Linear Algebra
 - MA 242 -

Exercise Sheet

2
1.1 Execute the following matrix-vector multiplications, if they are defined.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -\sqrt{17} \\
\sqrt{2} & 3
\end{array}\right]\left[\begin{array}{c}
7 \\
-9
\end{array}\right]=\left[\begin{array}{c}
7+9 \sqrt{17} \\
7 \sqrt{2}-27
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]=\text { not defined, }} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
-1 & -1
\end{array}\right]=\text { not defined, } \quad\left[\begin{array}{cccc}
7 & 8 & 9 & 10
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=-2,} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-2 \\
-2
\end{array}\right], \quad\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]=\text { not defined, }}
\end{aligned}
$$

1.2 Define linear independence and linear dependence relations.

If $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of vectors, then the vector equation

$$
\begin{equation*}
c_{1} v_{1}+\ldots c_{n} v_{n}=0 \tag{1}
\end{equation*}
$$

has at least one solution, namely

$$
c_{1}=0, c_{2}=0, \ldots, c_{n}=0
$$

If this is the only solution, then S is called a linearly independent set. If there are other solutions, then S is called a linearly dependent set and (1) is called linear dependence relation.
$1.3\left[\begin{array}{ccc|c}3 & -6 & 9 & 0 \\ -6 & 4 & h & 0 \\ 1 & -3 & 3 & 0\end{array}\right]$
For which $h \in \mathbb{R}$ does the corresp. system of linear equations have
$a)$ one solution, $b)$ no solution, or c) infinitely many solutions?

$$
\left[\begin{array}{ccc|c}
3 & -6 & 9 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 18+h & 0
\end{array}\right]
$$

This system always has the trivial solution $[0,0,0]$, so b) never happens. For $h \neq-18$ this is the only solution, for $h=-18$ there are infinitely many solutions.
1.4 For which values of $h \in \mathbb{R}$ are the vectors below linearly independent?

$$
\left[\begin{array}{c}
3 \\
-6 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-6 \\
4 \\
-3
\end{array}\right], \quad\left[\begin{array}{l}
9 \\
h \\
3
\end{array}\right]
$$

Checking for linear independence gives the vector equation

$$
c_{1}\left[\begin{array}{c}
3 \\
-6 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-6 \\
4 \\
-3
\end{array}\right]+c_{3}\left[\begin{array}{l}
9 \\
h \\
3
\end{array}\right]=0
$$

whose augmented matrix coincides with the one in 1.3 . Hence, for $h \neq-18$ the vectors are linearly independent.
1.5 Write the solution set for the linear equation $2 x_{1}+6 x_{2}+8 x_{3}=0$ in parametric form. What geometric object can be associated with the solution set?

$$
2 x_{1}+6 x_{2}+8 x_{3}=0 \Leftrightarrow x_{1}+3 x_{2}+4 x_{3}=0 \Leftrightarrow x_{1}=-3 x_{2}-4 x_{3}
$$

Solutions are of the form

$$
x=\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-3 b-4 c \\
b \\
c
\end{array}\right]=b\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right], \quad b, c \in \mathbb{R},
$$

so they all lie in a plane through the origin.

