Linear Algebra

- MA 242 -

Exercise Sheet

5

- not graded -

1 Consider a matrix $A \in \mathbb{R}^{3 \times 4}$ given by $A=\left[\begin{array}{cccc}1 & 1.7 & -1 & 22 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3\end{array}\right]$.
a) Determine the dimension of $\operatorname{Col}(A)$.
c) How many pivot columns does A have?
b) Determine the dimension of $\operatorname{Nul}(A)$.
d) How many non-pivot columns does A have? How many free variables does $A x=0$ have?
e) Is there a relation between \mathbf{a})-d) and the dimension of A ?

2 Consider the sets $\mathcal{B}=\left\{\left[\begin{array}{l}7 \\ 5\end{array}\right],\left[\begin{array}{l}-3 \\ -1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{c}1 \\ -5\end{array}\right],\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\}$ and the vector $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
a) Why is \mathcal{B} a basis for \mathbb{R}^{2} ? Why is \mathcal{C} a basis for \mathbb{R}^{2} ? Give another valid choice of basis.
b) Compile the change of variables matrices $\mathcal{P}_{\mathcal{B}}$ and $\mathcal{P}_{\mathcal{C}}$ associated with \mathcal{B} and \mathcal{C}. Why are these matrices invertible?
c) Compute the coordinate representation $[x]_{\mathcal{B}}$ of x w.r.t. \mathcal{B} and $[x]_{\mathcal{C}}$ of x w.r.t. \mathcal{C}.
d) Change of basis between \mathcal{B} and \mathcal{C} : Noting that $[x]_{\mathcal{B}}=\mathcal{P}_{\mathcal{B}}^{-1} x$ and $[x]_{\mathcal{C}}=\mathcal{P}_{\mathcal{C}}^{-1} x$, we have

$$
[x]_{\mathcal{C}}=\mathcal{P}_{\mathcal{C}}^{-1} \mathcal{P}_{\mathcal{B}}[x]_{\mathcal{B}} .
$$

Why? Verify this using your answers from c).

