

Department of Mathematics & Statistics

- not graded -

1 Consider a matrix
$$A \in \mathbb{R}^{3 \times 4}$$
 given by $A = \begin{bmatrix} 1 & 1.7 & -1 & 22 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$.

a) Determine the dimension of Col(A). c) How many pivot columns does A have?

b) Determine the dimension of Nul(A).

d) How many non-pivot columns does A have? How many free variables does Ax = 0 have?

e) Is there a relation between a)-d) and the dimension of A?

- **2** Consider the sets $\mathcal{B} = \left\{ \begin{bmatrix} 7\\5 \end{bmatrix}, \begin{bmatrix} -3\\-1 \end{bmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{bmatrix} 1\\-5 \end{bmatrix}, \begin{bmatrix} -2\\2 \end{bmatrix} \right\}$ and the vector $x = \begin{bmatrix} 1\\1 \end{bmatrix}$.
 - a) Why is \mathcal{B} a basis for \mathbb{R}^2 ? Why is \mathcal{C} a basis for \mathbb{R}^2 ? Give another valid choice of basis.
 - **b)** Compile the change of variables matrices $\mathcal{P}_{\mathcal{B}}$ and $\mathcal{P}_{\mathcal{C}}$ associated with \mathcal{B} and \mathcal{C} . Why are these matrices invertible?
 - c) Compute the coordinate representation $[x]_{\mathcal{B}}$ of x w.r.t. \mathcal{B} and $[x]_{\mathcal{C}}$ of x w.r.t. \mathcal{C} .
 - **d)** Change of basis between \mathcal{B} and \mathcal{C} : Noting that $[x]_{\mathcal{B}} = \mathcal{P}_{\mathcal{B}}^{-1}x$ and $[x]_{\mathcal{C}} = \mathcal{P}_{\mathcal{C}}^{-1}x$, we have

$$[x]_{\mathcal{C}} = \mathcal{P}_{\mathcal{C}}^{-1} \mathcal{P}_{\mathcal{B}} [x]_{\mathcal{B}}.$$

Why? Verify this using your answers from **c**).