
© 2014 IBM Corporation 1 ICSC 2014, Shanghai, China

Part 1 : Roofline Model

Instructor: Leopold Grinberg
 IBM, T.J. Watson Research Center, USA

e-mail: leopoldgrinberg@us.ibm.com

© 2014 IBM Corporation 2 ICSC 2014, Shanghai, China

DATA

DATA

CALCULATIONS
(+, -, /, *,)

The Roofline Model

© 2014 IBM Corporation 3 ICSC 2014, Shanghai, China

The Roofline Model

q The roofline model was introduced in 2009 by Williams et.al.
Ø Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance

model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76. DOI=10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

q It provides an easy way to get performance bounds for compute and memory bandwidth
bound computations.

q It relies on the concept of Computational Intensity (CI) – sometimes also called Arithmetic
or Operational Intensity.

q The Roofline Model provides a relatively simple way for performance estimates
based on the computational kernel and hardware characteristics.

Performance [GF/s] = function (hardware and software characteristics)

© 2014 IBM Corporation 4 ICSC 2014, Shanghai, China

DATA

DATA

CALCULATIONS
(+, -, /, *,)

for (i=0; i < N; i=i+1)
a[i] = b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(b[i])+exp(b[i])

DATA TRANSFER,
NO FLOPS

DATA TRANSFER,
ADDs and MULs

DATA TRANSFER,
 FLOPS

FLOPS : Bytes Balance

FLOPS:Bytes ratio is
the basic variable of the
Roofline model

© 2014 IBM Corporation 5 ICSC 2014, Shanghai, China

Commu
nication Locality

Comput
ation

Performance can be estimated

from hardware and kernel characteristics

Some hardware is more communication oriented than another (high memory BW)

Some hardware is more computation oriented than another (high FLOPs)

Mapping kernel characteristics to hardware characteristics (or vice-versa) → performance

Kernels can be Compute bounded (DGEMM) or Communication bounded (DAXPY)
(kernels are rarely well balanced)

The Roofline Model: Principal Components to Performance

© 2014 IBM Corporation 6 ICSC 2014, Shanghai, China

DATA

DATA

CALCULATIONS
(+, -, /, *,) MEMORY

BANDWIDTH
(WRITE)

 MEMORY
BANDWIDTH

(READ)

FLOPS

Performance Limiting Factors

© 2014 IBM Corporation 7 ICSC 2014, Shanghai, China

The Roofline Model - is a tool to understand the kernel/hardware limitation
and it is also a tool for kernel optimization

Performance is upper bounded by:

1) the peak flop rate

2) the streaming bandwidth

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

The Roofline Model

BW
limited

FLOP
limited

© 2014 IBM Corporation 8 ICSC 2014, Shanghai, China

for (i=0; i < N; i=i+1)
a[i] = 2.3*b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(b[i])+exp(b[i])

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

The Roofline Model

© 2014 IBM Corporation 9 ICSC 2014, Shanghai, China

FLOPS / Bytes ratio – one of the basic characteristics of a kernel

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]

1 ADD
 2 (8 byte) loads

1 (8 byte) write
AI = 1 / (2*8 + 8) = 1/24*

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i]

1 ADD
1 MUL

 2 (8 byte) loads
1 (8 byte) write

AI = 2 / (2*8 + 8) = 1/12*

for (i = 0; i < N; ++i){
 I1 = A_offset[i]; I2 = A_offset[i+1];
 sum = 0.0
 for (j = 0; j < (I2-I1); ++j)
 sum += A[I1+j] * x[col_index [I2+j]];
 y[i] = sum;
}

1 ADD
1 MUL

 2 (8 byte) + 1 (4 bytes) loads
1 (8 byte) write

AI = 2 / (2*8 + 4 + 8) = 1/14

 * because of write-allocate traffic on cache-based systems kernel
 would actually requires an extra read for Z and have even lower AI.

The Roofline Model: Arithmetic Intencity (AI)

© 2014 IBM Corporation 10 ICSC 2014, Shanghai, China

Arithmetic Intensity

BLAS L1,
SpMv

stencil
FFT

BLAS L3
Particle
methods

The Roofline Model: Arithmetic Intencity (AI)

© 2014 IBM Corporation 11 ICSC 2014, Shanghai, China

q The trend is for architectures to have ever
decreasing machine balance (the point
where the bandwidth roof meets the ceiling
moves to the right).

q More and more algorithms are going to find
themselves memory bound.

q Even DGEMM can run into trouble
depending on the blocking factor chosen.

q A “balanced” architecture can also be a
“crippled” one, e.g. low-end GPUs with
1/24th the DP peak performance.
Ø You can achieve a higher percentage of a

lower peak.

How Will the Fast Multipole Method Fare in the Exascale Era?
SIAM News, Volume 46, Number 6, July/August 2013
By Lorena A. Barba and Rio Yokota (Boston University & KAUST)

The Roofline Model: Kernel-Hardware mapping

© 2014 IBM Corporation

It is an art to find a perfect match between kernel and hardware characteristics

In another words it requires a lot of work to create a kernel that will exhaust both, the memory BW and
FLOPs capacity at the same time. (many times it is even impossible ….)

P

er
fo

rm
an

ce
 [G

F/
s]

Computational Intensity (FLOPS/BYTE)

ICSC 2014, Shanghai, China

© 2014 IBM Corporation 13 ICSC 2014, Shanghai, China

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

SIMD
ILP

TLP

© 2014 IBM Corporation 14 ICSC 2014, Shanghai, China

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

Data
prefetch NUMA

Stride
access

© 2014 IBM Corporation 15 ICSC 2014, Shanghai, China

N – is large, i.e., buffer does not fit
cache

--

for (i=0; i < N; ++i)
 a[i] = buffer[i] + b[i];

for (i=0; i < N; ++i)
 c[i] = buffer[i] + d[i];

AI_total = 2 / (2 * 3 * 8) = 1/24;

--

for (i=0; i < N; ++i){
 a[i] = buffer[i] + b[i];
 c[i] = buffer[i] + d[i];
}

AI = 2/(5*8) = 1 / 20;

--

P
er

fo
rm

an
ce

 [G
F/

s]

Computational Intensity (FLOPS/BYTE)

The Roofline Model: Performance limiting factors

© 2014 IBM Corporation 16 ICSC 2014, Shanghai, China

sum = 0;
for (i=0; i < N; ++i)
 sum = sum + a[i];

sum0 = sum1 = sum2 = sum3 = 0;
for (i=0; i < N; i+=4){
 sum0 = sum0 + a[i];
 sum1 = sum1 + a[i+1];
 sum2 = sum2 + a[i+2];
 sum3 = sum3 + a[i+3];
}
sum0 = sum0+sum1;
sum2 = sum2+sum3;
sum = sum0+sum2;

The Roofline Model: Performance Limiting Factors -
Instruction Level Parallelism (ILP)

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

© 2014 IBM Corporation

EXAMPLES and EXERCISES

April 22, 2014

© 2014 IBM Corporation 18 ICSC 2014, Shanghai, China

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

For each “i” : 1 addition , 1 multiplication
 2 loads of 8 bytes each
 1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node)

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

204.8

7.11

Performance estimates:

AI = 2/(3*8) = 1 / 12

1/12 < 7.11 →
We are in the memory BW
limited area on the
Roofline plot
7.11 / (1 / 12) = 85.32
204.8 / 85.32 = 2.4 GF/s

Example 1: DAXPY

© 2014 IBM Corporation 19 ICSC 2014, Shanghai, China

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

For each “i” : 1 addition , 1 multiplication
 2 loads of 8 bytes each
 1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s]

GFLOPS DDR traffic
per node
(Bytes/cycle)

1 0.0879111 0.455 3.519

2 0.044039 0.907 7.022

4 0.022151 1.801 13.94

8 0.0174019 2.284 17.686

16 0.017447 2.287 17.719

Performance estimates:

AI = 2/(3*8) = 1 / 12

1/12 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 12) = 85.32
204.8 / 85.32 = 2.4 GF/s

Example 1: DAXPY

© 2014 IBM Corporation 20 ICSC 2014, Shanghai, China

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] + x[i]*x[i]

For each “i” : 2 addition , 2 multiplication
 2 loads of 8 bytes each
 1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

P
er

fo
rm

an
ce

 [G
F/

s]

Arithmetic Intensity (FLOPS/BYTE)

204.8

7.11

Performance estimates:

AI = 4/(3*8) = 1 / 6

1/6 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 6) = 42.66
204.8 / 42.66 = 4.8 GF/s

Example 2

© 2014 IBM Corporation 21 ICSC 2014, Shanghai, China

Consider : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] +x[i]*x[i]

For each “i” : 2 addition , 2 multiplication
 2 loads of 8 bytes each
 1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

Performance estimates:

AI = 4/(3*8) = 1 / 6

1/6 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 6) = 42.66
204.8 / 42.66 = 4.8 GF/s

threads Time [s]

GFLOPS DDR traffic
per node

1 0.106501 0.751 2.906

2 0.053323 1.499 5.802

4 0.0267339 2.989 11.566

8 0.0176179 4.532 17.545

16 0.0174541 4.573 17.712

Example 2

© 2014 IBM Corporation 22 ICSC 2014, Shanghai, China

Consider for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s]

GFLOPS DDR traffic
per node

1 0.615393 1.755 0.503

2 0.307695 3.51 1.006

4 0.153861 7.018 2.244

8 0.076983 14.023 4.02

16 0.0385199 28.008 8.034

32 0.0217798 49.461 14.202

64 0.018496 58.137 16.73

Example 3

© 2014 IBM Corporation 23 ICSC 2014, Shanghai, China

y[i] = a*x[i]+y[i]

Loads that hit in L1 d-cache = 50.01 %
 L1P buffer = 49.98 %
 L2 cache = 0.00 %
 DDR = 0.01 %

y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
 L1P buffer = 2.70 %
 L2 cache = 0.00 %
 DDR = 0.00 %

We spend too much
time

moving data:
2.284 GF/s

We spend
 less time

moving data
than computing

58.137 GF/s

Examples 1 and 3

© 2014 IBM Corporation 24 ICSC 2014, Shanghai, China

y[i] = a*x[i]+y[i]

Loads that hit in L1 d-cache = 50.01 %
 L1P buffer = 49.98 %
 L2 cache = 0.00 %
 DDR = 0.01 %

y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
 L1P buffer = 2.70 %
 L2 cache = 0.00 %
 DDR = 0.00 %

We spend too much
time

moving data:
2.284 GF/s

solve time: 17.5 ms

We spend
 less time

moving data
than computing

58.137 GF/s
solve time: 18.5 ms

Examples 1 and 3

© 2014 IBM Corporation 25 ICSC 2014, Shanghai, China

Consider two
arrays A, and B,
both have
dimension of NxN

B is computed from:
B[i][j] = A[i-2][j] + A[i-1][j] + C*A[i][j] + A[i+1][j] + A[i+2][j] +
 A[i][j-2] + A[i][j-1] + A[i][j+1] + A[i][j+2]

Arithmetic intensity: 7 adds, 1 mul, 1 load and 1 store →
AI = 8 / (2*8) = 1 / 2
Estimated performance on BG/Q: 7.11 / (½) = 14.22;
 204.8 / 14.22 = 14.4 GF/s

Example: 2D stencil

© 2014 IBM Corporation 26 ICSC 2014, Shanghai, China

2D Stencil: Algorithm No. 1

 #pragma omp parallel for private(row,col)

 for (row = 2; row < (N-2); ++row){
 for (col = 2; col < (N-2); ++col) {
 B[row][col] = C*A[row][col] +
 A[row][col-1] + A[row][col+1] +
 A[row][col-2] + A[row][col+2] +
 A[row-1][col] + A[row+1][col] +
 A[row-2][col] + A[row+2][col] ;
 }
 }

HPM info:
Total weighted GFlops = 4.922
Loads that hit in L1 d-cache = 93.05 %
 L1P buffer = 5.08 %
 L2 cache = 0.00 %
 DDR = 1.86 %
Average DDR traffic per node: ld = 13.680, st = 2.757, total = 16.437 (Bytes/cycle)

We run on a single BGQ node
1 mpi rank, 64 threads

We estimated 14.4GF/s

What have we done wrong?

© 2014 IBM Corporation 27 ICSC 2014, Shanghai, China

2D Stencil: Algorithm No. 2

 #pragma omp parallel for private(rb,cb,row,col)

 for (rb = 2; rb < N; rb = rb + row_block_size){ //ROW BLOCKING
 for (cb = 2; cb < N; cb = cb + col_block_size){ // COLUMN BLOCKING

 for (row = rb; row < MIN(N-2,rb + row_block_size+1); ++row){
 for (col = cb; col < MIN(N-2,cb + col_block_size+1); ++col){
 B_rcb[row][col] = C*A[row][col] +
 A[row][col-1] + A[row][col+1] +
 A[row][col-2] + A[row][col+2] +
 A[row-1][col] + A[row+1][col] +
 A[row-2][col] + A[row+2][col] ;

 }
 }
 }
 }
 HPM info:

Total weighted GFlops = 12.264
Loads that hit in L1 d-cache = 97.69 %
 L1P buffer = 1.26 %
 L2 cache = 0.34 %
 DDR = 0.70 %
Average DDR traffic per node: ld = 7.599, st = 6.746, total = 14.346 (Bytes/cycle)

We estimated 14.4GF/s
We got 12.264GF/s …

© 2014 IBM Corporation 28 ICSC 2014, Shanghai, China

Exercise No 1.

•  Copy /lustre/home/ibmleopold/FOR_STUDENTS/DAXPY/ex0.c

•  Compile and execute daxpy

•  Use 1 to 16 threads to run the program

•  Estimate performance.

•  Find the crossover point.
Calculate the location (x-coordinate) of the crossover point based on hardware
(2-socket Intel(R) Xeon(R) CPU E5-2670 @2.6GHz node) and kernel characteristics

© 2014 IBM Corporation 29 ICSC 2014, Shanghai, China

Exercise No 2.

•  Compile and execute 2D stencil code

•  Use 1 to 16 threads to run the program

•  Estimate performance for 2-socket Intel(R) Xeon(R) CPU E5-2670 @2.6GHz

•  Compare to the achieved performance

© 2014 IBM Corporation 30 ICSC 2014, Shanghai, China

Questions ?

© 2014 IBM Corporation

How to compile

1. ssh

2.  Type

 MODULEPATH=/lustre/utility/modulefiles:$MODULEPATH

3. Load module
 module load icc/13.1.1

Now we can use compiler icc or icpc

April 22, 2014

© 2014 IBM Corporation 32 ICSC 2014, Shanghai, China

Communication
[GB/s] Locality

Computation
[GF/s]

The Roofline Model: Principal Components to Performance

18 cores BGQ chip

