Chapter2 SUPPLEMENTARY EXERCISES

L

a.

True. If A and B are mxn matrices, then BT has as many rows as A has columns, so AB” is -
defined. Also, AB is defined because A” has m colurns and B has m rows. '

- False. B must have 2 columns. A has as many columns as B has rows.

¢. True. The ith row of A has the form (0, ..., d, ..., 0). So the ith row of AB i ©,....d, ...,0)B,

which is d; times the ith row of B.

. False. Take the zero matrix for B. Or, construct a matrix B such that the equation Bx = 0 has -

nontrivial solutions, and construct C and D so that C # D and the columns of C - D satisfy the

equation Bx = 0. Then B(C - D) = 0 and BC = BD. % o o

: 11 0 . [o o
alse. Count le:A = and C= :
False. Coun erexample {0 OJ nd C [0 IJ

False. (A + B)(A—B) =A” - AB + BA - B. This equals A~ B’ if and only if A commutes with B. -

17. Let A be a 6x4 matrix and B a 4x6 matrix. Since B has more éélumns than rows, its six columns are
linearly dependent and there is a nonzero x such that Bx = 0. Thus ABx = A0 = 0. This shows that the

matrix AB is not invertible, by the IMT. (Basically the same argument was used to solve Exercise 22
in Section 2.1.) '

Note: (In the Study Guide) 1t is possible that BA

18.

is invertible. For example, let C be an invertible 4x4

; C
_matrix and construct 4 = [0] and B=[C"! 0]. Then BA = [, which is invertible.

By hypothesis, A is 5x3, Cis 3x5, and CA = I5. Suppose x satisfies Ax = b. Then CAx = Cb. Since
CA =1, x must be Cb. This shows that Cb is the only solution of Ax = b.
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2. A constant may be factored out of one row.

2.

4. A row replacement operation does not change the |
determinant. {
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2. a. Given [;:l in W and any scalar c, the vector
x

;]

(ex)(cy) = e*(xy) = 0, since xy > 0.
-1
-7

[ cx] is in W becanse
¢y .

b. Example: Ifu = :{andv=[§],thenuandvare :

in W, but u + v is not in W,

4.

u and v are on the line, but n + v is not.

6. No, the zero polynomial is not in the set.

8. Yes. The zero vector is in the set, H. Ifpand qarein H,
then (p + @)(0) = p(0) + q(0) =0, s0 p + q is in A.
Also, for any scalar ¢, (cp)(0) = ¢.-p(0) = ¢ -0 = 0, so
cpisin H.

3
10. H = Span {v}, where v = 0 |.ByTheorem 1, H is a
: -7
subspace of R?. -
. " 4
2 -0
12. W = Span{u, v}, where u = 2 Y= 3| By
0 5

Theorem 1, W is a subspace of R*. .
20. a. The constant function f(z) = 0 is continuous. The sum |
of two continuous functions is continuous. A constant
multiple of a continuous function is continuous.
Let # = {fin C[a, ] : f(a) = £(b)}. Take f and g in
H and let ¢ be a real number. Then, the function f + g
is in C(a, b), because the sum of two continuous
functions is continuous. Also,

( +g)(a) = £(a) + g(a) = £(5) +g() = +g)®),

which shows that f + gisin H. Next, using the
definition of cf,

(ef)(a) = c(f(a)) = c(£()),

because f is in H. Also, ¢(f(b)) = cf(b) = (cf)(b).
This shows that the scalar multiple, cf, isin A: Thus H ‘
is closed under sums and scalar multiples, so H is a
subspace.

22. Yes. See the proof of Theorem 12 in Section 2.8 for a proof
that is similar to the one needed here. i

10.

‘- 10.

Section 4.2, page 205

' 2 6 4 1 0
-3 2 5 =1 |=]0|,sowisinNul 4.
-5 -4 1 1 0

8. Wisnota subspace because 0 is not in W . The vector

(0,0, 0) does not satisfy the condition 3r — 2 — 35412,

Wisa s:ubspacc of R* by Theorem 2, because W is the setE
of solutions of the homogeneous system 5

[e]em

2. This set does not form a basis for R*. The set is linearly
dependent because the zero vector is in the set. The

Pi(t) =1, p,(z) =12 The range of T is

Section 4.3, page 213

I 0 o0
columnsof [ 1 0 1 ] do not span R, by the
0 0 1

Invertible Matrix Theorem.

4. These vectors form a basis for R3. See Example 5 for an
example of a justification.

=2 -3
1 2 1
10. 01, 2 12. [_3 }
1 0
0 1

20. The three simplest answers are {V1, ¥2}, {v1,v3)}, and
. {2, v3}. Other answers are possible.

24. Letd = [v1 v, ]. Since A is square and its columns
are linearly independent, its columns also span R”, by the
Invertible Matrix Theorem. So {vy,...,v,} is a basis for

| Section 4.4, page 222
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Section 5.1, page 271
2. Yes 4. Yes,A=3
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8. Yes,

6.
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Section 5.2, page 279
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Section 5.3, page 286

321 —160
2 | 480 —239

—3.(=3)f +4.- (=2 6 {—3)"—6-(—2)*}
o S S A

57 74 0
6. A=3: |0, |3, A=4]1
1 0 0

When an answer involves a diagonalization, A = PDP ™, the

factors P and D are not unique, so your answer may differ from:

that given here.

8. Not diagonalizable. The eigenvalue 3 has multip].icity two,
but the associated eigenspace is only one-dlmens%o_nal_. e

o wf | i 2 0 0
2.P=| 1 0 1|,D=|0 2 o0
; ¢ T 1 0 0 5

16. Not diagohalizalﬂé. ‘1he only real eigenvaiue is 0 and its ."
eigenspace is only one-dimensional. |

1 2 1
8. P=|1 1 1/|,D=
' 2z 0]

#Secﬁon 5.4, page 293

10. a. Forany p, qin P; and any scalar c,

[ ®+9(-2)
P+90)
e+

L ®+9)(©0)
[p(-2) q(-2)
p(3) MR (©)
p(l) q(1)
| p(0) q(0)
T(p) + T(q)

(c-p)(-2) p(=2)
PG | _ c.| PA)
(c-p(D) p(1)
(c-p)(0) p(0)

=c-T(p)

-8
27

Te+q) =

T(c-p)=

w
(=N Y-

18. If there is a basis 3 such that [T]s is diagonal, then A4 is
' | similar to a diagonal matrix, by the second paragraph
following Example 3. If A has a set of three eigenvectors

such that [T'] 5 is diagonal. However, since 4 has only two
| distinct eigenvalues, it may be the case that a set of linearly
. independent eigenvectors contains AL mMOSt tWo vectors.

56 Ot poge)
i

that is linearly independent, then there will be a choice of B |

Chapter 5 Supplementary Exercises, page 326

1oa Tme Ifdis invertible and if Ay = 1 - x for some

nonzero x, then left-multiply by A7 to obtain
X = A7, which may be rewritten as A~ lx = ] .x.
i]il?e X is nonzero, this shows that 1 is an eigenvalue of

b. False. If 4 is row equivalent to the identity matrix, then
A is invertible. The matrix in Example 4 in Section 53
slllows that an invertible matrix need not be
diagonalizable, Also, see Exercise 31 in Section 5.3,

True. If 4 cpntains a1ow or column of zeros, then A is
D0t 10W equivalent to the identity matrix and thus is not

.mverti}_ale. By the Invertible Matrix Theorem (as stated
1n Section 5.2), 0 ig an eigenvalue of 4,

d. False. Consider 5 diagonal matrix p whose
eigenvalues are 1 and 3 is, ]
land 3. Then D25, diagonal matrix whose
eigenvalues (diagonal entries) are 1 and 9. Iy general,

the eigenvalues of 42 are the squares of the
e1genvalues of 4.

e. True. Suppose a nonzero vector x satisfies Ax — Ax,
then

A% = A(4Ax) = A(Ax) = ddx = A%

This shows that x is also an eigenvector of A2,
f.  True. Suppose a nonzero vector x satisfies Ax — Az, !
then left-multiply by 4! to obtain
x=A"1(Ax) = AA~'x. Since 4 is invertible, the
eigenvalue 1 is not zero. So A7'x = A~'x, which i
shows that X is also an eigenvector of A—!.
g False. Zero is an eigenvalue of each singular square
matrix.
h. True. By definition, an eigenvector must be nonzero.
i False. If the dimension of the eigenspace is at least 2,
then there are at least two linearly independent
eigenvectors in the same subspace.
True. This follows from Theorem 4 in Section 5.2. !
k. False. Let A be the 3 x 3 matrix in Example 3 in
Section 5.3. Then 4 is similar to a diagonal matrix D. '
The eigenvectors of D are the columns of I, but the
eigenvectors of A are entirely different.

[
.

2 0 1 ,
L False.LetA—l:O 3].Thene1—l:0]and i

e, = [ 1 |2 eigenvectors of 4, but e; + e, is not.

(Actually, it can be shown that if two eigenvectors of 4 ‘
correspond to distinct eigenvalues, then their sum
cannot be an eigenvector.)

m. False. All the diagonal entries of an upper triangnlar
matrix are the eigenvalues of the matrix (Theorem 1 in
Section 5.1). A diagonal entry may be zero. ‘

n. True. Matrices 4 and AT have the same characteristic
polynomial, because det(A” — AJ) = det(d — AJ)T =
det(4 — AI), by the determinant transpose property.

0. TFalse. Counterexample: Let 4 be the 5 x 5 identity
matrix. :




P. True. For example, let 4 be the matrix that rotates
vectors through 7/2 radians about the origin. Then Ax
1s not a multiple of X when x is nonzero.

q. F.alse. If A is a diagonal matrix with a zero on the
diagonal, then the columns of 4 are not linearly
independent.

" . True If AX = A;x and Ax = A2X, then A;x = A;x and |
(A1 =A)x = 0. Fx # 0, then Ay must equal 1,.

s. False‘. Let A be a singular matrix that is diagonalizable, ;
(For Instance, let A be a diagonal matrix with a zero on *
the chagona.l.) Then, by Theorem 8 in Section 5.4, the
trans'fonnan_on X = Ax is represented by a diagonal
Imatrix relative to a coordinate system determined by
eigenvectors of A4.

t.  True. By definition of matrix multiplication,

A=AI=A[81 e - e,,}: 7.-:
[Ae; de; - de,] S

e

If Ae; = dje; for j =1,...,n, then 4 is a diagonal
matrix with diagonal entries d;, . . ., d,. :

u. True. If B = PDP~!, where D is a diagonal matrix,
andif A = QBQ ™', then A = Q(PDP™HQ0™! =
(QP)D(QP)™', which shows that A is diagonalizable.

v. True. Since B is invertible, AB is similar to
B(AB)B~!, which equals BA. .

w. False. Having n linearly independent eigenvectors i
makes an n X n matrix diagonalizable (by the
Diagonalization Theorem in Section 5.3), but not
necessarily invertible. One of the eigenvalues of the
matrix could be zero.

%x. True. If A is diagonalizable, then by the
Diagonalization Theorem, A has » linearly independent
eigenvectors vy,. .., v, in R". By the Basis Theorem,
{¥i,...,V,} spans R". This means that each vector in
_R" can be written as a linear combination of vy,.. ., Va. :
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16. Orthogona] 18. Not orthogonal

22. u-u > 0 because u-uis a sum of squares of the entries in u.
The sum of squares of numbers is zero if and only if all the
numbers are themselves zero.

24. Ju+vP=(@+v)-(u+v) =p-us+2u-v+v.y
= || + 2u-v + ||v|?
la=v|*=@-v)-(a-v)
= w-u+u-(—v)—v-u+v-y
= [lul® - 2u-v + |Iv|>-

When [lu -+ v|* and [|u — v||? are added, the u-v terms
cancel, and the result is 2||uf|* 4 2/|v|%

26. Theorem 2 in Chapter 4, because W is the null épace of the
1 n matrix u”. W is a plane through the origin of R?.

Section 6.2, page 344

T4 _T14/51  [—4/5
w i) e [SR][5E]

Section 6.3, page 352

2
4
12 8y, v =
2.V=2111+%[13+7113—’-7u4:V— 2 -+ -5
2
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5.6  SOLUTIONS

1. The exercise does not specify the matrix A, but only lists the eigenvalues 3 and 1/3, and the
‘ 1 ' -1 .19
corresponding eigenvectors v, =L:l and v, ={ J. Also, x, =L}‘

a. To find the action of A on x,, express x, in terms of v, and v,. Thatis, find ¢, and ¢, such
that x, =¢,v, +¢,v,. This is certainly possible because the eigenvectors v, and v, are linearly
independent (by inspection and also because they correspond to distinct ei genvalues) and hence
form a basis for R?. (Two linearly independent vectors in R* automatically span R?.) The row

1 1 1] |0 1" 4
v, are eigenvectors (for the eigenvalues 3 and 1/3):

. 1 -1 911 0 5 : ' ) ‘
reduction [vl v, X0}= - shows that x, =5v, —4v,. Since v, and.

‘ 157 [—4/37 [49/3
= ARy =54V, ~ 44V, =53%, ~4-U3v,=| 1| T |=
=== 2=9:3% ~4-(B3)v, LSJ {4/3}_ {41/3}

b. Each time A acts on a linear combination of v, and v,, the v, term s multipiied by the - 7
eigenvalue 3 and the v, term is multiplied by the eigenvalue 1/3: '

X, = A%, = A[5-3v, —4(U3)v,]=5(3)" v, —4(1/3)*v,
In general, x, =5(3) v, —4(1/3)" v,, for k 20,

1] 2 -3
2. The vectors v, =| 0|,v,=| 1,v3=|-3] are e‘igen-vectors of a 3x3 matrix A, corresponding to
-3 -5 7 | “
%,
eigenvalues 3, 4/5, and 3/5, respectivély. Also, x,={-5|. To des;:ribe the sblution of the equatioﬁ.
3

X, =Ax, (k =12, ), first write x, in terms of the eigenve%c:toré.
1 2 -3 2] [t 00 2

[vi v, v, x|=| 0 1 =3 5|~|0 1 0 1|=x=2v,+v,+2v,
3 -5 7 3|10 0 0 2

Then, x, = A(2v, +v, +2v,)=2Av, + Av, + 2Av;=2-3v, +(4/5)v,
X =23y + (45 v, +2. (3/5)*v,. For all k sufficiently large,
1
x, =23y, =2.3*| ¢
—3

+2-(3/5)v,. In general,






