)
]

=
ωn

πk2k+1
t

(

1

t
·
∂

∂t

)(n−3)/2
[

tn−2Mf(x, t)
]

2 Distributions

Let U ⊂Rn be open.

Definition 2.1. The set of test functions D(U) is the set of Cc
∞(U) (C∞ with compact support). The

topology on this set is given by ϕk→ ϕ in D(U) iff

a) there is a fixed compact set F ⊂U such that supp ϕk ⊂F for every k

b) supF |∂αϕk − ∂αϕ|→ 0 for every multi-index α.

Definition 2.2. A distribution is a continuous linear functional on D(U). We write L ∈ D ′(U) and (L,
ϕ).

Definition 2.3. [Convergence on D ′] A sequence Lk→
D ′

L iff (Lk, ϕ)→ (L, ϕ) for every test function ϕ.

Example 2.4. Lloc
p (U)4 {f :U→R: f measurable,

∫

U ′
|f |pdx<∞∀U ′⊂⊂U }.

An example of this is U =R and f(x) = ex2

.

We associate to every f ∈Lloc
p (U) a distribution Lf (here: 1 6 p6∞).

(Lf , ϕ)4 ∫

U

f(x)ϕ(x)dx.

Suppose ϕk→
D
ϕ. Need to check

(Lf , ϕk)→ (Lf , ϕ).

Since suppϕk ⊂F ⊂⊂U , we have

∣

∣(Lf , ϕk)− (Lf , ϕ)
∣

∣ =

∣

∣

∣

∣

∫

F

f(x)(ϕk − ϕ(x))dx

∣

∣

∣

∣

6

( ∫

F

|f(x)|dx

)�
bounded

sup
F

|ϕk − ϕ|�
→0

.

If q > p,
∫

F

|f(x)|pdx 6

( ∫

F

1dx

)1−p/q( ∫

F

|f(x)|q
)1/q

.

Thus, Lloc
q (U)⊂Lloc

p (U) for every p6 q. (Note: This is not true for Lp(U).)

Example 2.5. If µ is a Radon measure on U , then we can define

(Lµ, ϕ)=

∫

U

ϕ(x)µ(dx).

Example 2.6. If µ= δy,

(Lµ, ϕ)= ϕ(y).

Definition 2.7. If L is a distribution, we define ∂αL for every multi-index α by

(∂αL, ϕ)4 (− 1)|α|(L, ∂αϕ).
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This definition is motivated through integration by parts, noting that the boundary terms do not matter
since we are on a bounded domain.

Example 2.8. If L is generated by δ0,

(∂αL, ϕ)= (− 1)α∂αϕ(0).

Theorem 2.9. ∂α:D ′→D ′ is continuous. That is, if Lk→
D
L, then ∂αLk→

D
∂αL.

Proof. Fix ϕ∈D(U). Consider

(∂αLk, ϕ) → (∂αL, ϕ)

‖ ‖

(− 1)α(Lk, ∂
αϕ) → (− 1)α(L, ∂αϕ).

�

Definition 2.10. Suppose P is a partial differential operator of order N, that is

P =
∑

|α|6N

cα(x)∂α

with cα∈C∞(U).

Example 2.11. P =∆ is an operator of order 2. P = ∂t−∆. P = ∂t
2− c2∆.

Fundamental solution for ∆:

∆K(x− y)= δy inD ′.

All this means is for every ϕ∈D
∫

U

∆K(x− y)ϕ(x)dx=

∫

U

ϕ(x)δy(dx)= ϕ(y).

Definition 2.12. We say that u solves Pu= 0 in D ′ iff

(

u, P †ϕ
)

= 0

for every test function ϕ. Here, P † is the adjoint operator obtained through integration by parts: If cα(x) =
cα independent of x, then

P †=
∑

|α|6N

(− 1)|α|cα∂
α.

Example 2.13. P = ∂t−D⇒P †=− ∂t−∆.

Example 2.14. More nontrivial examples of distributions:

1. Cauchy Principal Value (PV) on R:

(L, v)4 lim
ε→0

∫

|x|>ε

ϕ(x)

(x)
dx.

2. U = (0, 1)

(L, ϕ)=
∑

k=1

∞ (

dk

dxk
ϕ

)(

1

k

)

,

which is well-defined because ϕ has compact support.

Uniform convergence in topology?
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2.1 The Schwartz Class

Definition 2.15. S(Rn) Set ϕ∈C∞(Rn) with rapid decay:

‖ϕ‖α,β4 sup
x

|xα∂β(x)|<∞

for all multiindices α, β. Topology on this class: ϕk→ ϕ on S(Rn) iff ‖ϕk − ϕ‖α,β→ 0 for all α, β.

Example 2.16. If ϕ∈D(Rn) then ϕ∈S(Rn). If ϕk→ ϕ in D(Rn)⇒ ϕk→ ϕ in S(Rn).

Example 2.17. ϕ(x)= e−|x|2 is in S(Rn), but not in D(Rn).

∂βϕ(x) = Pβ(x)�
Polynomial

e−|x|2,

so ‖xα∂βϕ(x)‖L∞(Rn)<∞.

Example 2.18. e−(1+|x|2)ε

∈S(Rn) for every ε> 0.

Example 2.19.
1

(1 + |x|2)N
∈C∞,

but not in S(Rn) for any N . For example,

sup
x

∣

∣

∣

∣

xα

(1+ |x|2)N

∣

∣

∣

∣

=∞

if α= (3N, 0,� , 0).

We can define a metric on S(Rn):

ρ(ϕ, ψ) =
∑

k=0

∞
1

2k

∑

|α|+|β |=k

‖ϕ− ψ‖α,β

1 + ‖ϕ−ψ‖α,β
.

Claim: ϕk→ ϕ in S(Rn)⇔ ρ(ϕk, ϕ)→ 0.

Theorem 2.20. S(Rn) is a complete metric space.

Proof. Arzelà-Ascoli. �

2.2 Fourier Transform

Motivation: For the wave equation, we find formally that

FKt =
sin c|ξ |t
c|ξ |

.

Definition 2.21. The Fourier transform on S(Rn) is given by

(Fϕ)(ξ)=
1

(2π)n/2

∫

Rn

e−ix·ξϕ(x)dx.

For brevity, also let ϕ̂(ξ)= (Fϕ)(ξ).

Theorem 2.22. F is an isomorphism of S(Rn), and FF∗= Id, where

(F∗ϕ)(ξ)= (Fϕ)(− ξ).

2.2.1 Basic Estimates

|ϕ̂(ξ)| 6
1

(2π)n/2

∫

|ϕ(x)|dx

=
1

(2π)n/2

∫

Rn

(1 + |x|)n+1 |ϕ(x)|
(1+ |x|)n+1dx

6 C‖(1 + |x|)n+1‖∞<∞.
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Also,

∂ξ
β
ϕ̂(ξ) =

1

(2π)n/2

∫

Rn

∂ξ
β
e−ix·βϕ(x)dx

=
1

(2π)n/2

∫

Rn

(− i x)βe−ix·βϕ(x)dx

⇒‖∂ξ
β
ϕ̂(ξ)‖L∞ 6 C‖(1+ |x|)n+1xβϕ‖L∞.

Thus show ϕ̂ ∈C∞(Rn):

(− iξ)αϕ̂(ξ) =
1

(2π)n/2

∫

Rn

(− iξ)αe−ix·ξϕ(x)dx

=
1

(2π)n/2

∫

Rn

∂x
α(e−ix·ξ)ϕ(x)dx

=
(− 1)|α|

(2π)n/2

∫

Rn

e−ix·ξ∂x
αϕ(x)dx

⇒‖ξαϕ̂(ξ)‖L∞ 6 C‖(1+ |x|)n+1∂x
αϕ‖L∞.

Combine both estimates to find

‖ϕ̂‖α,β = ‖ξα∂ξ
β
ϕ̂‖L∞ 6 C‖(1+ |x|)n+1xβ∂x

αϕ‖L∞.

Example 2.23. If ϕ(x)= e−|x|2/2. Then ϕ̂(ξ)= e−|ξ|2/2. Fϕ= ϕ.

2.2.2 Symmetries and the Fourier Transform

1. Dilation: (σλϕ)(x)= ϕ(x/λ).

F(ϕ(x/λ))(ξ) =
λn

Rn

∫

Rn

e−ix·ξϕ(x/λ)d(x/λ)=λn(Fϕ)(ξλ).

Thus σλϕ =λnσ1/λϕ̂.

2. Translation τhϕ(x) = ϕ(x−h) for h∈Rn. F(τhϕ)(ξ)= e−ih·ξϕ̂(ξ).

2.2.3 Inversion Formula

For every ϕ∈S(Rn)

ϕ(x)=
1

(2π)n/2

∫

Rn

eix·ξϕ̂(ξ)dξ.

ϕ(x)=F∗ϕ̂ =(RF)ϕ̂, where (Rϕ)(x)= ϕ(−x).

Proof. (of Schwartz’s Theorem) Show F∗Fe−|x|2/2 = e−|x|2/2.

Extend to dilations and translations. Thus find F∗F = Id on S, because it is so on a dense subset. F
is 1-1, F∗ is onto⇒ but F∗=RF , so the claim is proven. �

Theorem 2.24. F defines a continuous linear operator from L1(Rn)→L∞(Rn), with

‖f̂ ‖L∞ 6
1

(2π)n
‖f ‖L1.

Theorem 2.25. F defines an isometry of L2(Rn).

Theorem 2.26. F defines a continuous linear operator from Lp(Rn)→Lp′

(Rn) with 16 p6 2 and

1

p
+

1

p′
= 1.
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Ideas:

• Show S(Rn) dense in Lp(Rn) with 1 6 p<∞.

• Extend F from S to Lp.

Proposition 2.27. Cc
∞(Rn) is dense in S(Rn).

Proof. Take a function

ηN(x)4 {

1 |x|6N − 1,
0 |x|>N + 1.

Given ϕ∈S(Rn), consider ϕN 4 ϕηN.

∂αϕn = ∂α(ϕηN)=
∑

|α′|6|α|

∂α′

ϕ∂α−α′

ηN.

So ‖xβ∂αϕN‖L∞<∞. �

Theorem 2.28. Cc
∞(Rn) is dense in Lp(Rn) for 16 p<∞.

Proof. By Mollification. Choose η ∈Cc
∞(Rn) with supp(η)⊂B(0, 1) and

∫

Rn

η(x)dx=1.

For any n, define ηN(x)=Nnη(Nx). Then
∫

Rn

ηN(x)dx=1.

To show:

f ∗ ηN→
Lp

f

for any f ∈Lp(Rn).
Step 1: Suppose f(x) = 1Q(x) for a rectangle Q. In this case, we know ηN ∗ f = f at any x with

dist(x, ∂Q) > 1/N . Therefore, ηN ∗ f→ f a.e. as N→∞.
∫

Rn

|ηN ∗ f(x)− f(x)|pdx→ 0

by Dominated Convergence.
(Aside: Density of Cc

∞ in S(Rn). (Relation to Proposition 2.27?) Given ϕ ∈ S(Rn), consider ϕN 4
ϕηN. We have ‖ϕN − ϕ‖α,β→ 0 for every α, β. In particular, we have

‖(|x|n+1 +1)(ϕn − ϕ)‖L∞→ 0.

∫

Rn

|ϕn − ϕ|dx =

∫

R

1+ |x|n+1

(1+ x)n+1 |ϕn − ϕ|dx6

( ∫

R

1

1 + |x|n+1dx

)� ?

End aside.)
Step 2: Step functions are dense in Lp(Rn) for 1 6 p<∞.
Step 3: “Maximal inequality” , i.e.

‖f ∗ ηN‖Lp 6C‖f ‖Lp,

which we obtain by Young’s inequality.

‖f ∗ ηN‖
Lp 6 Cp‖ηN‖L1‖f ‖Lp

= Cp‖η‖L1‖f ‖Lp,

where the constant depends on η, but not on N .
Step 4: Suppose f ∈Lp(Rn). Pick g to be a step function such that ‖f − g‖Lp<ε for 1 6 p<∞. Then

‖f ∗ ηN − f ‖Lp 6 ‖f ∗ ηN − g ∗ ηN‖Lp + ‖g ∗ ηN − g‖Lp + ‖f − g‖Lp

6 (Cp‖η‖L1 + 1)‖f − g‖Lp + ‖g ∗ ηN − g‖Lp.

�
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Onwards to prove the L2 isometry, we define

(f , g)
L2(Rn)

4 ∫

Rn

f(x)g(x)dx.

Proposition 2.29. (Plancherel) Suppose f , g ∈S(Rn). Then

(Ff ,Fg)
L2(Rn)

= (f , g)
L2(Rn)

.

Proof.

(Ff ,Fg)
L2(Rn)

=
Definition

∫

Rn

f̂ (ξ)ĝ(ξ)dξ

=

∫

Rn

ḡ (x)

(

1

(2π)n/2

∫

Rn

eix·ξf̄ (ξ)dξ

)

dx

=

∫

Rn

f(x)ḡ (x)dx.

�

Definition 2.30. F :L1(Rn)→ Ċ (Rn) is the extension of F :S(Rn)→S(Rn) to L1(Rn), where

Ċ (Rn)4 {h:Rn→R such that h(x)→ 0 as |x|→∞}.

Proposition 2.31. This extension is well-defined.

Proof. Suppose

ϕk →
L1

f ,

ψk →
L1

f.

Then ‖Fϕk −Fψk‖→ 0:

|(ϕ̂k − ψ̂k)(ξ)| =
1

(2π)n/2

∣

∣

∣

∣

∫

Rn

e−ix·ξ(ϕk − ψk)

∣

∣

∣

∣

6
1

(2π)n/2
‖ϕk − ψk‖L1

6
1

(2π)n/2
[‖ϕk − f ‖L1 + ‖f − ψk‖L1]→ 0.

�

Warning: There is something to be proved for L2(Rn) because

1

(2π)n/2

∫

e−ix·ξf(x)dx

is not defined when f ∈L2(Rn). However Ff in the sense of L2-lim FϕN where ϕN ∈S(Rn)→ f in L2.
We had proven

∥

∥

∥
f̂
∥

∥

∥

L∞

6
1

(2π)n/2
‖f ‖

L1,

∥

∥

∥
f̂
∥

∥

∥

L2

= ‖f ‖
L2.

Definition 2.32. A linear operator K:S(Rn)→S(Rn) is of type (r, s) if

‖Kϕ‖
Ls 6C(r, s)‖ϕ‖

Lr.

Example 2.33. F is of type (1,∞) and (2, 2).
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Theorem 2.34. (Riesz-Thorin Convexity Theorem) Suppose K is of type (ri, si) for i = 0, 1. Then
K is of type (r, s) where

1

r
=

θ

r0
+

1− θ

r1
,

1

s
=

θ

s0
+

1− θ

s1

for 06 θ6 1. Moreover,

C(r, s)6C0
θC1

1−θ.

Proof. Yosida/Hadamard’s 3-circle theorem (maximum principle). �

Corollary 2.35. F :S→S has a unique extension F :Lp(Rn)→Lp′

(Rn) where 1 6 p6 2 and 1/p′ + 1/p=
1.

Summary:

• F :S→S isomorphism

• F :L1→ Ċ (either by extension or directly) not an isomorphism

• F :L2→L2 (by extension) isomorphism

• F :Lp→Lp′

(by interpolation)

Definition 2.36. S ′(Rn) is the space of continuous linear functionals on S(Rn), called the space of tem-
pered distributions. Its topology is given by Lk→L in S ′ iff

(Lk, ϕ)→ (L, ϕ)

for all ϕ∈S.

Altogether, we have D⊂S ⊂S ′⊂D ′.

Example 2.37. 1. Suppose f ∈L1. Define a tempered distribution

(f , ϕ)4 ∫

Rn

fϕ,

which is obviously continuous.

2. (A non-example) If f(x) = e|x|
2

, then f ∈ Lloc
1 , so it defines a distribution, but not a tempered dis-

tribution.

3. f(x) = e−|x|2∈S(Rn), but
∫

Rn

fϕ=∞.

4. If f is such that
∥

∥(1 + |x|2)−Mf
∥

∥

L1
<∞

for some M , then f ∈S ′.

Proof. |(f , ϕ)|=

∣

∣

∣

∣

∫

fϕ

∣

∣

∣

∣

6
∥

∥(1 + |x|2)−Mf
∥

∥

L1

∥

∥(1 + |x|2)Mϕ
∥

∥

L∞
.

�

Proposition 2.38. Suppose L∈S ′. Then there exists C > 0, N ∈N such that

|(L, ϕ)|6C‖ϕ‖
N

(2.1)

for every ϕ∈S(Rn), where

‖ϕ‖
N

=
∑

|α|,|β |6N

∥

∥xα∂βϕ
∥

∥

L∞
.
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Corollary 2.39. A distribution L ∈D ′ defines a tempered distribution ⇔ there exist c, N such that ( 2.1)
holds for ϕ∈S(Rn).

Proof. Suppose (2.1) is not true. Then there exist ϕk, Nk such that

|(L, ϕk)|>k‖ϕk‖Nk
.

Let

ψk4 ϕk

‖ϕk‖Nk

·
1

k
.

Then

‖ψk‖Nk
=

1

k
→ 0.

But |(L, ψk)|> 1. But ψk→ 0 in S(Rn)⇒L not continuous. �

Definition 2.40. If K: S → S is linear, continuous, then the transpose of K is the linear operator such
that for every L∈S ′

(L,Kϕ) =
(

KtL, ϕ
)

.

Theorem 2.41. a) S(Rn) is dense in S ′(Rn).

b) D(Rn) is dense in D ′(Rn).

Proof. Mollification, but first verify some properties. Fix η ∈D(Rn),
∫

Rn

η= 1.

Let ηm(x) =mnη(mx). We want to say ηm ∗L is a C∞ function for a distribution L.

Definition 2.42. L∈D ′(Rn), η ∈D(Rn), η ∗L is the distribution defined by

(η ∗L, ϕ)= (L, (Rη) ∗ ϕ),

where Rη(x) = η(− x). If L were a function f,

(η ∗L, ϕ) =

∫

Rn

(η ∗ f)(x)ϕ(x)dx

=

∫

Rn

∫

Rn

η(x− y)f(y)dyϕ(x)dx

=

∫

Rn

( ∫

Rn

η(x− y)ϕ(x)dx

)

f(y)

=

∫

Rn

(Rη ∗ ϕ)(y)f(y)dy.

Theorem 2.43. D(Rn) is dense in D ′(Rn). That is, if f is a distribution, then there exists a sequence of
Lk ∈D such that Lk→L in D ′.

Proof. By 1) Mollification and 2) Truncation.

Proposition 2.44. L ∗ η is a C∞ function. More precisely, L ∗ η is equivalent to the distribution defined
by the C∞ function

γ(x)= (L, τx(Rη)),

where τxf(y)= f(y−x).

Proof. 1) γ:Rn→R is clear.
2) γ is continuous: If xk→x, then γ(xk)→ γ(x). Check

γ(xk)= (L, τxk
(Rη)).
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And τxk
(Rη)→ τx(Rη) in D.

• We can choose F s.t. supp(τxk
(Rη))⊂F for all k.

• Rη(y− xk)→Rη(y− x),

• ∂α(Rη)(y− xk)→ ∂αRη(y− x),

where the last two properties hold uniformly on F .
3) γ ∈C1: Use finite differences. Consider

γ(x+ h ej)− γ(x)

h
=

(

L,
τx+hej

(Rη)− τx(Rη)

h

)

.

Observe that
1

h

[

τx+hej
(Rη)− τx(Rη)

]

→ τx(∂xj
Rη)

in D.
4) γ ∈C∞: Induction.

5) Show that L ∗ η=
D ′

γ. That is

(L ∗ η, ϕ) =
Def

(L,Rη ∗ ϕ)=
?
∫

Rn

γ(x)ϕ(x)dx.

∫

Rn

γ(x)ϕ(x)dx = lim
h→0

h−n
∑

y∈hZn

γ(y)ϕ(y)

= lim
h→0

h−n
∑

y∈hZn

(L, τy(Rη))ϕ(y)

= lim
h→0

(

L, h−n
∑

y∈hZn

τy(Rη)ϕ(y)

)

.

Show that the Riemann sum

h−n
∑

y∈hZn

τy(Rη)ϕ(y)→Rη ∗ ϕ

in D. �

Operations with ∗ :

1. η ∗L4 L ∗ η.

2. ∂α(L ∗ η)=
D ′

∂αL ∗ η=
D ′

L ∗ ∂αη.

Proof of Theorem: Fix η ∈D(Rn) with
∫

Rn η(x)dx= 1. Let ηm(x) =mnη(mx). Then

∫

Rn

ηm(x)dx= 1.

We know from our proposition from that ηm ∗L is C∞. Consider the cutoff function

χm(x)4 {

1 |x|6m,

0 |x|>m.

Consider Lm = χm(ηm ∗L). Lm∈D(Rn).

∂α(χmγm)=
∑

(

α

β

)

∂α−βχm∂
α−βγm

Claim: Lm→L in D ′.

(Lm, ϕ) = (χm(ηm ∗L), ϕ) = (ηm ∗L, χmϕ)

=
Def

(L, (Rηm) ∗ (χmϕ)).

Finally, show

(Rηm) ∗ ϕ =
m large

(Rηm) ∗ χmϕ → ϕ inD ′.

� �
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Definition 2.45. Suppose K:S→S is linear. We define Kt:S ′→S ′ as the linear operator

(

KtL, ϕ
)4 (L,Kϕ).

Proposition 2.46. Suppose K: S → S is linear and continuous. Suppose that Kt|S is continuous. Then,
there exists a unique, continuous extension of Kt to S ′.

Corollary 2.47. F :S ′→S ′ is continuous.

Let’s go back to PDE now. Examples:

1. Fδ= 1/(2π)n/2.

2. Let 0< β <n and Cβ =Γ((n− β)/2). Then F(Cβ |x|−β) =Cn−β |x|
−(n−β). Why we care:

∆u= δ0. In Fourier space:

− |ξ |2û =
1

(2π)n/2

⇒ û =
− 1

(2π)n/2
|ξ |−2.

⇒F−1û =
− 1

(2π)n/2

Cn−2

C2
|x|2−n.

Prove (1) and (2) by testing against Gaussians.

2.3 Duhamel’s Principle

Consider constant coefficient linear PDE

∂t
mu+ ∂t

m−1

(

∑

|α|=?1

c1,α∂
α

)

u+ ∂t
m−2

(

∑

|α|=?2

c2,α∂
α

)

u+� +
∑

|α|6m

cm,α∂
αu= 0.

Here u:Rn ×Rn→R, m is the order of the equation, cm,α∈R.
Shorthand P (D, τ )u=0. Herre D= (∂α1

,� , ∂αn
) and τ = ∂t. Differentiation operators

P (D, τ )= τm + τm−1P1(D) +� +Pm(D).

Pk(D)= polynomial in D of order 6 k.
General Problem:

P (D, τ )u=ω

for x∈Rn, t > 0 with

u = f0

∂tu= τu = f1
 

∂t

m−1u= τm−1u = fm−1

at t= 0.
Standard Problem:

P (D, τ )u= 0

with

u = 0

∂tu= τu = 0
 

∂t

m−1u= τm−1u = g
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at t = 0. (Initial conditions). Solution of General Problem from Standard Problem. First, suppose ω � 0
and f0 = f1 =� = fm−1 =0.

Consider the solution to a family of standard problems:

P (D, τ )U(x, t, s) = 0 (s6 t)

τm−1U(x, t, s) = ω(x, s) (t= s)

τkU(x, t, , s) = 0 (t= s, 0 6 k6m− 2)

Consider

u(x, t) =

∫

0

t

U(x, t, s)ds.

This gives us

P (D, z)u(x, t) =

∫

0

t

P (D, τ )U(x, t, s)ds+ (τm−1 + τm−2P1(D) +� +Pn−1(D))U(x, t, t)

= 0+ω(x, t)+ 0

as desired. Similarly, getting rid of non-standard initial conditions involves consideration of

P (D, τ ) = 0

u = f0

τu = f1
 

τm−1u = fm−1

Let ug dentote the solution to the standard problem. Consider

u = ufm−1
+ (τ + P1(D))ufm−2

+ (τ2 + P1(D)τ + P2(D))ufm−3
+ � + (τm−1 + P1(D)τm−2 + � +

Pm−1(D))uf0
.

Then

P (D, τ )u = P (D, τ )ufm−1
+ (τ +P1(D))P (D, τ )ufm−2

+�
= 0

since P (D, τ )ufk
= 0 for 0 6 k6m− 1. We need to check the initial conditions: At t= 0, τ lufk

= 0, 0 6 l6

m− 2. Thus, all terms except the last one are 0. The last term is
[

τm−1 +P1(D)τm−2 +� +Pn−1(D)
]

uf0
= τm−1uf0

+ time derivatives of order 6m− 2 ( =0)= f0.

Henceforth, only consider the standard problem

P (D, τ ) = 0,

τku(x, 0) = 0 (06 k6m− 2),

τm−1u(x, 0) = g.

Solve by Fourier analysis:

û(ξ, t) =
1

(2π)n/2

∫

Rn

e−ix·ξu(x, t)dx.

Fourier transform of the above standard problem yields

P (iξ , τ)û = 0,

τkû(ξ, τ) = 0,

τm−1û(ξ, 0) = ĝ(ξ)

Fix ξ and suppose Z(ξ, t) denotes the solution t0 to the ODE

P (iξ, τ)Z(ξ, t) =0
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with initial conditions

τkZ(ξ, 0)= 0 (0 6 k6m− 1), τm−1Z(ξ, 0)= 1.

This is a constant coefficients ODE, an analytic solution for it exists for all t. Clearly, by linearity

û(ξ, t)=Z(ξ, t)ĝ(ξ)

and

u(x, t)=
1

(2π)n/2

∫

Rn

eix·ξZ(ξ, t)ĝ(ξ)dξ.

We want u∈Cm (“classical solution”). Problem: Need to show that Z(ξ, t) does not grow too fast (=faster
than a polynomial) in ξ. Formally,

∂ατku(x, t) =
1

(2π)n/2

∫

Rn

eix·ξ(iξ)ατkZ(ξ, t)ĝ(ξ)dξ.

Key estimate: For any T > 0, there exists CT , N such that

max
06k6m

sup
06τ6T

sup
ξ∈Rn

∣

∣τkZ(ξ, t)
∣

∣6CT(1+ |ξ |)N

Definition 2.48. The above standard problem is called hyperbolic if there exists a Cm solution for every
g ∈S(Rn).

Theorem 2.49. (Gårding’s criterion) The problem is hyperbolic iff ∃c ∈R such that P (iξ, λ) � 0 for all
ξ ∈Rn and λ with Im(λ)6− c.

Re λ

Imλ

Γ for fixed ξ

Imλ=− c

No roots here

Figure 2.1. Nice cartoon.

Proof. Cartoon: Typical solutions to P (iξ, τ)Z = 0 are of the form Z = eiλt with P (iξ , iλ) = 0. We will
only prove “⇐ ”: We’ll prove the estimate

max
06k6m

sup
06τ6T

sup
ξ∈Rn

|Z(ξ, t)|6CT(1 + |ξ |)N
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assuming P (iξ, iλ)� 0 for Im(λ)>− c. Formula for Z(ξ, t):

Z(ξ, t)=
1

2π

∫

Γ

eiλt

P (iξ , iλ)
dλ.

Claim: P (iξ, τ)Z= 0 (t > 0), τkZ= 0 (0 6 k6m− 2, t= 0), τm−1Z = 1 (t= 0).

τkZ =
1

2π

∫

Γ

(iλ)keiλt

P (iξ, iλ)
dλ.

Therefore

P (iξ, τ)Z =
1

2π

∫

Γ

P (iξ , iλ)
eiλt

P (iξ, iλ)
dλ

=
1

2π

∫

Γ

eiλtdλ= 0

by Cauchy’s Theorem. Suppose 06 k6m− 2. Let t= 0⇒ eiλt =1.

τkZ=
1

2π

∫

Γ

(iλ)k

(iλ)n
(

1 + o
(

1

|λ|

))dλ.

Suppose that Γ is the circle of radius R≫ 1 with center at 0. Then

|τkZ | 6
1

2π

Rk

Rn

(

1 + o
(

1

R

)) · 2πR=Rk−(m−1)

(

1 + o

(

1

R

))

→ 0

if k6m− 2. Thus, τkZ= 0 for any Γ enclosing all roots.

When k=m− 1, we have

τm−1Z =
1

2πi

∫

Γ

1

λ





1+ o
(

1

λ

)�
analytic





dλ= 1.

Step 2) Claim: Any root of P (iξ, iλ) staisfies

|λ(ξ)|6M(1 + |ξ |).

Estimate growth of roots: Suppose λ solves P (iξ, iλ)= 0. Then

(iλ)n +(iλ)n−1P1(iξ) +� +Pm(iξ)= 0.

Thus,

− (iλ)m =(iλ)m−1P1(iξ) + (iλ)m−2P2(iξ) +� +Pm(iξ).

Observe that

|Pk(iξ)|6Ck(1+ |ξ |)k (2.2)

for every k, 1 6 k6m. Therefore,

|λ|m 6C
∑

k=1

m

|λ|m−k(1 + |ξ |)k.

Claim: this implies:

|λ|6 (1+C)(1+ |ξ |).

Let

θ=
|λ|

1+ |ξ |
.

Then (2.2) implies

θm 6C
∑

k=1

m

θk⇒ θm 6
θm− 1

θ− 1
(θ� 1).
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Cases:

• θ6 1⇔|λ|6 1+ |ξ |⇒ nothing to prove.

• θ > 1⇒ θm 6Cθm/(θ− 1)⇒ θ6 1 +C⇒|λ|6 (1+C)(1 + |ξ |).

Step 3. Claim:

|τkZ(ξ, t)|6Mme(1+c)t(1+ |ξ |)k.

Here M=bound from step 2, m=order of P (D, τ ), c=constant in Gårding’s criterion.

− c

Reλ

Imλ

Figure 2.2. Sketch.

Fix ξ ∈Rn. Let Γ=union of circles of unit radius abound each λk. (wlog, no λk on the boundary, else
consider circles of radius 1 + ε)

P (iξ, iλ)= im
∏

k=1

m

(λ−λk(ξ)).

On Γ we have |λ−λk(ξ)|> 1 for all λ. Therefore |P (iξ, iλ)|> 1 on Γ.

τkZ(ξ, t)=
1

2π

∫

Γ

(iλ)keiλt

P (iξ, iλ)
dλ

Bound on |eiλt| on Γ. we have Im(λ)>− c− 1 by Gårding’s assumption.

|eiλt|= e−(Imλ)t 6 e(1+c)t.

Thus,

|τkZ(ξ, t)| 6
1

2π

(

sup
λ∈Γ

|λ|k
)

e(1+c)t (2πm)�
length of Γ

6 me(1+c)t

(

sup
l

(|λl(ξ)|+1)

)k

6 me(1+c)t(M(1+ |ξ |)+ 1)
k

since each λ(ξ) 6M(1+ |ξ |).

|τkZ(ξ, t)|6CMkme(1+c)t(1+ |ξ |)k.
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Step 4. This implies that

6

|∂ατku(x, t)| 6
1

(2π)n/2

∫

Rn

|τkZ(ξ, t)| |ξ |αĝ(ξ)dξ.

6
CMke(1+c)t

(2π)n/2

∫

Rn

(1 + |ξ |)k|ξ |α|ĝ |(ξ)dξ <∞

because ĝ ∈S. �

Theorem 2.50. Assume P (D, τ ) satisfies Gårding’s criterion. Then there exist C∞ solutions for all g ∈
S(Rn).

For finite regularity, we only need check for k+ |α|6m. We need

(1+ |ξ |)m|ĝ(ξ)| ∈L1(Rn).

Need for every ε> 0

(1 + |ξ |)m|ĝ(ξ)|6
Cε

(1 + |ξ |n+ε)
or

∣

∣

∣
ĝ(ξ)|6Cε(1 + |ξ |)−(m+n)−ε.

m=order of P (D, τ )=regularity of solution, n=space dimension.

Example 2.51. ∂t
2−∆u= 0. (iλ)2− (i|ξ |)2 = 0, λ=± |ξ |→ Growth estimate can’t be improved.

Gårding stated wrongly!!!
Question: Is a hyperbolic equation hyperbolic in the sense that it is “wavelike” (meaning if g has com-

pact support, u(x, t) has compact support (in x) for each t > 0.

Theorem 2.52. (Paley-Wiener) Suppose g ∈L1(Rn) with compact support. Then ĝ :Cn→Cn is entire.

Proof. ĝ(ξ)=
1

(2π)n/2

∫

B(0,R)

e−ix·ξg(x)dx.

Formally differentiate once, then C∞ follows.
�

Theorem 2.53. Assume Gårding’s criterion (restriction on roots). Then there is a C∞ solution to the
standard problem for g ∈S(Rn).

Example 2.54.

P (D, τ )u = utt −∆u

P (iξ , iλ) = −λ2 + |ξ |2

The roots are λ=± |ξ |, which satisfies (GC).

Example 2.55. Suppose P (iξ, iλ) is homogeneous

P (i sξ, i s λ)= snP (iξ, iλ)

for every s∈R. (GC) holds⇔ all roots are real–otherwise, we can scale them out as far as we need to.

In general, we can write

P (iξ, iλ)= pm−1(iξ, iλ)+� + p0(iξ, iλ),

where pk is homogeneous of degree k.
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Corollary 2.56. Suppose P (D, τ ) is hyperbolic. Then all roots of pm(iξ, iλ) are real for every ξ ∈Rn.

Corollary 2.57. Suppose the roots of pm are real and distinct for all ξ ∈ Rn. Then P is hyperbolic.
(m=order of P).

Proof. write ξ= ρη, λ= ρµ. where |η |= 1, ρ= |ξ |.

P (iξ , iλ)= 0⇔ pm(iη, iµ)+
1

ρ
pm−1(iη, iµ)+� +

1

ρn
p0(iη, iµ) =0.

Re(µ)

Im(µ)

µk
∞

Figure 2.3. Illustrative Sketch. :-)

Use the Implicit Function Theorem to deduce that there exists δ > 0 such that each µk
∞ perturbs µk(p)

for 1/ρ6 δ0.

|µk
∞− µk(p)|6

C

ρ
.

We want f(x(ε), ε) = 0. We know f(x0, 0) = 0. The distinctness is guaranteed by the derivative condi-
tion. �

Definition 2.58. P (D, τ ) is called strictly hyperbolic if all λ(ξ) are real and distinct. Also say that
pm(D, τ ) is strictly hyperbolic if roots are real and distinct.

Example 2.59. utt −∆u=0 is strictly hyperbolic.

Example 2.60. (Telegraph equation) utt − ∆u + k u = 0 with k ∈R. By Corollary 2.57, this equation is
hyperbolic.

Theorem 2.61. Suppose pm(D, τ ) is strictly hyperbolic. Suppose g ∈ S(Rn) and supp g ⊂ B(0, a). Then
there exists a c∗ such that

supp u⊂B(0, a+ c∗t).

c∗ is the largest wave speed.

Proof. (Main ingredients)

• Paley-Wiener Theorem: Suppose g ∈ L1(Rn) and supp g ⊂ B(0, a). Then ĝ extends to an entire
function Cn→Cn and

|ĝ(ξ+ iζ)|6
‖g‖

L1

(2π)n/2
ea|ζ |.

(Proof see below)

• Heuristic:

◦ Decay in f⇒ regularity of f̂ .

◦ Regularity of f⇒ decay of f̂ .

• Estimates of Im(λ) for complex ξ+ iζ. Use strict hyperbolicity to show

Im(λk) 6 c∗(1 + |ζ |)

for all ζ ∈Rn.
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• Plug into

Z(iξ, t)=
1

2π

∫

Γ

eiλt

P (iξ− ζ , λ)
dλ.

• Use

u(x, t)=
1

(2π)n/2

∫

Rn

e−ix·(ξ+iζ)Z(ξ+ iζ , τ)g(ξ)dξ.

�

Proof. (of Paley-Wiener)

|ĝ (ξ+ iζ)| =

∣

∣

∣

∣

∣

1

(2π)n/2

∫

B(0,a)

e−ix·(ξ+iζ)g(x)dx

∣

∣

∣

∣

∣

6
1

(2π)n/2

∫

B(0,a)

|e−ix·(ξ+iζ)| |g(x)|dx

6
1

(2π)n/2
ea|ζ |

∫

B(0,a)

|g(x)|dx.

�
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