
AM117 Sample Solutions, HW#1

Hi, I’m Andreas Kloeckner, your TA for this course. Feel free to come to my office hours

Tuesdays 2:30-4:30 in Room 004 in the Applied Math Castle at 182 George St.

Directions to Room 004: Go in by the main entrance, walk into the hallway behind the mailboxes. Turn
left and go down the flight of steps. At the bottom, take a left and then a right. 004 should be straight
ahead. (There’s a sign on the door.)

Every week, you may download solutions (including code) from

http://www.dam.brown.edu/people/kloeckner/am117

Feel free to email me at kloeckner@dam.brown.edu.

The code for the sample solutions is written so that it will run in both Matlab and Octave. (I test it in
both.) Octave is a language for scientific computing that is generally very similar to Matlab. Unlike
Matlab, Octave is freely downloadable. You may grab a copy at http://www.gnu.org/software/octave.

1. Problem 6, p.28

We are attempting to find α and λ such that

|en+1| ≈λ|en|α.

Taking the logarithm of this, we obtain

log |en+1|�
“y”

≈ log λ�
“b”

+ α�
“a”

log|en|�
“x”

(1)

If we look closely, we can see that this reduces the problem to finding a line (given by slope a and y-inter-
cept b). We need to find two parameters, and since we have three data points for each method, we may
write two equations of the form (1) to find them:

log|e2| = logλ +α log|e1|,
log|e3| = logλ +α log|e2|.

Subtracting the two, we find

log|e2| − log|e3|
log|e1| − log|e2|

= α.

Knowing α, we solve the first one for λ:

log λ = log|e2| −α log|e1|,
λ = exp(log|e2| −α log|e1|).

This yields:

Method 1

alpha = 1.9950

lambda = 0.55965

Method 2

alpha = 3.9083

lambda = 0.031034
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Method 3

alpha = 2.9953

lambda = 0.22063

From these calculations it seems the orders of convergence are roughly 2, 4 and 3, respectively.

Here’s some code to perform this computation:

function p1

verify_order_of_convergence(’Method 1’, [4.0e-2, 9.1e-4, 4.8e-7], 2)

verify_order_of_convergence(’Method 2’, [3.7e-4, 1.2e-15, 1.5e-60], 3.9)

verify_order_of_convergence(’Method 3’, [4.3e-3, 1.8e-8, 1.4e-24], 3)

end

function verify_order_of_convergence(label, seq, order)

disp(label)

alpha = (log(seq(2))-log(seq(3))) / (log(seq(1))-log(seq(2)))

lambda = exp(log(seq(2))-alpha*log(seq(1)))

end

2. Problem 11, p.28

Let

f(x)4 x3 +3x a

3x2 + a

and observe that f( a
√

)= a
√

. Further, it is not hard to see that

• for x∈ (0, a
√

), we have f(x) >x and f(x)< a
√

,

• for x∈ ( a
√

,∞), we have f(x)< x and f(x) > a
√

.

Convergence of the sequence

xn+14 f(xn)

to a
√

is thus established. Now consider

|en+1|
|en|3

=
| a
√ − xn+1|
| a
√ − xn|3

=

∣

∣

∣

a
√ − x

n

3 + 3xna

3x
n

2 + a

∣

∣

∣

∣

∣ a
√ − xn

∣

∣

3 =

∣

∣

∣

∣

∣

∣

a
√ − x3 +3xna

3x
n

2 + a

( a
√ − xn)3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3 a
√

xn
2 + a3/2− x3− 3xna

( a
√ − xn)3(3xn

2 + a)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

( a
√ − x)3

( a
√ − xn)3(3xn

2 + a)

∣

∣

∣

∣

=
1

3xn
2 + a

→ 1

3a + a
=

1

4a

as n→∞. The asymptotic error constant is 1/4a.

3. Problem 9, p.52

a)
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Code:

function p3

p3_do_plot(-5e-8, 5e-8, 1000)

pause

end

function do_plot(a, b, n)

x = linspace(a, b, n);

y = 1-cos(x);

plot(x,1-cos(x));

end

b) Plot sin2 x and note that it looks a bit like the above. Remember

cos(α + β)= cos(α)cos(β)− sin(α)sin(β)

or, for our case,

cos(2x)= cos2 x− sin2 x. (2)

Also remember

1= cos2 x + sin2 x. (3)

Now compute (3)− (2):

1− cos(2x) =2sin2(x),

which, after substituting ξ = 2x, yields

1− cos(ξ) =2sin2(ξ/2)

and a much cleaner plot:
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4. Problem 13, p.52

a)

g(x)− f(x)=
cos2x

1+ sinx
− (1− sinx)=

cos2x− (1− sinx)(1 + sin x)

1 + sinx
=

cos2x− (1− sin2x)

1 + sin x
= 0.

In preparation for b) and c), we create this table:

x sin(x) cos2(x)

π/2 1 0
3π/2 -1 0

b) Near π/2, sin(x) ≈ 1, so f(x) = 1 − sin(x) subtracts two values of order 1 to obtain a result very close
to zero, and so it will encounter significant cancellation error. The logical choice is g(x) = cos2(x)/(1 +
sin(x)), for which we observe no such phenomena.

c) Near 3π/2, sin(x)≈− 1, so the denominator of g (which is 1+ sinx) will encounter cancellation error.

5. Problem 6, p.69

The length of the initial interval is |b − a|. After each iteration, the length of the interval is halved, so we

have |b− a| · 2−1 after the first, |b− a| · 2−2 after the second, � , |b− a| · 2−n after the nth.

Once we know that the length of our candidate interval is shorter than ε, our tolerance, i.e.

|b− a| · 2−n <ε,

we are done. We can now compute the number of iterations needed to achieve this precision:

|b− a| · 2−n < ε

⇔ |b− a|
ε

< 2n

⇔ log
|b− a|

ε
< n · log 2

⇔
log

|b − a|

ε

log 2
< n.

6. Problem 16, p.70

a) f(x)= ex +x2− x− 4. Consider this function in two parts.

f1(x) = ex

f2(x) = − x2 +x + 4= (x− 1/2)2− 17/4
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f(x) = f1(x)− f2(x),

so that the zeros we seek are the intersections of the graphs of f1 and f2, as shown below:
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Using our knowledge of the behavior of the exponential function and of parabolas, it is not hard to see
that there will be two zeros, one each in the intervals [ − 2, − 1] and [1, 2]. Bisection search results are
listed at the end of the problem in one big batch.

b) f(x)= x3−x2− 10x+ 7. Theory says that this polynomial cannot have more than three zeros. Plot it:
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It’s not hard to see that we have three candidate intervals, [− 4,− 3], [0, 1] and [3, 4].
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c) f(x)= 1.05− 1.04x + log x. Once again consider this function as composed of two parts:

f1(x) = − (1.05− 1.04x),

f2(x) = log x,

f(x) = f2(x)− f1(x).

Again, we can view the sought zeros as intersections of the graphs of two well-understood functions:
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We are led to believe that we should look in [0.8, 1] and [1, 1.2].

Code:

function p6

disp(’----------------------’)

disp(’Part a)’)

disp(’----------------------’)

bisect(-2, -1, @f_part_a)

bisect(1, 2, @f_part_a)

disp(’----------------------’)

disp(’Part b)’)

disp(’----------------------’)

bisect(-4, -3, @f_part_b)

bisect(0, 1, @f_part_b)

bisect(3, 4, @f_part_b)

disp(’----------------------’)

disp(’Part c)’)

disp(’----------------------’)

bisect(0.8, 1, @f_part_c)

bisect(1, 1.2, @f_part_c)
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end

function bisect(a, b, f)

tol = 1e-6

fa = f(a);

fb = f(b);

disp(’Interval at start:’)

a

b

% intermediate value theorem must guarantee existence of a

% zero in (a,b).

if (fa*fb > 0)

error(’Potentially no zero in search interval.’)

end

while (abs(b-a) > tol)

c = (a+b)/2.;

fc = f(c);

if (fc*fa <= 0)

b = c;

fb = fc;

else

a = c;

fa = fc;

end

end

disp(’Final Interval:’)

a

b

end

function y = f_part_a(x)

y = exp(x)+x^2-x-4;

end

function y = f_part_b(x)

y = x^3-x^2-10*x+7;

end

function y = f_part_c(x)

y = 1.05 - 1.04*x+log(x);

end

Results:

----------------------

Part a)

----------------------

tol = 1.0000e-06

Interval at start:

a = -2
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b = -1

Final Interval:

a = -1.5071

b = -1.5071

tol = 1.0000e-06

Interval at start:

a = 1

b = 2

Final Interval:

a = 1.2887

b = 1.2887

----------------------

Part b)

----------------------

tol = 1.0000e-06

Interval at start:

a = -4

b = -3

Final Interval:

a = -3.0427

b = -3.0427

tol = 1.0000e-06

Interval at start:

a = 0

b = 1

Final Interval:

a = 0.68522

b = 0.68522

tol = 1.0000e-06

Interval at start:

a = 3

b = 4

Final Interval:

a = 3.3575

b = 3.3575

----------------------

Part c)

----------------------

tol = 1.0000e-06

Interval at start:

a = 0.80000

b = 1

Final Interval:

a = 0.82718

b = 0.82718

tol = 1.0000e-06

Interval at start:

a = 1

b = 1.2000

Final Interval:

a = 1.1097

b = 1.1097
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