1-D WAVE EQUATION 1

1 1-D Wave Equation
Uty = CPUpy =0 (1.1)

for z € R and t >0 with u(z,0) = f(x), us(z,0) = g(z). D’Alembert’s formula:

1 1 x+ct
wz, ) =5 f("E*CtHf(”C—CfHE/ g(y)dy}

Geometric identity: T—ct

u(A) +u(C) =u(B)+u(D). (1.2)

t
A
D
C

Figure 1.1. Sketch for the geometric identity.

We have: C? solution of (1.1) < (1.2) for every characteristic parallogram.

1.1 Boundary conditions

Good and bad boundary conditions:
0=wus+ cuy,

supposing ¢ > 0.

T

bad (cannot prescribe values at two points) good

Figure 1.2. Good and bad boundary conditions for the transport equation.

Example:
Uy — gy =0, x€(0,00),t>0
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w(z,0)= f(z), w(zx,0)=g(z) for z € R. u(0,t) =0 for t >0 with the assumption that f(0)=0.

.

Figure 1.3. Domain of dependence.

The dependency on ICs outside of the domain is solved by the method of reflection. Extend u to all of
R, say u.

d(m,t)z%[f(x—i—ct)—i—f(;v—ct)—i—%/:t:t g(y)dy]
a0.0=3] e+ fen+1 [" atay]

Choose odd extension:
u(zx,t x>0,
—u(—z,t) z<0.

ﬂ(x,t)_{

Similarly for f, §. Then 4(0,t) =0=wu(0,t). u(z,t)=d(z,t) for z > 0.
Case II: x+ct <0

Case: z —ct>0

Figure 1.4. Different cases arising for the determination of the domain of dependence.

Case 1: D’Alembert as before.
Case 2:
x+ct

u(e, ) =g| S +en)+ flet—a)+ 1 [ gty

t_
odd ext. e

If g=0, this corresponds to reflection as follows:
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Figure 1.5. Series of snapshots of solutions with g =0.

Initial boundary value problem:

Figure 1.6. Initial boundary value problem. We can satisfy the parallelogram identity using geometry.

For arbitrary «, 8 the equation need not have a continuous solution:

A/

D/

B/

c’ C

Figure 1.7. Discontinuous solutions in corners.
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Assume u € C((0, L] x (0, 00)).
u(B) = «(B),
u(C) = f(O).

u(A) +u(C)=u(B) + u(D). A— D= u(A) - u(D), u(C)=u(B) = lim;_o a(t) =lim,_¢ f(x). Similarly,
if we want u € C'!, this requires o/(0) = g(0), etc.

1.2 Method of Spherical Means
Ot — Au=0
for all z € R™ and t >0 with
u(@,0) = f(),
u(z,0) = g(x).
If h: R"— 1R, let

1
My(z,r) = W/g( )h(y)dSy
_ L h(z+ rw)dS,.
Wn Jijw|=1

Assume that h is continuous. Then
1. lim, o Mp(z,r) =h(zx) for every z € R™
2. Mp(z,r) is a continuous and even function.

If h e C*(R"), then

0? —10M
Ath(x,T):WMh_FnT ) h.

If you view M} as a function Mjp: R™ x R™ — R which is spherically symmetric, then the above equation
states that the Laplacian in the first n variables equals the Laplacian in the second n. Spherical means of

Ot — 2ALu=0.

Then

M, — A M, =0
and

9? n—10M
200 u | _
at Mu 63Mu + ” or 0.
1.3 Wave equation in R"
Ou:=u — 2Au=0 (%)

for z € R™ x (0, 00) with u = f and u; = g for x € R" and ¢ = 0. Now do Fourier analysis: If h € L'(R"),
consider

h({)::/ e h(x)d.
If we take the FT of (x), we get h
Gt +c2|EPa =0
for £€R™ and t>0, 4(£,0)= f, 0(£,0)=g. 4(&,t) = Acos(c|E|t) + Bsin(c|€]t). Use ICs to find

i(6.0) = F(Oeos(elele) +g(¢) LD,



1-D WAVE EQUATION 5

Analogous caclulation for heat equation:

Ut_umm202>dt+|§|2d:07 u(€,0)=f
yields 4(€,t) =e 1€t f(£). Then observe that multiplication becomes convolution.

Observe that

cos(c|€]t) _at(%).
If we could find a k(x,t) such that

sin(c|§|t): 1 —iE T 2
C|§| (2Tr)n/2/n€ k( ;t)d )

this would lead to a solution formula

u(%t):/n k(w—yat)g(y)der@t/ k(x —y,t) f(y)dy.

n

Suppose n =1, we know that our solution formula must coincide with D’Alembert’s formula

u(x,t)z%[f(;v—i-ct)—i—f(:c—ct)—i—%/:ﬂt g(y)dy}.

—ct
Here

1
k(z,t) = 5 1{al<ety

1
atk(xa t) = 5[5{£E:Ct} + 5{mzfct}} .

Solution formula for n=3:

Theorem 1.1. u € C®°(R3 x R) is a solution to the wave equation with C* initial data f, g if and only if

u(:v,t)=][ [tg(y)+ f(y) +Df(y)(y —x)]dS,.
S(z,ct)

Here,
1

k(x,t) = drcct

dS, | =t-uniform measure on {|z|=ct}.
|z|=ct

Figure 1.8.



1.4 Method of spherical means

Definition 1.2. Suppose h:IR™— R is continuous. Define Mp:R" xR — R by

Mz, r) = ][S( Hwasy= g [ her) o

Wn, |lwE1
Notice that
lim Mp(x,r)=h(x)
r—0

if h is continuous.

Darbouz’s equation: Suppose h € C?(R™). Then

2 _
Ath(ac) Za—Mh—i- n—1 8Mh.

or r r

Proof. Similar to the mean value property for Laplace’s equation.

/ AgMy(z, p)p"~"-dp = Ami/ h(z + pw) - dw p™ ~dp
0 0 Wn Jw|=1
1 oh
— Agh(z+y) -dy=— =—(z+y)dy
/B(O,r) wn Js(0,r) Ony
(y=rw,dy=r""tdw) = L Dh(z+y) -nydy
Wn J5(0,r)
. rr—1 d o n,laMh
= /w|—1 g trw) - do=r"iog
Then
/ A My(z, p)p" - dp=r""1—M,
0
Differentiate
_ d _, dMy
n—1 _ “ |, .n-1
A Mpyr dr[r Ir }
d? dMyp,
— n—-1, % _ n—2
" d7’2+( 1) dr
Altogether

T o2 roor
Look at spherical means of ( *):

U — AU =0
Assume u € C?(R"™ x (0,00)). Take spherical means:
My, = (Mu)te,

which means

83][ u(y,t)dSy ][ Ofu(y,t)dy,
S(z,r) S(z,r)
(Mu)tt = M

Ut

SECTION 1
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And
Darboux 92 My, oM,
Mp(Azu) = 52 T (n—1) o
Therefore, we have
0% M, OM}p,
_ 2 _
(Mu)tt—c |: &2 + (n 1) o .

If n=1, we can solve by D’Alembert. For n=3:

8—2(7"M) _ 9 r——+4 M | =r——-+4+2-——
arz" T e or M) a2 ar

So if n =3, we have

2

0
(r M)t = czm(r My,)

This is a 1D wave equation (in 7!). Solve for r M} by D’Alembert.

Mp(z,r,t) = % (r+ct)Ms(z,r+ct)+ (r—ct)Ms(z,r —ct)

——

a)

1 r+4ct , , ,
+ﬁ/r—ct ' My(x,r)dr

b)
Pass to limit » — 0 in b)

1 r+ct 1 ct+r
— r'Mg(x,r)dr’ = — r'Mg(x,r")dr’

2cr Jo_ot 2¢r Jor—p

My, is even, r M is odd. So
lim b) :l'CtMg(I, ct)=t My(z,ct).
c

r—0

tMg(x,ct):t][ g(y)dSy.

lz—y|=ct
Similarly, a): (M even in r)

= %[Mf(:t,r—i—ct)—i—Mf(x,ct—r)]—i—%ct[Mf(:E,ct—i—T)—Mf(x,ct—r)]
lim* = My(z,ct)+ctOoMi(x,ct)=0,(t M¢(x,ct)).

r—0

For any ¢ € C*°(RR?) define

(Ko 9)(a) =1 / o(y)dS,.

|z —y|=ct

Then if f, g€ C>, our solution to Ju=0 is

u(z,t) = (Kix g)(x) + 0:(Ki * f)(x).

Aside: Check that

/ R :sinc(ct|§|)'
ly|=ct Y C|§|

Remark 1.3. Huygens’ principle:



Figure 1.9. Huygens’ principle.

We consider data f, g with compact support. Let

%(t) =supp(u(z,t)) CR?,
where obviously

3(0) = supp(f) Usupp(g)-

Then Huygens’ principle is stated as
X(t) C{z: dist(z, X(0)) =ct}.

Example 1.4. Consider radial data g and f=0.
N L
lz—y|=ct

u(x,t) # 0 S(x,ct)NB(0, p) # 0.

. .
S, S ’ .
. .
A A . v
A A . .
M » . .
~ ~ . ’
A A . .
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N N . .
. . T|—cl=p .
. . ‘
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N “ Re .
S S ‘ |x'|’+Ct:p
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. |2 .
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. . . .
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Figure 1.10. How radial data g spreads in time.
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Focusing: Assume g=0, f radial.

w(z,t) = Ot Mys(z,ct))=Ms(x,ct)+t0Ms(x,ct)

O M (z,ct) — at<][l » )dSy>

flz+ctw)dw )

(x + ctw)dw.

][ Df(a+ctw)- (cw)dw
.

of
1 One

FS—
oz .

a)__ _ |

| ff((;’f‘

1 C

%

i o

o H —Wr i .

\JW}

' J

Figure 1.11. a) Spread of data with radial f. b) The sharp dropoff in «(0,¢).

u(x,t):][ fly) dSy—Fct][ %dSy.
lz—y|=ct lz—y|=ctY"'y

[u(@, t)lloo £ Clu(z, 0) oo

Thus

More precisely, there exists a sequence ug € C°°(IR") and ¢. such that

i S4Pe |us(z, te)]

=4 00.
€10 supg |ug(z) +

Contrast with solution in n =1:
.S uollLr < [luollr, 1< p<oo,

where S(t) is the shift operator. “=" solution to the wave equation.
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Littman’s Theorem Ss(t) = solution operator for wave equation in R3.

sup M:—f—o@

fELP(R3) l|uoll v

1.5 Hadamard’s Method of Descent
Trick: Treat as 3-dimensional wave equation. B ~ ~

Notation: v € R?, & = (z,x3) € R3. If h: R? - R, define h: R* — R by h(Z) = h((x,x3) = h(z). Suppose
u solves 07u — c?A,u=0 for x € R? and ¢ > 0 with u(x,0) = f(z) and u(z,t) = g(z). Then

8?ﬂ—C2Ai =0
i(#,0) = f(x)
u(z,0) = g(z)

for £ €R3, t>0.
’lI(.’f,{) :at(Kt* f)+Kt*§7
where

Rysh = t ][ I (y)dS,
|Z—g

|=ct

t][ h(z+ctd)da.
5 |=1

with @ € R® = (w,ws3) for w € R% Then

h(Z+ctw)=h(z+ctw).

][ h(z+ctwdd.

o)=1

@ =(w,ws). On |[@|=1, we have !
wy=4+/1—|wP=%/1— (W +w3).

Then
(9(4}3 o — W

Ow; /1 —lwl?
for 1=1,2. Thus the Jacobian is ]

dws \* ows \? 1
1+ (—3> - (—3) . S
Owy Ows V1-|wl]?

t][ h(z+ ctw)dw _2 Md(.dldUJQ.
\

l=1 AT Jiwi<1 /1 —|w]?

Thus

2D 3D
Figure 1.12. Domains of dependence, conceptually, for 2D and 3D.
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1.6 Hadamard’s Solution for all odd n >3
[cf. Evans, 4.37] n=2k+1, k>1. k=(n—1)/2, c=1. The general formula is

w(x,t) =0 K f)+ Kix g

where for any h € CZ° we have

wn, 1 9 (n—3)/2 B
Keemw =3 5) | s,

Check: If n=3, w, =4m, so we get our usual formula.

Now, Consider ¢ =0 in uy — Au=0, z € R**1 ¢ >0, u(z,0) = f(x), uy(z,0)=0. Extend u to t <0 by
u(z,—t)=u(x,t) (which is OK because dyu=0 at t =0)

Consider for ¢ >0

1 —s
o) = i [ e )

= / k(s,t)u(x,s)ds
R
Find solution for the heat equation in 1D. Use that d:k = 02k.
O = / Ok u(x,s)ds
R
/ k(s,t)02u(x, s)ds
R
= / k(s,t)Axu(x,s)ds:Ax/ k(s,t)u(x,s)ds.
R R

0w =Ayv, z€R", t>0. Also, as t— 0, v(z,t) — f(x). Therefore,
1

v(z,t) = WA{TL e~ WA f (2 — y)dy

1 > —r n—
= —(47Tt)"/2/o e~ /4ty 1ff($—rw)-dwdr

(4mt)"/?
Change variables using A =1/4¢ and equate (*) and (#) (what are * and #7)
/0 e_’\T2u(x,T)dr:%-%/o e AN I (a7 dr

Then, use the Laplace transform for h € L'(R):

h#(\) :/000 e~ h(p)dyp.

Basic fact: h# is invertible. Observe that

%(e’)‘rz) =— e M7
In particular,
k
<_2idi> e—Ar? _ \kg—Ar?,
r dr

Therefore

o0 _ k o0 k
| ety = S | <%'%) e (M () dr

_ 1 >~ —Ar? 1 d g 2k—1
= ﬁ/o e lr <; E) (r My(x,7)) |dr.
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Now have Laplace transforms on both sides, use uniqueness of the Laplace transform to find

w 1 0\"

. 1o\
= —Fka-i—lt(?'E) [t"2My(x,t)]

2 Distributions
Let U C R™ be open.

Definition 2.1. The set of test functions D(U) is the set of C°(U) (C™ with compact support). The
topology on this set is given by pr— p in D(U) iff

a) there is a fized compact set F' C U such that supp i C F for every k
b) supr |0%k — 0%| — 0 for every multi-index .

Definition 2.2. A distribution is a continuous linear functional on D(U). We write L € D'(U) and (L,
¢)-

Definition 2.3. [Convergence on D' A sequence LkgL iff (Lk,)— (L, ) for every test function .
Example 2.4. Lf, (U):={f:U— R: f measurable, [, |f[Pdz<ooVU'CCU}.
2

An example of this is U=R and f(x)=e"
We associate to every f e L{ (U) a distribution Ly (here: 1< p<00).

(L.o)i= [ Fa)ota)ds
Suppose <pk2><p. Need to check

(Ly;pr) = (L, @)
Since supppy C FFC C U, we have

(L o) — (L g)| = ' [ 1@t e

< ([ 1r@lde Jsuplon— .

bounded —0

/F f(@)|rde < (/FM:C)lp/q(/F |f(a:)|‘1>1/q.

Thus, L (U) C LE (U) for every p<gq. (Note: This is not true for LP(U).)

If ¢>p,

Example 2.5. If uis a Radon measure on U, then we can define

(L) = [ el@putda).
Example 2.6. If =4,
(Lus #) = (y)-

Definition 2.7. If L is a distribution, we define 0“L for every multi-index o by

(8QL7 </7) = (_ 1)‘a|(La aaw).
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This definition is motivated through integration by parts, noting that the boundary terms do not matter
since we are on a bounded domain.

Example 2.8. If L is generated by dy,
(0°L, ¢) = (= 1)29%¢(0).

Theorem 2.9. 9% D' — D’ is continuous. That is, if LkgL, then BO‘L;CEBO‘L.

Proof. Fix ¢ € D(U). Consider

(0%Lg, 9) — (0°L, ¢)
| |
(_ 1)a(Lk76a(p) - (_ 1)a(L78a(p)'

Definition 2.10. Suppose P is a partial differential operator of order N, that is

P= Z Colx)0™
la] <N
with co € C(U).

Example 2.11. P =A is an operator of order 2. P=0; — A. P=0? — c?A.

Fundamental solution for A:
AK(x—y)=0, inD’
All this means is for every ¢ € D

| ARG ypaida= [ o) =),
U

U

Definition 2.12. We say that u solves Pu=0 in D' iff
(u,PTga) =0

for every test function @. Here, PT is the adjoint operator obtained through integration by parts: If co(x) =
Co. independent of x, then

Pf= Z (—1)lele 00,

la| <N

Example 2.13. P=0,— D= Pt=—0, - A.

Example 2.14. More nontrivial examples of distributions:

1. Cauchy Principal Value (PV) on R:

L,v):=lim S0(:17)6133.
( ) e=0J|z|>e (.I)

wo=3 (£0)(3)

k=1

2. U=(0,1)

which is well-defined because ¢ has compact support.

Uniform convergence in topology?
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2.1 The Schwartz Class
Definition 2.15. S(R™) Set ¢ € C*°(R™) with rapid decay:

lella.s:= Sup 207 (2)| <00
for all multiindices o, 8. Topology on this class: pr— ¢ on S(R™) iff ||k — @lla,s— 0 for all o, 3.
Example 2.16. If p € D(R") then p € S(R"?). If pr— ¢ in D(R"™) = v — ¢ in S(R").
Example 2.17. o(z)=e¢~*I" is in S(R™), but not in D(R™).

2
‘ )

d%p(z)= Ps(x) eI
\l-/,
ans Polynomial
so [|z*0Pp(z)|| oo (mm) < 00.
Example 2.18. ¢~ (12" ¢ S(R™) for every € > 0.

1

Example 2.19. W

eC*,
but not in S(R™) for any N. For example,

sup
xT

=

(1+ I:CIQ)N‘
if a=(3N,0,...,0).

We can define a metric on S(R"):

1 o = llaus
ERDED PR S L LA
k=0 2 || +18|=k L+le=%la,p

Claim: ¢ — ¢ in S(R™) < p(¢k, ) — 0.
Theorem 2.20. S(R™) is a complete metric space.

Proof. Arzela-Ascoli. O

2.2 Fourier Transform

Motivation: For the wave equation, we find formally that

sinc|&|t
clgl

FK, =

Definition 2.21. The Fourier transform on S(R™) is given by

Fo)O) = i [, o el

For brevity, also let ¢(&) = (Fp)(§).

Theorem 2.22. F is an isomorphism of S(R™), and FF*=1d, where
(Fr o) (&) = (Fp) (= ©).

2.2.1 Basic Estimates

01 < G | letlds

T 1 lp(@)
= @ [, @l

ClI L+ [z])"* oo < 0.

N
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Also,

B _ 1 —iz- 0
oep(§) = 27‘_)"/2 - 8£e o(z)dx
1
B (27T)n/2 w/IR" Z:E e o BSD( )d

= 02¢(E)llz= < ClA+|z])" P | .
Thus show ¢ € C°(R"™):
1

(=199 = G [ (igre o

1
_ —uE 5
= (27T)"/2 /]Rn A% o(x)dx

1|0¢/
—zw £6o¢ T
7 Ji (z)d

(—
(2
=870l < ClI(L+]z))" o0l

Combine both estimates to find

N

1@ lla,s=11€20E@ ]l < Cll(1+ |z PO | Loe.
Example 2.23. If w(z):e‘mzm. Then gﬁ({):e"g‘zm. Fo=.
2.2.2 Symmetries and the Fourier Transform

1. Dilation: (oxp)(x)=@(x/N).

Flola/ME) = g [ e Sola/Nda/n) =N (Fo) (N,

Thus 6 @ = A"01/xp.
2. Translation Tho(x) = p(x — h) for h € R™. F(1ap) (&) =e =5 ().

2.2.3 Inversion Formula

For every ¢ € S(R™)

p(x) =F* o =(RF)¢, where (Rp)(r) = ¢( — ).

p(r)=

Proof. (of Schwartz’s Theorem) Show F*Fe~|#1*/2 = ¢=|2*/2,
Extend to dilations and translations. Thus find F*F =1d on S, because it is so on a dense subset. F
is 1-1, F* is onto=-but F*=RF, so the claim is proven. O

Theorem 2.24. F defines a continuous linear operator from LY(R™) — L*°(R"™), with

||f||Lm<ﬁ||f||Ll.

Theorem 2.25. F defines an isometry of L*(R™).

Theorem 2.26. F defines a continuous linear operator from LP(R™) — LP' (R™) with 1< p <2 and

1

1
p p
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Ideas:
e Show S(R™) dense in LP(R™) with 1 <p < o0.
e Extend F from S to L?.

Proposition 2.27. C°(R") is dense in S(R™).

Proof. Take a function
|1 Jz|<N -1,
7W@W_{o|ﬂ>N+L
Given ¢ € S(R™), consider ¢y := ¢nn.

on = (pnn)= D 000"y,

le'|< el

So ||2P0%p N || L < 00. O
Theorem 2.28. C°(R"™) is dense in LP(R™) for 1< p<oo.

Proof. By Mollification. Choose n € C(R™) with supp(n) C B(0,1) and

/nn@MI:L

/ i nn(z)dx =1.

For any n, define ny(z) = N"p(Nx). Then

To show:
Lr
frnn—f
for any fe LP(R™).
Step 1: Suppose f(xz) = 1g(z) for a rectangle (). In this case, we know ny % f = f at any x with
dist(x,0Q) > 1/N. Therefore, ny* f— f a.e. as N — 0.

[t s@) = f@raz—o
by Dominated Convergence. !
(Aside: Density of C° in S(R™). (Relation to Proposition 2.277) Given ¢ € S(IR™), consider ¢y :=
onn. We have ||on — ¢|la,3— 0 for every «, . In particular, we have

[(Jz "+t +1)(on = @)l — 0.

1+ |z t! 1

- = Ty, — < ————dz ]...7
/n |50n 90|d$ A{ (1+$)n+1|¢" @'dx\ R 1+|x|n+1dx
End aside.)

Step 2: Step functions are dense in LP(R™) for 1 < p < oo.
Step 3: “Maximal inequality”, i.e.

I *nnllee <CIFIILP,

which we obtain by Young’s inequality.

If*nnllpe < Cpllnn o]l fllze
= Cpllnllzll fllze,

where the constant depends on 7, but not on N.
Step 4: Suppose f € LP(R™). Pick g to be a step function such that || f — g||z» <¢ for 1< p<oo. Then

Ifxnn—fllee < [[fxnn—gxnnlee+llg*xnn —gllee+f —gllzr
< (Cpllnllcr+ DI f = gllr+1lg* nn — gllLe.
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Onwards to prove the L? isometry, we define
(F28) gy = [ S}

Proposition 2.29. (Plancherel) Suppose f, g€ S(R™). Then
(ff5 fg)L2(R") = (f) g)Lz(]Rn)
Proof.
D ﬁnltl n A
FLFD ey 2" [ R

= b

£)9(©)
( o nm/n e (£>ds>

g(x
= f(x)g (x)d.
Rn
]
Definition 2.30. F: L'(R") — C(R") is the extension of F:S(R") — S(R™) to L'(R™), where
C(R"):={h:R"— TR such that h(z) —0 as |z|— oo}
Proposition 2.31. This extension is well-defined.
Proof. Suppose
Ll
or = f,
Ll
Y — [
Then || Fpr — Fibi|| — 0:
A i 1 —ix-
[(@x — i) ()] = 7 e “(or — ¥r)
(2m)"/?
1
< (%)n/gnwk dull oo
1
< (%—)n/Q[H% = fller+ 1 = wll] = 0.
]

Warning: There is something to be proved for L?(IR") because

is not defined when f € L%(R"). However Ff in the sense of L*-lim Fpy where py € S(R") — f in L2
We had proven

¢ 1
7], < Gl
17],. = 11
Definition 2.32. A linear operator K:S(R"™) — S(R™) is of type (r,s) if

K¢l <C(r,s)l[ell

Example 2.33. F is of type (1,00) and (2,2).
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Theorem 2.34. (Riesz-Thorin Convexity Theorem) Suppose K is of type (r;, s;) for i =0,1. Then
K is of type (r,s) where

1 6 1-6
;_T_O 7‘17
1 6 1-6
g_S_() S1

for 0<0<1. Moreover,
C(r,s)<CCt=*.

Proof. Yosida/Hadamard’s 3-circle theorem (maximum principle). O

Corollary 2.35. F:S — S has a unique extension F: LP(R"™) — LP (R"™) where 1 <p<2 and 1/p'+1/p=
1.

Summary:

e F:5— & isomorphism

e F:L'—C (either by extension or directly) not an isomorphism

e F:L?— L? (by extension) isomorphism

e F:LP— L” (by interpolation)
Definition 2.36. S'(R") is the space of continuous linear functionals on S(R™), called the space of tem-
pered distributions. Its topology is given by Ly — L in S’ iff
forall peS.

Altogether, we have DCSc S’ C D'

Example 2.37. 1. Suppose f & L'. Define a tempered distribution

(f )= fe,

which is obviously continuous. &
2. (A non-example) If f(z)= e‘””'z, then f € Li., so it defines a distribution, but not a tempered dis-

tribution.
3. f(z)=e """ e S(R™), but

fo=o00.
Rn
4. If f is such that
| (1 + 22~ Mf|| . < oo

for some M, then fe S’

Proof. I(f,w)|=' /fcp' <@+ )M+ M,

Proposition 2.38. Suppose L € S’. Then there exists C >0, N € N such that

(L, D) <Cllelly (2.1)
for every p € S(R™), where

lelly="Y_ [z°0%],...

lal,IBISN
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Corollary 2.39. A distribution L € D’ defines a tempered distribution < there exist ¢, N such that (2.1)
holds for ¢ € S(R™).

Proof. Suppose (2.1) is not true. Then there exist ¢k, Ny such that

\(Ls on)| > Ellon ]y,

Let
o 1
Vg = .
lenlly, *
Then N
1
But |(L, ¥x)| > 1. But ¢, — 0 in S(R™) = L not continuous. O

Definition 2.40. If K: § — § is linear, continuous, then the transpose of K is the linear operator such
that for every L€ S’

(L,Kp)= (KtL, gp).
Theorem 2.41. a) S(R™) is dense in S'(R™).
b) D(R™) is dense in D'(R™).

Proof. Mollification, but first verify some properties. Fix n€ D(R"),

/ n=1.

Let nyn(x) =m™y(m ). We want to say 7, * L is a C° function for a distribution L.
Definition 2.42. L€ D'(R"), n€ D(R"), n* L is the distribution defined by

(nx Ly p) = (L, (Bn) * ¢),
where Rn(x) =n(—x). If L were a function f,

(m*xL,p) =

Theorem 2.43. D(R"™) is dense in D'(R™). That is, if f is a distribution, then there exists a sequence of
Ly €D such that L,— L in D’.

Proof. By 1) Mollification and 2) Truncation.

Proposition 2.44. Lx1n is a C™ function. More precisely, L * n is equivalent to the distribution defined
by the C'*° function

V(@) = (L, 7=(Rn)),
where 7. f (y) = f(y — x).

Proof. 1) v:R"— R is clear.
2) v is continuous: If 2y — z, then y(x) — v(z). Check

V(@) = (L 7o (B))-
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And 7, (Rn) — 7.(Rn) in D.
e We can choose F' s.t. supp(74,(Rn)) C F for all k.
e Rn(y—axr)— Bn(y — ),
o O0%Rn)(y —xx) = 0"Rn(y — x),

where the last two properties hold uniformly on F.
3) v€ O Use finite differences. Consider

Y@ +he) =y(@) _ [ Tathe,(Rn) —7=(Rn)
7 _(L, + 7 )

Observe that
1
7o he,(R0) = 7a(Bn)] = 7(0:,Rn)
in D.
4) v € C°*: Induction.
5) Show that L x 771; ~. That is

(L*n,w)Déf(L,Rnw)i/n (@) (@)dz.

[ A@e@de = limn 3" e

h—0
- yeEhZ™

= 1. -n
lim b=y (L, 7y (Rn))(y)
yehZ’ﬂ

= i -n .
hlg{)(hh > Ty(Rn)cp(y)>
yeERZ™

Show that the Riemann sum

h=m > Ty(Rn)e(y) — Ripx g
yERZ™

in D. |
Operations with * :

1. nx L:=Lxn.

2. 0%(L n)ilaaL * ngL * 0.
Proof of Theorem: Fix n€ D(R"™) with [, n(z)dz=1. Let ny(z) =m"n(mz). Then

/ Nm(x)dz=1.
We know from our proposition from that 7,,* L is C'*°. Consider the cutoff function
_J 1 |z[<m,
Xm(l’)"{ 0 |z|>m.
Consider L., = Xm(nm* L). Ly, € D(R™).

6a(Xm’7m) = Z (;)aa_BXmaa_ﬁ’ym
Claim: L,,— L in D’.
(Lims©) = (Xm(Mm* L), 0) = (Nm* L, Xmep)
Def
= (L7 (Rnpm) * (XmSD))-
Finally, show

m large

(Rim)*¢ = (Rnm)*xme — ¢ inD'.
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Definition 2.45. Suppose K:S — S is linear. We define K': S’ — S’ as the linear operator

(K'L,¢):=(L,Kp).

Proposition 2.46. Suppose K: S — S is linear and continuous. Suppose that Ki|s is continuous.

there exists a unique, continuous extension of K' to S'.
Corollary 2.47. F:S8'— &’ is continuous.
Let’s go back to PDE now. Examples:

1. Fo=1/(2m)"/2

2. Let 0< B<nand Cz=T((n— £)/2). Then F(Cgslz|~P)=C,_glz|~"=5. Why we care:
Au=0p. In Fourier space:

1
—€12g = ——
. 1 s
=i = GonltlT
1 -1 Ch-2 o
i = G G

Prove (1) and (2) by testing against Gaussians.

2.3 Duhamel’s Principle
Consider constant coefficient linear PDE
agnu+a;”1< > cl,aaa>u+a¢2< > 027a80‘>u+... + > emad®u=0.
la|="1 lal<m

Here u: R™ x R" — IR, m is the order of the equation, ¢,, o € R.
Shorthand P(D,7)u=0. Herre D = (04, ..., Oa,) and 7= 0;. Differentiation operators

P(D,7)=71"+7""tP(D)+ -+ P,(D).

Py(D) =polynomial in D of order <k.
General Problem:

P(D, 1) u=w
for x € R"™, t >0 with
u Jo
du=1u = fi
O lu=71m"ty = f_
at t=0.
Standard Problem:
P(D,m)u=0
with
U 0
ou=1u = 0

O lu=1""1u = ¢

21

Then,
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at t = 0. (Initial conditions). Solution of General Problem from Standard Problem. First, suppose w # 0

and fo=fi=-= frn-1=0.
Consider the solution to a family of standard problems:

P(D,T)U({E,t,s) =0 (Sgt)
Tm—lU(gc,t,s) = w(z,s) (t=s)
THU(z,t,,5) = 0 (t=5,0<k<m—2)

Consider
¢
u(x,t)z/ U(z,t,s)ds.
This gives us 0
t
P(D, 2)u(z,t) = / P(D,7)U(z,t,8)ds+ (7" 1+ 7m72P (D) + -+ P, _1(D))U(x,t,t)
0
= 0+w(z,t)+0

as desired. Similarly, getting rid of non-standard initial conditions involves consideration of

P(D,7) =0
u = fo
TU = fl
ol = fm—l

Let u4 dentote the solution to the standard problem. Consider

w o= up, ., + (T + P(D)uy, , + (77 + PUD)T + PoD))uy, s+ + (7774 P(D)TTE 4 e 4
Prn—1(D))u g,

Then

P(D,m)u = P(D,m)uf, o+ (T+ (D) P(D,T)ug, o+
0

since P(D, T)us, =0 for 0 <k <m —1. We need to check the initial conditions: At ¢t =0, Tlufk =0,0<I<
m — 2. Thus, all terms except the last one are 0. The last term is

[T+ Py(D)r™ 2 4 + Py _1(D) |ug, = 7™ tug, + time derivatives of order <m —2 (=0)= fo.

Henceforth, only consider the standard problem

P(D,7) = 0,
hu(z,0) = 0 (0<k<m—2),
T u(2,0) = g

Solve by Fourier analysis:

a(,t) = ;/n e~ &y (z, t)dw.

(271')"/2

Fourier transform of the above standard problem yields
P&, m)ya = 0,
(g, 7) = 0,

T li(E,0) = g(§)
Fix ¢ and suppose Z(¢,t) denotes the solution tg to the ODE
P(i§,7)Z(&,1) =0
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with initial conditions

T*Z(£,0)=0 (0<k<m—1), 7m7'Z(£,0)=1.
This is a constant coefficients ODE, an analytic solution for it exists for all ¢. Clearly, by linearity

a(&,t)=2(&1)9(¢)
and
1 .
u(x,t) =—— e EZ(€,1)§(&)dE.
(#:) = gz [, e D e
We want v € C™ (“classical solution”). Problem: Need to show that Z(,t) does not grow too fast (=faster
than a polynomial) in €. Formally,
1 .
0thu(x,t) = —/ e E(E) TR Z(€,1) g (€)dE.
(@8) = G [, GO Z(E D
Key estimate: For any T > 0, there exists C'p, N such that

max sup sup |7'kZ(§,t)}§CT(1+|§|)N
0SkSmogr<T ¢eRn

Definition 2.48. The above standard problem is called hyperbolic if there exists a C™ solution for every
geS(R™).

Theorem 2.49. (Garding’s criterion) The problem is hyperbolic iff Jc € R such that P(i&, \) # 0 for all
EeR™ and \ with Im(\) < —c.

Im A
T for fixed &
)
ImA=—-c¢
Re A
No Toets here

Figure 2.1. Nice cartoon.

Proof. Cartoon: Typical solutions to P(i¢, 7)Z = 0 are of the form Z = ¢ with P(i¢, i\) = 0. We will
only prove “<=": We'll prove the estimate

max sup sup |Z(&,t)|<COr(1+[E)Y
0SkSmMogLr<T €€R™
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assuming P (i€, i) # 0 for Im(\) > — ¢. Formula for Z(&,t):

1 ei)\t

Claim: P(i¢,7)Z=0 (t>0), 7"Z=0 (0<k<m—2,t=0), 7" 1Z=1 (t=0).

i\ )k it
7= / (G PY
r

21 Jp P(i€,iN)
Therefore
. 1 ) ) eiAt
P(i§,7)Z = 9 FP(Z&Z)\)W(D\

= i/ eMdA =0
2 r

by Cauchy’s Theorem. Suppose 0 <k <m —2. Let t =0= N =1.
Y
iz =1 (i) ——d).
27 Jr (M)n(l —|—0(W))

Suppose that I is the circle of radius R > 1 with center at 0. Then

|7*Z| < ;ﬂRn(lfz(%)) -27TR=R’“_(7”—1)(1+0<%)) 0

if k<m —2. Thus, for any I' enclosing all roots.

When k=m — 1, we have

m—1 1 1

anaiytic

dA=1.

Step 2) Claim: Any root of P(i&,i)\) staisfies
IMOI< M1+ [E]).

Estimate growth of roots: Suppose A solves P(i€,i\) =0. Then

(A" 4 (A" TP () 4 -+ + P (i€) =0.
Thus,
— (IN)™ = (N TIP(IE) + (IN)™ 2Py (i€) + -+ 4 P (i€).

Observe that

| Pu(i€)| < Ci(1+[€])" (2.2)
for every k, 1 <k <m. Therefore, .

Am<CY AR+ €D
Claim: this implies: =t

A< A+ C)A+[E]).

Let

Then (2.2) implies
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Cases:
o 0<1& A <1+ |{|= nothing to prove.

e 0>1=0m<COm/(0—1)=0<1+C=|A<A1+C)(14+]€)).
Step 3. Claim:

[TRZ(&,4)] < Mm e TN 1+ |¢|)*.

Here M=bound from step 2, m=order of P(D, ), c=constant in Garding’s criterion.

Im A\

/\ Re A

Figure 2.2. Sketch.

Fix £ € R™. Let I'=union of circles of unit radius abound each \x. (wlog, no A\x on the boundary, else
consider circles of radius 1 +¢)

P(i&,i\) = ﬁ A= (€

On I" we have |A — Ag(€)| > 1 for all A. Therefore |P(i€,iA)|>1 on T
1 (iX) ket
260 = 27r/ PliE )
Bound on [e?*| on T. we have Im(\) > — ¢ — 1 by Gérding’s assumption.
|ei)\t| _ e—(IIn)\)t < e(1+c)t'
Thus,
P2 < (s A ) o)

Aer length of T

< me(”c)t<sup (M) + 1))k
l

< m el 1+ [g]) +1)*
since each A(§) <M (1+]&)).
[T Z (€, 6)| S CMPmel T (14 [€)k.
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Step 4. This implies that

<
o 1 iy
rriuGe 0l < G [P ZE Dl ERa e
C MFke(1to)t e lal -
o [, (D I Ie)dg <00
because § €S. O

Theorem 2.50. Assume P(D, 7) satisfies Gdarding’s criterion. Then there exist C™ solutions for all g €
S(R™).

For finite regularity, we only need check for k+ |a| <m. We need

(1+1€D™lg (&)l € LHR™).
Need for every € >0

m| A CE
(L+16D™13(6)| < ey

or
GOIS Ce(1+ g~ (mHm=e.
m=order of P(D,)=regularity of solution, n=space dimension.
Example 2.51. 07 — Au=0. (i\)?— (i|¢])2=0, A== |¢| — Growth estimate can’t be improved.
Géarding stated wrongly!!!
Question: Is a hyperbolic equation hyperbolic in the sense that it is “wavelike” (meaning if g has com-

pact support, u(z,t) has compact support (in z) for each ¢ > 0.

Theorem 2.52. (Paley-Wiener) Suppose g € L'(R"™) with compact support. Then §: C"— C" is entire.

1 .
Proof. g&= / e~ ¢g(xr)dx.
(©) (2m)™/% JB(o,R) (@)

Formally differentiate once, then C*° follows.
|

Theorem 2.53. Assume Garding’s criterion (restriction on roots). Then there is a C'* solution to the
standard problem for g € S(R™).

Example 2.54.
P(D,7)u = uy—Au
P(i€,iN) = — A2 +[¢f?
The roots are A == |£|, which satisfies (GC).
Example 2.55. Suppose P(i£,i)) is homogeneous
P(is€,is\)=s"P(i&,i\)
for every s € R. (GC) holds < all roots are real-otherwise, we can scale them out as far as we need to.

In general, we can write

where py is homogeneous of degree k.



DISTRIBUTIONS 27

Corollary 2.56. Suppose P(D,T) is hyperbolic. Then all roots of pm(i&,i\) are real for every £ € R™.

Corollary 2.57. Suppose the roots of p,, are real and distinct for all € € R™. Then P is hyperbolic.
(m=order of P).

Proof. write £ = pn, A= pu. where |n|=1, p=|£|.

o o 1 o 1
P(zf,z)\)ZO@pm(m,w)ﬂL;pm_l(m,w)+~-+ﬁpo(m,w)=0.

Im(p)

AT
N % N

Figure 2.3. Illustrative Sketch. :-)

Use the Implicit Function Theorem to deduce that there exists d >0 such that each uf® perturbs pg(p)
for 1/p < do.

00 c
| = (P < -

We want f(z(e), €) = 0. We know f(xg, 0) = 0. The distinctness is guaranteed by the derivative condi-
tion. O

Definition 2.58. P(D, 1) is called strictly hyperbolic if all A(§) are real and distinct. Also say that
pm (D, T) is strictly hyperbolic if roots are real and distinct.

Example 2.59. u;y — Au=0 is strictly hyperbolic.

Example 2.60. (Telegraph equation) ui — Au + ku =0 with k € R. By Corollary 2.57, this equation is
hyperbolic.

Theorem 2.61. Suppose p,,(D, T) is strictly hyperbolic. Suppose g € S(R™) and supp g C B(0, a). Then
there exists a c, such that
suppu C B(0,a + ¢,t).
cx 1S the largest wave speed.
Proof. (Main ingredients)

e Paley-Wiener Theorem: Suppose g € L'(R") and supp g C B(0, a). Then § extends to an entire
function C™— C™ and

e 19121
+i0)| < NINLL pald]
|G (§+iQ)] (2m) 7
(Proof see below)
e Heuristic:
o Decay in f=>regularity of f
o Regularity of f=-decay of f .
e Estimates of Im()) for complex & +i¢. Use strict hyperbolicity to show
Im(A\g) <e(14¢])
for all ( € R™.
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e Plug into
Zlie.t) = [ gy
i€0=5- [ 7t
o Use
1 . ,
w(x,t) =—— e~ (€O Z7(¢ 44, d¢.
0= G I (€+iC,7)g(€)de
O
Proof. (of Paley-Wiener)
j i b / —iz-(§+iC)
41 = e > x)dx
il = o o)

1 —ix- 2
T o, @
77 S

a\<|/ q
e g(x)|dz.
(27r)”/2 B(o,a)| @)




