Chapter 2 SUPPLEMENTARY EXERCISES

- 1. a. True. If A and B are $m \times n$ matrices, then B^T has as many rows as A has columns, so AB^T is defined. Also, A^TB is defined because A^T has m columns and B has m rows.
 - b. False. B must have 2 columns. A has as many columns as B has rows.
 - c. True. The *i*th row of *A* has the form $(0, ..., d_i, ..., 0)$. So the *i*th row of *AB* is $(0, ..., d_i, ..., 0)B$, which is d_i times the *i*th row of *B*.
 - d. False. Take the zero matrix for B. Or, construct a matrix B such that the equation Bx = 0 has nontrivial solutions, and construct C and D so that $C \neq D$ and the columns of C D satisfy the equation Bx = 0. Then B(C D) = 0 and BC = BD.
 - e. False. Counterexample: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
 - f. False. $(A + B)(A B) = A^2 AB + BA B^2$. This equals $A^2 B^2$ if and only if A commutes with B.
- 17. Let A be a 6×4 matrix and B a 4×6 matrix. Since B has more columns than rows, its six columns are linearly dependent and there is a nonzero x such that Bx = 0. Thus ABx = A0 = 0. This shows that the matrix AB is not invertible, by the IMT. (Basically the same argument was used to solve Exercise 22 in Section 2.1.)

Note: (In the *Study Guide*) It is possible that *BA* is invertible. For example, let *C* be an invertible 4×4 matrix and construct $A = \begin{bmatrix} C \\ 0 \end{bmatrix}$ and $B = \begin{bmatrix} C^{-1} \\ 0 \end{bmatrix}$. Then $BA = I_4$, which is invertible.

18. By hypothesis, A is 5×3 , C is 3×5 , and $CA = I_3$. Suppose x satisfies Ax = b. Then CAx = Cb. Since CA = I, x must be Cb. This shows that Cb is the only solution of Ax = b.

Section 3.2, page 175

- 2. A constant may be factored out of one row.
- 4. A row replacement operation does not change the determinant.
- 24. Linearly independent

26. Linearly dependent

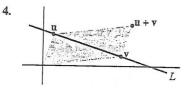
Section 3.3, page 184

20. 7

Chapter 4

Section 4.1, page 195

- 2. a. Given $\begin{bmatrix} x \\ y \end{bmatrix}$ in W and any scalar c, the vector $= \begin{bmatrix} cx \\ cy \end{bmatrix}$ is in W because $(cx)(cy) = c^2(xy) \ge 0$, since $xy \ge 0$.
 - b. Example: If $\mathbf{u} = \begin{bmatrix} -1 \\ -7 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, then \mathbf{u} and \mathbf{v} are in W, but $\mathbf{u} + \mathbf{v}$ is not in W



 \mathbf{u} and \mathbf{v} are on the line, but $\mathbf{u} + \mathbf{v}$ is not.

- 6. No, the zero polynomial is not in the set.
- 8. Yes. The zero vector is in the set, H. If p and q are in H, then (p + q)(0) = p(0) + q(0) = 0, so p + q is in H. Also, for any scalar c, $(c\mathbf{p})(0) = c \cdot \mathbf{p}(0) = c \cdot 0 = 0$, so cp is in H.
- 10. $H = \text{Span}\{v\}$, where v =0 By Theorem 1, H is a subspace of \mathbb{R}^3 .
- 12. $W = \operatorname{Span} \{\mathbf{u}, \mathbf{v}\}, \text{ where } \mathbf{u} =$

Theorem 1, W is a subspace of \mathbb{R}^4 .

- 20. a. The constant function f(t) = 0 is continuous. The sum of two continuous functions is continuous. A constant multiple of a continuous function is continuous.
 - **b.** Let $H = \{ \mathbf{f} \text{ in } C[a, b] : \mathbf{f}(a) = \mathbf{f}(b) \}$. Take \mathbf{f} and \mathbf{g} in H and let c be a real number. Then, the function f + gis in C(a, b), because the sum of two continuous functions is continuous. Also,

$$(f + g)(a) = f(a) + g(a) = f(b) + g(b) = (f + g)(b),$$

which shows that f + g is in H. Next, using the definition of cf,

$$(c\mathbf{f})(a) = c(\mathbf{f}(a)) = c(\mathbf{f}(b)),$$

because f is in H. Also, c(f(b)) = cf(b) = (cf)(b). This shows that the scalar multiple, $c\mathbf{f}$, is in H: Thus His closed under sums and scalar multiples, so H is a subspace.

22. Yes. See the proof of Theorem 12 in Section 2.8 for a proof that is similar to the one needed here.

Section 4.2, page 205

2.
$$\begin{bmatrix} 2 & 6 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ so w is in Nul } A.$$

- 8. W is not a subspace because 0 is not in W. The vector (0,0,0) does not satisfy the condition 3r-2=3s+t.
- 10. W is a subspace of \mathbb{R}^4 by Theorem 2, because W is the set of solutions of the homogeneous system

32.
$$p_1(t) = t$$
, $p_2(t) = t^2$. The range of T is $\left\{ \begin{bmatrix} a \\ a \end{bmatrix} : a \text{ real} \right\}$.

Section 4.3, page 213

- 2. This set does not form a basis for \mathbb{R}^3 . The set is linearly dependent because the zero vector is in the set. The 0 columns of do not span \mathbb{R}^3 , by the 0 Invertible Matrix Theorem.
- 4. These vectors form a basis for \mathbb{R}^3 . See Example 5 for an example of a justification.

10.
$$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
 12.
$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

- 20. The three simplest answers are $\{v_1,v_2\},\,\{v_1,v_3\},$ and $\{v_2, v_3\}$. Other answers are possible.
- 24. Let $A = [v_1 \cdots v_n]$. Since A is square and its columns are linearly independent, its columns also span \mathbb{R}^n , by the Invertible Matrix Theorem. So $\{v_1, \ldots, v_n\}$ is a basis for \mathbb{R}^n .

Section 4.4, page 222

2.
$$\begin{bmatrix} -26 \\ 1 \end{bmatrix}$$
 4. $\begin{bmatrix} 8 \\ -5 \\ 1 \end{bmatrix}$ 6. $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ 8. $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

Section 4.5, page 229

6.
$$\begin{bmatrix} 3\\0\\-7\\-3 \end{bmatrix}, \begin{bmatrix} 0\\-1\\6\\0 \end{bmatrix}, \begin{bmatrix} -1\\-3\\5\\1 \end{bmatrix}; \text{ dim is } 3$$

$$\begin{bmatrix} 3\\1\end{bmatrix} \begin{bmatrix} -1\\0\end{bmatrix} \begin{bmatrix} 0\\0\end{bmatrix}$$

8.
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$; dim is 3

Chapter 5

Section 5.1, page 271

2. Yes 4. Yes,
$$\lambda = 3$$
 6. No

8. Yes, $\begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}$ 12. $\lambda = 3$: $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$; $\lambda = 7$: $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ 14. $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

18. 5, 0, 3

Section 5.2, page 279

2.
$$\lambda^2 + 3\lambda + 2$$
; -2, -1

4.
$$\lambda^2 - 11\lambda + 18$$
; 2, 9

6.
$$\lambda^2 - 14\lambda + 49$$
; 7, 7
10. $-\lambda^3 + \underline{15}\lambda^2 - 73\lambda + 115$

8.
$$\lambda^2 + 3\lambda - 10; -5, 2$$

18.
$$h = 3$$

Section 5.3, page 286

2.
$$\begin{bmatrix} 321 & -160 \\ 480 & -239 \end{bmatrix}$$

4.
$$\begin{bmatrix} -3 \cdot (-3)^k + 4 \cdot (-2)^k & 6 \cdot (-3)^k - 6 \cdot (-2)^k \\ -2 \cdot (-3)^k + 2 \cdot (-2)^k & 4 \cdot (-3)^k - 3 \cdot (-2)^k \end{bmatrix}$$

6.
$$\lambda = 3$$
: $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 0 \end{bmatrix}$; $\lambda = 4$: $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

When an answer involves a diagonalization, $A = PDP^{-1}$, the factors P and D are not unique, so your answer may differ from that given here.

8. Not diagonalizable. The eigenvalue 3 has multiplicity two, but the associated eigenspace is only one-dimensional.

12.
$$P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

16. Not diagonalizable. The only real eigenvalue is 0 and its eigenspace is only one-dimensional.

18.
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}, D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Section 5.4, page 293

10. a. For any p, q in P3 and any scalar c,

$$T(\mathbf{p} + \mathbf{q}) = \begin{bmatrix} (\mathbf{p} + \mathbf{q})(-2) \\ (\mathbf{p} + \mathbf{q})(3) \\ (\mathbf{p} + \mathbf{q})(1) \\ (\mathbf{p} + \mathbf{q})(0) \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{p}(-2) \\ \mathbf{p}(3) \\ \mathbf{p}(1) \\ \mathbf{p}(0) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(-2) \\ \mathbf{q}(3) \\ \mathbf{q}(1) \\ \mathbf{q}(0) \end{bmatrix}$$
$$= T(\mathbf{p}) + T(\mathbf{q})$$

$$T(c \cdot \mathbf{p}) = \begin{bmatrix} (c \cdot \mathbf{p})(-2) \\ (c \cdot \mathbf{p})(3) \\ (c \cdot \mathbf{p})(1) \\ (c \cdot \mathbf{p})(0) \end{bmatrix} = c \cdot \begin{bmatrix} \mathbf{p}(-2) \\ \mathbf{p}(3) \\ \mathbf{p}(1) \\ \mathbf{p}(0) \end{bmatrix}$$
$$= c \cdot T(\mathbf{p})$$

b.
$$\begin{bmatrix} 1 & -2 & 4 & -8 \\ 1 & 3 & 9 & 27 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 0 \\ 2 & -2 \end{bmatrix}$$

16.
$$b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

18. If there is a basis \mathcal{B} such that $[T]_{\mathcal{B}}$ is diagonal, then A is similar to a diagonal matrix, by the second paragraph following Example 3. If A has a set of three eigenvectors that is linearly independent, then there will be a choice of \mathcal{B} such that $[T]_{\mathcal{B}}$ is diagonal. However, since A has only two distinct eigenvalues, it may be the case that a set of linearly independent eigenvectors contains at most two vectors.

5-6 (rost page)

Chapter 5 Supplementary Exercises, page 326

- a. True. If A is invertible and if Ax = 1 · x for some nonzero x, then left-multiply by A⁻¹ to obtain x = A⁻¹x, which may be rewritten as A⁻¹x = 1 · x. Since x is nonzero, this shows that 1 is an eigenvalue of A⁻¹.
 - b. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4 in Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31 in Section 5.3.
 - c. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix and thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an eigenvalue of A.
- d. False. Consider a diagonal matrix D whose eigenvalues are 1 and 3; that is, its diagonal entries are 1 and 3. Then D^2 is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In general, the eigenvalues of A^2 are the *squares* of the eigenvalues of A.
- e. True. Suppose a nonzero vector \mathbf{x} satisfies $A\mathbf{x} = \lambda \mathbf{x}$, then

$$A^2$$
x = $A(A$ x) = $A(\lambda$ x) = λA x = λ^2 x

This shows that x is also an eigenvector of A^2 .

- f. True. Suppose a nonzero vector \mathbf{x} satisfies $A\mathbf{x} = \lambda \mathbf{x}$, then left-multiply by A^{-1} to obtain $\mathbf{x} = A^{-1}(\lambda \mathbf{x}) = \lambda A^{-1}\mathbf{x}$. Since A is invertible, the eigenvalue λ is not zero. So $\lambda^{-1}\mathbf{x} = A^{-1}\mathbf{x}$, which shows that \mathbf{x} is also an eigenvector of A^{-1} .
- g. False. Zero is an eigenvalue of each singular square matrix.
- h. True. By definition, an eigenvector must be nonzero.
- i. False. If the dimension of the eigenspace is at least 2, then there are at least two linearly independent eigenvectors in the same subspace.
- j. True. This follows from Theorem 4 in Section 5.2.
- k. False. Let A be the 3×3 matrix in Example 3 in Section 5.3. Then A is similar to a diagonal matrix D. The eigenvectors of D are the columns of I_3 , but the eigenvectors of A are entirely different.
- 1. False. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Then $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are eigenvectors of A, but $e_1 + e_2$ is not. (Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then their sum cannot be an eigenvector.)
- m. False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix (Theorem 1 in Section 5.1). A diagonal entry may be zero.
- n. True. Matrices A and A^T have the same characteristic polynomial, because $\det(A^T \lambda I) = \det(A \lambda I)^T = \det(A \lambda I)$, by the determinant transpose property.
- o. False. Counterexample: Let A be the 5×5 identity matrix.

- p. True. For example, let A be the matrix that rotates vectors through $\pi/2$ radians about the origin. Then Ax is not a multiple of x when x is nonzero.
- q. False. If A is a diagonal matrix with a zero on the diagonal, then the columns of A are not linearly independent.
- r. True. If $Ax = \lambda_1 x$ and $Ax = \lambda_2 x$, then $\lambda_1 x = \lambda_2 x$ and $(\lambda_1 \lambda_2) x = 0$. If $x \neq 0$, then λ_1 must equal λ_2 .
- s. False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix with a zero on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation x → Ax is represented by a diagonal matrix relative to a coordinate system determined by eigenvectors of A.
- t. True. By definition of matrix multiplication,

$$A = AI = A[e_1 \quad e_2 \quad \cdots \quad e_n] = [Ae_1 \quad Ae_2 \quad \cdots \quad Ae_n]$$

If $Ae_j = d_je_j$ for j = 1, ..., n, then A is a diagonal matrix with diagonal entries $d_1, ..., d_n$.

- **u.** True. If $B = PDP^{-1}$, where D is a diagonal matrix, and if $A = QBQ^{-1}$, then $A = Q(PDP^{-1})Q^{-1} = (QP)D(QP)^{-1}$, which shows that A is diagonalizable.
- v. True. Since B is invertible, AB is similar to $B(AB)B^{-1}$, which equals BA.
- w. False. Having n linearly independent eigenvectors makes an $n \times n$ matrix diagonalizable (by the Diagonalization Theorem in Section 5.3), but not necessarily invertible. One of the eigenvalues of the matrix could be zero.
- x. True. If A is diagonalizable, then by the Diagonalization Theorem, A has n linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in \mathbb{R}^n . By the Basis Theorem, $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ spans \mathbb{R}^n . This means that each vector in \mathbb{R}^n can be written as a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Chapter 6

Section 6.1, page 336

2.
$$35, 5, \frac{1}{7}$$
 4. $\begin{bmatrix} -1/5 \\ 2/5 \end{bmatrix}$ 6. $\begin{bmatrix} 30/49 \\ -10/49 \\ 15/49 \end{bmatrix}$
8. 7 10. $\begin{bmatrix} -6/\sqrt{61} \\ 4/\sqrt{61} \\ -3/\sqrt{61} \end{bmatrix}$

16. Orthogonal 18. Not orthogonal

22. $\mathbf{u} \cdot \mathbf{u} \ge 0$ because $\mathbf{u} \cdot \mathbf{u}$ is a sum of squares of the entries in \mathbf{u} . The sum of squares of numbers is zero if and only if all the numbers are themselves zero.

24.
$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^2 + 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2$$

$$\|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot (-\mathbf{v}) - \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^2 - 2\mathbf{u} \cdot \mathbf{v} + \|\mathbf{v}\|^2$$

When $\|\mathbf{u}+\mathbf{v}\|^2$ and $\|\mathbf{u}-\mathbf{v}\|^2$ are added, the $\mathbf{u}\cdot\mathbf{v}$ terms cancel, and the result is $2\|\mathbf{u}\|^2+2\|\mathbf{v}\|^2$.

26. Theorem 2 in Chapter 4, because W is the null space of the $1 \times n$ matrix \mathbf{u}^T . W is a plane through the origin of \mathbb{R}^3 .

Section 6.2, page 344

12.
$$\begin{bmatrix} .4 \\ -1.2 \end{bmatrix}$$
 14. $\mathbf{y} = \begin{bmatrix} 14/5 \\ 2/5 \end{bmatrix} + \begin{bmatrix} -4/5 \\ 28/5 \end{bmatrix}$

Section 6.3, page 352

2.
$$\mathbf{v} = 2\mathbf{u}_1 + \frac{3}{7}\mathbf{u}_2 + \frac{12}{7}\mathbf{u}_3 - \frac{8}{7}\mathbf{u}_4; \mathbf{v} = \begin{bmatrix} 2\\4\\2\\2 \end{bmatrix} + \begin{bmatrix} 2\\1\\-5\\1 \end{bmatrix}$$

Section 6.4, page 358

$$\mathbf{2.} \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \\ -8 \end{bmatrix}$$

6.
$$\begin{bmatrix} 3 \\ -1 \\ 2 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 6 \\ -3 \\ 0 \end{bmatrix}$

- 1. The exercise does not specify the matrix A, but only lists the eigenvalues 3 and 1/3, and the corresponding eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Also, $\mathbf{x}_0 = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$.
 - a. To find the action of A on \mathbf{x}_0 , express \mathbf{x}_0 in terms of \mathbf{v}_1 and \mathbf{v}_2 . That is, find c_1 and c_2 such that $\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$. This is certainly possible because the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent (by inspection and also because they correspond to distinct eigenvalues) and hence form a basis for \mathbb{R}^2 . (Two linearly independent vectors in \mathbb{R}^2 automatically span \mathbb{R}^2 .) The row reduction $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 9 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -4 \end{bmatrix}$ shows that $\mathbf{x}_0 = 5\mathbf{v}_1 4\mathbf{v}_2$. Since \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors (for the eigenvalues 3 and 1/3):

$$\mathbf{x}_{1} = A\mathbf{x}_{0} = 5A\mathbf{v}_{1} - 4A\mathbf{v}_{2} = 5 \cdot 3\mathbf{v}_{1} - 4 \cdot (1/3)\mathbf{v}_{2} = \begin{bmatrix} 15\\15 \end{bmatrix} - \begin{bmatrix} -4/3\\4/3 \end{bmatrix} = \begin{bmatrix} 49/3\\41/3 \end{bmatrix}$$

b. Each time A acts on a linear combination of \mathbf{v}_1 and \mathbf{v}_2 , the \mathbf{v}_1 term is multiplied by the eigenvalue 3 and the \mathbf{v}_2 term is multiplied by the eigenvalue 1/3:

$$\mathbf{x}_2 = A\mathbf{x}_1 = A[5 \cdot 3\mathbf{v}_1 - 4(1/3)\mathbf{v}_2] = 5(3)^2\mathbf{v}_1 - 4(1/3)^2\mathbf{v}_2$$

In general, $\mathbf{x}_k = 5(3)^k \mathbf{v}_1 - 4(1/3)^k \mathbf{v}_2$, for $k \ge 0$.

2. The vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -5 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ -3 \\ 7 \end{bmatrix}$ are eigenvectors of a 3×3 matrix A, corresponding to

eigenvalues 3, 4/5, and 3/5, respectively. Also, $\mathbf{x}_0 = \begin{bmatrix} -2 \\ -5 \\ 3 \end{bmatrix}$. To describe the solution of the equation

 $\mathbf{x}_{k+1} = A\mathbf{x}_k (k = 1, 2, ...)$, first write \mathbf{x}_0 in terms of the eigenvectors.

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 & -2 \\ 0 & 1 & -3 & -5 \\ -3 & -5 & 7 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \Rightarrow \mathbf{x}_0 = 2\mathbf{v}_1 + \mathbf{v}_2 + 2\mathbf{v}_3$$

Then, $\mathbf{x}_1 = A(2\mathbf{v}_1 + \mathbf{v}_2 + 2\mathbf{v}_3) = 2A\mathbf{v}_1 + A\mathbf{v}_2 + 2A\mathbf{v}_3 = 2 \cdot 3\mathbf{v}_1 + (4/5)\mathbf{v}_2 + 2 \cdot (3/5)\mathbf{v}_3$. In general, $\mathbf{x}_k = 2 \cdot 3^k \mathbf{v}_1 + (4/5)^k \mathbf{v}_2 + 2 \cdot (3/5)^k \mathbf{v}_3$. For all k sufficiently large,

$$\mathbf{x}_k \approx 2 \cdot 3^k \, \mathbf{v}_1 = 2 \cdot 3^k \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$