Linear Algebra

MA 242 (Spring 2013)
Instructor: M. Chirilus-Bruckner

LINEAR TRANSFORMATIONS

- reflections, rotations, contractions, expansions, shears and projections -

Illustrate the action of the linear transformation $T(x)=A x$.

- $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

description:

What is the matrix for the horizontal version of this transformation?

An EXAMPLE in \mathbb{R}^{3}

1. Illustrate the transformation that is obtained by executing A_{1} then A_{2} and lastly A_{3} by using the object on the next page.

$$
A_{1}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \quad A_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2. Describe its action in words.
3. Compute the product

$$
A_{3} A_{2} A_{1}=
$$

4. Motivate why matrix multiplication is not commutative by illustrating the action of the transformation $A_{1} A_{3}$ versus the transformation $A_{3} A_{1}$.
