Linear Algebra
 - MA 242

Exercise Sheet

- not graded -

1 Given a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto A x$ with $A \in \mathbb{R}^{2 \times 2}$, complete the following formula where D is a region in \mathbb{R}^{2} (with finite area) and $T(D)$ its image under T :

$$
\text { "area of } T(D) \text { " =__ "area of } D \text { " }
$$

2 Let S be a parallelogram determined by the points

$$
(1,1),(3,1),(2,2),(4,2)
$$

and consider a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(x_{1}, x_{2}\right)=\left[2 x_{1}-3 x_{2}, x_{1}+4 x_{2}\right] .
$$

a) Compute the area of S.
b) Compute the area of $T(S)$ without using the formula from 1.
c) Compute the area of $T(S)$ via the formula from 1 .

3 Which of the following are subspaces of \mathbb{R}^{3} ? Explain.
a) $\{[2 \lambda, 3 \lambda, \lambda] \mid \lambda \in \mathbb{R}\}$
b) $\{[2 \lambda, 3 \lambda, 1] \mid \lambda \in \mathbb{R}\}$
c) $\left\{\left[2 x_{1}-x_{2}, 3 x_{2}+1, x_{1}\right] \mid x_{1}, x_{2} \in \mathbb{R}\right\}$
d) $\left\{\left[y_{1}, y_{2}, y_{3}\right] \mid-17 y_{3}+2 y_{1}+1-y_{2}=0,2 y_{3}+y_{1}+y_{2}=0\right\}$

4 Given $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 4 & 1 & 1 \\ 7 & 1 & 1\end{array}\right]$ and a parameter λ.
a) Compute $\operatorname{det}\left(A-\lambda I_{3}\right)$.
b) For which λ is the matrix $A-\lambda I_{3}$ not invertible?
c) For which λ does the equation $A x=\lambda x$ have non-trivial solutions?

