

Department of Mathematics & Statistics

– not graded –

Consider

$$u = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \quad v = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

1 Compute the following quantities (with the notation $u \cdot v := u^T v$ for the inner product).

a)	$b_1 \cdot b_1$	=	e)	$\frac{u \cdot b_2}{b_2 \cdot b_2} b_2$	=	
b)	$b_2 \cdot b_2$	=	f)	$\ u\ $	=	
c)	$b_1 \cdot b_2$	=	g)	$\ u-v\ $	=	
d)	$\frac{u \cdot b_1}{b_1 \cdot b_1} b_1$	=	h)	$\ v-u\ $	_	

2 Compute the coordinate representation $[u]_{\mathcal{B}}$ of u w.r.t. the basis $\mathcal{B} = \{b_1, b_2\}$.

$$\mathcal{P}_{\mathcal{B}}^{-1} = \underline{\qquad}, \qquad [u]_{\mathcal{B}} = \underline{\qquad}$$

Check your answer by using that

$$u = \frac{u \cdot b_1}{b_1 \cdot b_1} \, b_1 + \frac{u \cdot b_2}{b_2 \cdot b_2} \, b_2,$$

and your computations from $\mathbf{1}$.

3 Give two vectors in \mathbb{R}^3 that are orthogonal (and are not columns of an identity matrix).