

- not graded -

1 Given a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2, x \mapsto Ax$ with $A \in \mathbb{R}^{2 \times 2}$, complete the following formula where D is a region in \mathbb{R}^2 (with finite area) and T(D) its image under T:

"area of T(D)" = _____ "area of D "

2 Let S be a parallelogram determined by the points

(1,1), (3,1), (2,2), (4,2)

and consider a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ defined by

 $T(x_1, x_2) = [2x_1 - 3x_2, x_1 + 4x_2].$

- **a)** Compute the area of S.
- **b)** Compute the area of T(S) without using the formula from **1**.
- c) Compute the area of T(S) via the formula from 1.

3 Which of the following are subspaces of \mathbb{R}^3 ? Explain.

- **a)** $\{[2\lambda, 3\lambda, \lambda] \mid \lambda \in \mathbb{R}\}$
- **b)** $\{[2\lambda, 3\lambda, 1] \mid \lambda \in \mathbb{R}\}$
- **c)** $\{[2x_1 x_2, 3x_2 + 1, x_1] \mid x_1, x_2 \in \mathbb{R}\}$
- **d)** { $[y_1, y_2, y_3] \mid -17y_3 + 2y_1 + 1 y_2 = 0, 2y_3 + y_1 + y_2 = 0$ }

4 Given $A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 1 \\ 7 & 1 & 1 \end{bmatrix}$ and a parameter λ .

- a) Compute $det(A \lambda I_3)$.
- **b)** For which λ is the matrix $A \lambda I_3$ not invertible?
- c) For which λ does the equation $Ax = \lambda x$ have *non-trivial* solutions?

 $\begin{array}{c} \textbf{2.2.1} \\ \textbf{2.2.1} \\ \textbf{2.2.1} \\ \textbf{1.2.2} \\ \textbf{1.2.2} \\ \textbf{1.2.1} \\ \textbf{1.2.1} \\ \textbf{2.2.1} \\ \textbf{2$