Linear Algebra

MA 242 (Spring 2013) Instructor: M. Chirilus-Bruckner

LINEAR TRANSFORMATIONS

- reflections, rotations, contractions, expansions, shears and projections -

Illustrate the action of the linear transformation T(x) = Ax.

An example in \mathbb{R}^3

1. Illustrate the transformation that is obtained by executing A_1 then A_2 and lastly A_3 by using the **object on the next page**.

$$A_1 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2. Describe its action in words.

3. Compute the product

$$A_3 A_2 A_1 =$$

4. Motivate why matrix multiplication is not commutative by illustrating the action of the transformation A_1A_3 versus the transformation A_3A_1 .