
AM117 Sample Solutions HW #4

Free Advice from the TA:

• When you’re counting operations of some algorithm, you need to show code (be it Matlab or
Pseudo-) that matches your counts. Otherwise there’s no telling where your results came from.

• When you find a result using facts from the book, then always mention what you are using.

For example, it will in general not be enough to say “This matrix is s.p.d.” even if that is so. You
need to give a reason why you believe so.

• Be very aware of what a necessary and what a sufficient condition is. You might want to review
what you learnt in calculus about conditions for local extrema of functions to help you along with
that.

In particular, the theorem on p.213 in the book gives necessary conditions that need to be true for
every spd matrix. That means, if they are not satisfied, then it is safe to conclude that the matrix
is not spd. But even if all the conditions are true, the matrix may still not be spd: the conditions
are not sufficient . (that is, unless you can point to a proof of that fact.)

• When counting operations, try not to initialize variables with zero and then add in a loop. If you
do, the first operation is always “0 + something”, which could just as well be handled by an assign-
ment without any arithmetic. If you do implement and count “0 + � ” as such, you will generally
miss the operation count that the book gives.

• For the Cholesky back-/forward-substitution step, realize that a transpose costs n2 operations, even
if they’re not arithmetic ones. The goal of the problem was to write an algorithm that avoids this
transpose, which nobody did.

1. Problem 2, p. 180

a)

∥

∥

∥
(3,− 5, 2

√
)T
∥

∥

∥

l2
= 32 + 52 + 2

√
2

√

= 9+ 25+ 2
√

= 36
√

= 6,

∥

∥

∥
(3,− 5, 2

√
)T
∥

∥

∥

l∞
=max {|3|, | − 5|, | 2

√
|}= 5.

b)

∥

∥(2, 1,− 3, 4)T
∥

∥

l2
= 4 + 1+ 9+ 16
√

= 30
√

≈ 5.477.

∥

∥(2, 1,− 3, 4)T
∥

∥

l∞
= 4.

c)

∥

∥(4, 8,− 1)T
∥

∥

l2
= 16+ 64+ 1
√

= 81
√

= 9.

∥

∥(4, 8,− 1)T
∥

∥

l∞
= 8.

d)
∥

∥

∥
(− 2 3

√
,− 6, 4, 2)T

∥

∥

∥

l2
= 12+ 36+ 16+4
√

= 68
√

≈ 8.246.

∥

∥

∥
(− 2 3

√
,− 6, 4, 2)T

∥

∥

∥

l∞
= 6.
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e)

∥

∥(e, π,− 1)T
∥

∥

l2
= e2 +π2 +1
√

≈ 4.273.

∥

∥(e, π,− 1)T
∥

∥

l2
= π.

2. Problem 6, p.180

a) Let

A=

(

5 − 4
− 1 7

)

.

Let’s do the straightforward thing first: ‖A‖l∞
= max {5 + 4, 1 + 7} = 9. To calculate ‖A‖

l2
, we need a

couple more steps. First, we need ATA:

ATA=

(

26 − 27
− 27 65

)

.

Next, we need the eigenvalues of ATA. To that end, we write down the charateristic polynomial of A:

det(ATA−λI)=

∣

∣

∣

∣

26−λ − 27
− 27 65−λ

∣

∣

∣

∣

= (26−λ)(65−λ)− 272 = 0.

The solutions of that equation are

λ1,2(ATA) =
91± 3 493

√

2
.

Thus,

ρ(ATA)=max {|λ1|, |λ2|}=
91+3 493

√

2
≈ 78.805,

and we obtain ‖A‖
l2

= ρ(ATA)
√

≈ 8.877.

b) Let

A4 ( 4 2
1 3

)

, ATA=

(

17 11
11 13

)

, λ1,2(A
TA)= 15± 5 5

√
.

Thus ‖A‖
l2

= 15+ 5 5
√√

≈ 5.1167. Slightly more straightforward, ‖A‖l∞
= 4+ 2 =6.

c) Let

A4 4 − 1 − 2
1 2 − 3
0 0 4



, ATA=





17 − 2 − 11
− 2 5 − 4
− 11 − 4 29



.

Here, obtaining the roots of

det(ATA−λI) =−λ3 + 51l2− 582λ + 1296=0

analytically really does not help much–I also don’t really know how to do it. Sure, I can let a computer
algebra system loose on it, but that only results in huge terms that are not necessarily helpful. So, we’ll
compute these eigenvalues and obtain:

A =

2



4 -1 -2

1 2 -3

0 0 4

AtA =

17 -2 -11

-2 5 -4

-11 -4 29

eigv =

2.9411

12.3350

35.7239

normA = 5.9769

For comparison: norm(A,2)=5.97695

using

A = [4,-1,-2;1,2,-3;0,0,4]

AtA = A’*A

eigv = eig(AtA)

normA = max(sqrt(eigv))

fprintf(’For comparison: norm(A,2)=%g’, norm(A,2))

Further, it is not hard to see that ‖A‖
l∞

= 7.

d) Again, we will simply compute the eigenvalues and the norm:

A =

2 1 0

-1 2 -1

-3 4 -4

AtA =

14 -12 13

-12 21 -18

13 -18 17

eigv =

0.34596

5.02064

46.63339

normA = 6.8289

For comparison: norm(A,2)=6.82886

Straightforwardly, ‖A‖l∞
= 11.

3. Problem 1, p. 201
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A few helpful preliminaries before we start: There are n2 entries in a square matrix–easy, right? But how
many entries are in a triangular matrix including the diagonal? The answer is n2/2 + n/2, and this is
simply one way of writing Gauss’s sum formula

∑

k=1

n

k =
n(n + 1)

2
,

which is easily shown by induction. (If you’re not absolutely sure how this would work, please go ahead
and do it. It’s really quick.) If you don’t count the diagonal in a triangular matrix, you get n less entries,
i.e. n2/2−n/2.

a) The quickest way to the goal is realizing that the only difference between Gaussian Elimination for LU
and Gaussian Elimination for solving linear systems is that Gauss LU does not have to update the right-
hand side. That saves one subtraction and one multiplication per inner loop, of which there is one for
each entry below the diagonal, i.e. n2/2 − n/2, as we learned above. All in all, we save n2 − n operations.
p. 155 in the book shows that Gauss for solving takes

2

3
n3 +

1

2
n2− 7

6
n

operations, so Gauss for LU takes

2

3
n3 +

1

2
n2− 7

6
n− (n2−n)=

2

3
n3− 1

2
n2− 1

6
n,

which is the value we’re looking to prove.

There is of course also the long way around involving operation-counting and induction proofs, if you like
long-winded error-prone methods.

b) It is shown in the book that backsubstitution with a general triangular matrix (such as the result of
Gaussian elimination) takes n2 operations (cf. p. 156). Doing this twice would result in 2n2 operations,
but that does not take into account that either L or U can be chosen so that they have ones on the diag-
onal. Inspection of the pseudocode on p. 155f yields that that saves us n divisions (the first and last line
of the code, respectively). Altogether we get an operation count of 2n2−n, as claimed.

c) What we are asked to do is essentially provide an operation count for matrix multiplication. Here’s
some quick and dirty code:

A = [1,2,3;4,5,6;7,8,9];

b = [1;2;3];

c = zeros(3,1);

n = 3;

for i = 1:n

c(i) = A(i,1)*b(1);

for j = 2:n

c(i) = c(i) + A(i,j)*b(j);

end

end

Ab = A*b

c

Each outer loop has n − 1 additions and n multiplications, so 2n − 1 operations total. The outer loop is
run n times, so we have

n(2n− 1) =2n2−n
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operations, as claimed.

4. Problem 1, p. 221

The following table summarizes the results:

Matrix Strictly diag. dom. Sym. pos. def.

a) � � (diag.dom.)
b) × × (not sym.)

c) × × (a2,1
2 > a1,1a2,2)

d) × � (see below)
e) � × (not sym.)
f) � × (a3,3 < 0)

The Theorem on p. 213 has many useful criteria that allow us to quickly conclude that a matrix is not

positive definite–the remarks in parentheses refer to the condition that is violated. Similarly, the corollary
on p. 214 is a quick positive result, which we can use in part a). This leaves us with only one matrix to
check explicitly: the one in d). For this matrix, we’ll solve





l1,1

l2,1 l2,2

l3,1 l3,2 l3,3









l1,1 l2,1 l3,1

l2,2 l3,2

l3,3



=





4 − 2 2
− 2 6 4
2 4 7





by direct factorization. We obtain





l1,1

l2,1 l2,2

l3,1 l3,2 l3,3



=







2

− 1 5
√

1 5
√

1






.

Since the Cholesky decomposition works if and only if a matrix is s.p.d., we may conclude that this is the
case for the matrix in d).

5. Problem 11, p.221

Consider the following (already annotated) code for the Cholesky decomposition:

function L = mycholesky(A)

[n, dummy] = size(A);

% coded up directly from p. 216

for k=1:n

diag_squared = A(k,k);

% 2(k-1) operations

for j=1:k-1

diag_squared = diag_squared - L(k,j)^2;

end

L(k,k) = sqrt(diag_squared);

for i=k+1:n

entry = A(i,k);

% 2(k-1) operations

for j=1:k-1

5



entry = entry - L(i,j)*L(k,j);

end

% 1 operation

L(i,k) = entry/L(k,k);

end

end

end

According to it, we have

∑

k=1

n
[

2(k − 1) +
∑

i=k+1

n

[2(k − 1) +1]

]

operations. (As a help when doing problems like these: You might want to figure out how summing works
in your favorite computer algebra system. That way, after you obtain the non-closed form term above,
you can have the computer verify that it indeed does sum to the right expression before you waste time
proving something that’s wrong. Note: Turning in computer output does not count as a proof. This is just
meant to help you not waste time. Note 2: For example, in Maxima you type

nusum(2*(k-1)+(n-(k+1)+1)*(2*(k-1)+1), k, 1, n);

to sum the above expression and it tells you that we’re on the right track.)

We can prove this now by massaging the formula into the right shape:

∑

k=1

n
[

2(k − 1)+
∑

i=k+1

n

[2(k − 1)+ 1]

]

=
∑

k=1

n

[2(k − 1)+ (n− (k + 1) +1)[2(k − 1)+ 1]]

=
∑

k=1

n

[2(k − 1)+ (n− k))[2(k − 1)+ 1]]

=
∑

k=1

n
[

n(2k − 1)− 2k2 + 3k − 2
]

= 2n
∑

k=1

n

k −n2− 2
∑

k=1

n

k2 + 3
∑

k=1

n

k − 2n

= 2n
n(n +1)

2
−n2− 2

n(n+ 1)(2n + 1)

6
+ 3

n(n + 1)

2
− 2n

=
2

3
n3 +

1

2
n2− 5n,

where we’ve used Gauss’s sum formula

∑

k=1

n

k =
n(n + 1)

2

and the fact that

∑

k=1

n

k2 =
n(n +1)(2n + 1)

6
,

which you can either look up or easily prove by induction. Further, there is one square root per diagonal
entry of L, so that we end up with n square roots.
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6. Problem 12, p. 221

a) Consider that we’re trying to solve L LTx = b, or rather, L(LTx) = b and note that just like for LU, the
solving can be broken up in two separate subtasks, namely

Solve Ly = b,

Solve LTx = y.

We assume that L∈R
n×n is a given lower-triangular matrix that satisfies L LT = A for some matrix A for

which we’re solving Ax = b. The first solve can be performed as

yi =

(

bi −
∑

j=1

i−1

Li,jyj

)

/Li,i (i = 1,� , n),

and the second solve works on y and yields

xi =

(

yi −
∑

j=i+1

n

Li,j
T yj

)

/Li,i (i = n,� , 1)

=

(

yi −
∑

j=i+1

n

Lj,iyj

)

/Li,i (i= n,� , 1).

Note that in the second solve, the vector needs to be filled in backwards (i.e. from n to 1, in the same
order as for a regular Gauss backsubstitution).

b) Following Problem 3b), it is not hard to see that the operation count for two backsubstitutions

including the diagonal is 2n2. (also cf. p. 156)

7. Problem 13, p. 221

Code:

function p7

disp(’-------------------------------’)

disp(’Part a)’)

disp(’-------------------------------’)

A = [16, -28, 0;-28, 53,10;0,10,29];

b = [8, -2, 38]’;

solution = cholesky_solve(A, b)

disp(’-------------------------------’)

disp(’Part b)’)

disp(’-------------------------------’)

A = [9/4,3,3/2;3,25/4,7/2;3/2,7/2,17/4];

b = [3,1,9]’;

solution = cholesky_solve(A, b)

disp(’-------------------------------’)

disp(’Part c)’)

disp(’-------------------------------’)

A = [4,-2,-2,0;-2,5,1,-2;-2,1,10,3;0,-2,3,18];

b = [4,-4,4,-13]’;

solution = cholesky_solve(A, b)

disp(’-------------------------------’)

disp(’Part d)’)

disp(’-------------------------------’)

A = [1,-2,3,-2;-2,20,-2,8;3,-2,11,-5;-2,8,-5,9];
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b = [15,-12,56,-35]’;

solution = cholesky_solve(A, b)

end

function sol = cholesky_solve(A, b)

A

L = mycholesky(A)

[n, dummy] = size(A);

% backsubsitution for L (lower)

tempsol = zeros(n,1);

for row = 1:n

tempsol(row) = b(row) - L(row,1:row-1)*tempsol(1:row-1);

tempsol(row) = tempsol(row) / L(row,row);

end

% backsubsitution for L’ (upper)

sol = zeros(n,1);

for step = 0:n-1

row = n-step;

sol(row) = tempsol(row) - L(row+1:n,row)’*sol(row+1:n);

sol(row) = sol(row) / L(row,row);

end

residual = A*sol - b

end

function L = mycholesky(A)

[n, dummy] = size(A);

% coded up directly from p. 216

for k=1:n

diag_squared = A(k,k);

for j=1:k-1

diag_squared = diag_squared - L(k,j)^2;

end

L(k,k) = sqrt(diag_squared);

for i=k+1:n

entry = A(i,k);

for j=1:k-1

entry = entry - L(i,j)*L(k,j);

end

L(i,k) = entry/L(k,k);

end

end

if (norm(A-L*L’,2) > 1e-13)
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error(’Cholesky did not work out.’)

end

end

Data:

-------------------------------

Part a)

-------------------------------

A =

16 -28 0

-28 53 10

0 10 29

L =

4 0 0

-7 2 0

0 5 2

residual =

0

0

0

solution =

-3

-2

2

-------------------------------

Part b)

-------------------------------

A =

2.2500 3.0000 1.5000

3.0000 6.2500 3.5000

1.5000 3.5000 4.2500

L =

1.50000 0.00000 0.00000

2.00000 1.50000 0.00000

1.00000 1.00000 1.50000

residual =

0

0

0
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solution =

4

-4

4

-------------------------------

Part c)

-------------------------------

A =

4 -2 -2 0

-2 5 1 -2

-2 1 10 3

0 -2 3 18

L =

2 0 0 0

-1 2 0 0

-1 0 3 0

0 -1 1 4

residual =

0

0

0

0

solution =

1

-1

1

-1

-------------------------------

Part d)

-------------------------------

A =

1 -2 3 -2

-2 20 -2 8

3 -2 11 -5

-2 8 -5 9

L =

1 0 0 0

-2 4 0 0

3 1 1 0

-2 1 0 2
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residual =

0

0

0

0

solution =

-9.062500

0.093750

6.500000

-2.375000
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