Linear Algebra
 - MA 242 -

Extra Credit

HW 9

1 (Characteristic polynomial, determinants and traces)

Consider the square matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
a) Compute the characteristic polynomial for A.
b) The trace, $\operatorname{tr}(A)$, of a square matrix A is defined as the sum of its diagonal entries. For the 2×2 matrix A we have $\operatorname{tr}(A)=a+d$. How are the coefficients of the characteristic polynomial computed in a) related to $\operatorname{tr}(A)$ and $\operatorname{det}(A)$?
c) Show that for the 2×2 matrix A we have that both eigenvalues are real if and only if $\operatorname{det}(A) \leq\left(\frac{1}{2} \operatorname{tr}(A)\right)^{2}$.

2 (Block matrices)

Consider the block matrix $\mathcal{D}=\left[\begin{array}{cc}A & X \\ 0 & B\end{array}\right]$ where A, B, X are matrices and 0 is a zero matrix.
a) It holds that

$$
\operatorname{det}(\mathcal{D})=\operatorname{det}(A) \operatorname{det}(B)
$$

Explain why this is plausible.
b) Assume that the characteristic polynomial of A is $p_{A}(\lambda)$ and the characteristic polynomial of B is $p_{B}(\lambda)$. Given the formula in a), conclude that the characteristic polynomial for \mathcal{D} is $p_{\mathcal{D}}(\lambda)=p_{A}(\lambda) p_{B}(\lambda)$.
c) Determine eigenvalues and determinant of the following matrix.

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 7 & -11 & \pi \\
37 & 2 & 0 & 8 & 44 & 22 \\
5 & \pi & 3 & 9 & 102 & 19 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 2 & 1 & \frac{1}{3}
\end{array}\right]
$$

