AM117 Sample Solutions, HW#1
Hi, I'm Andreas Kloeckner, your TA for this course. Feel free to come to my office hours
Tuesdays 2:30-4:30 in Room 004 in the Applied Math Castle at 182 George St.

Directions to Room 004: Go in by the main entrance, walk into the hallway behind the mailboxes. Turn
left and go down the flight of steps. At the bottom, take a left and then a right. 004 should be straight
ahead. (There’s a sign on the door.)

Every week, you may download solutions (including code) from
http://www.dam.brown.edu/people/kloeckner/aml117
Feel free to email me at kloeckner@dam.brown.edu.

The code for the sample solutions is written so that it will run in both Matlab and Octave. (I test it in
both.) Octave is a language for scientific computing that is generally very similar to Matlab. Unlike
Matlab, Octave is freely downloadable. You may grab a copy at http://www.gnu.org/software/octave.

1. Problem 6, p.28

We are attempting to find « and A such that
lent1] = Alen|®.

Taking the logarithm of this, we obtain

loglen+1| =log A+ «a logle,| (1)
_y,”—/ \/b’-/ YUJMT

If we look closely, we can see that this reduces the problem to finding a line (given by slope a and y-inter-
cept b). We need to find two parameters, and since we have three data points for each method, we may
write two equations of the form (1) to find them:

logles| = log A+alogles],

logles] = log A+ alogles].

Subtracting the two, we find
log|es| —logles| _
log|e1| — log|es]

Knowing «, we solve the first one for A:

logA = log|ez| — alogles],
A = exp(logles| — aloges]).

This yields:

Method 1

alpha = 1.9950
lambda = 0.55965
Method 2

alpha = 3.9083
lambda = 0.031034



Method 3
alpha = 2.9953
lambda = 0.22063

From these calculations it seems the orders of convergence are roughly 2, 4 and 3, respectively.
Here’s some code to perform this computation:

function pl
verify_order_of_convergence(’Method 1’, [4.0e-2, 9.1e-4, 4.8e-7], 2)
verify_order_of_convergence(’Method 2’, [3.7e-4, 1.2e-15, 1.5e-60], 3.9)
verify_order_of_convergence(’Method 3’, [4.3e-3, 1.8e-8, 1.4e-24], 3)
end

function verify_order_of_convergence(label, seq, order)
disp(label)
alpha = (log(seq(2))-log(seq(3))) / (log(seq(1))-log(seq(2)))
lambda = exp(log(seq(2))-alpha*log(seq(1)))

end

2. Problem 11, p.28

Let

3 +3za

U

and observe that f(y/a)=+/a. Further, it is not hard to see that
o for z€(0,1/a), we have f(r) >z and f(x)<+/a,
o for z€(y/a,o0), we have f(z) <z and f(x)>/a.

Convergence of the sequence

$n+1:::f(xn)

to y/a is thus established. Now consider

xn + 3zna \/— 3+ 3mna
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as n— oo. The asymptotic error constant is 1/4a.

3. Problem 9, p.52
a)
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Code:

function p3
p3_do_plot(-5e-8, 5e-8, 1000)
pause

end

function do_plot(a, b, n)
x = linspace(a, b, n);
y 1-cos(x);
plot(x,1-cos(x));

end

b) Plot sin?z and note that it looks a bit like the above. Remember
cos(a + (3) = cos(a)cos(B) — sin(a)sin(5)

or, for our case,

2 2

cos(2z) =cos?x —sin? x.
Also remember
1=cos?z +sin’z.
Now compute (3) — (2):
1 — cos(2z) = 2sin?(x),
which, after substituting £ =2z, yields
1 —cos(&) =2sin?(£/2)

and a much cleaner plot:
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4. Problem 13, p.52
a)
.2 .2 : : .2 2
cos“x . cos®z — (1 —sinz)(1 +sinz)  cos’z — (1 —sin®z)
g(x)— f(r)=——F——(1—sinz) = : = - =0.
1+sinz 1+sinx 1+sinx

In preparation for b) and c), we create this table:

x | sin(z) cos?(z)
72 |1 0
3n/20-1 0

b) Near 7/2, sin(z) ~ 1, so f(z) =1 — sin(z) subtracts two values of order 1 to obtain a result very close
to zero, and so it will encounter significant cancellation error. The logical choice is g(z) = cos?(z)/(1 +
sin(x)), for which we observe no such phenomena.

¢) Near 37/2, sin(z) = — 1, so the denominator of g (which is 14 sinx) will encounter cancellation error.
5. Problem 6, p.69

The length of the initial interval is |b — a|. After each iteration, the length of the interval is halved, so we
have |b —a|-271 after the first, |b —a|- 272 after the second, ..., |b—a|-27" after the nth.

Once we know that the length of our candidate interval is shorter than e, our tolerance, i.e.
[b—al-27"<e,

we are done. We can now compute the number of iterations needed to achieve this precision:

[b—al-27" < ¢
@M < om
€
<:>10gu < n-log?2
log l2—al
log 2

6. Problem 16, p.70

a) f(z)=e®+a?—x —4. Consider this function in two parts.

fi(z) = €*
fo(z) = —2?+x+4=(x—1/2)2-17/4



f(x) = fi(x) = falz),

so that the zeros we seek are the intersections of the graphs of f; and fs, as shown below:
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Using our knowledge of the behavior of the exponential function and of parabolas, it is not hard to see
that there will be two zeros, one each in the intervals [ — 2, — 1] and [1, 2]. Bisection search results are
listed at the end of the problem in one big batch.

b) f(x)=x%— 22— 10z + 7. Theory says that this polynomial cannot have more than three zeros. Plot it:
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It’s not hard to see that we have three candidate intervals, [ —4, — 3], [0, 1] and [3,4].



¢) f(x)=1.05—1.04z + log z. Once again consider this function as composed of two parts:

filz) = —(1.05—1.04z),
fo(z) = loge,
flx) = folz) = fi(z).

Again, we can view the sought zeros as intersections of the graphs of two well-understood functions:
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We are led to believe that we should look in [0.8,1] and [1,1.2].

Code:

function p6
disp(?------mmmmmm - ’)
disp(’Part a)?’)
disp(?------mmmmmm - ’)

bisect(-2, -1, @f_part_a)
bisect(1l, 2, @f_part_a)

disp(?------mmmmmm - ’)
disp(’Part b)?)
disp(?------mmmmmm - ’)

bisect(-4, -3, @f_part_b)
bisect(0, 1, @f_part_b)
bisect(3, 4, @f_part_b)

disp(?------mmmmmm - ’)
disp(’Part c¢)?)
disp(?------m-mmmm - ’)

bisect(0.8, 1, @f_part_c)
bisect(1l, 1.2, @f_part_c)



end

function bisect(a, b, f)

tol = le-6
fa = f(a);
fb = £(b);

disp(’Interval at start:’)
a
b

% intermediate value theorem must guarantee existence of a
% zero in (a,b).
if (faxfb > 0)
error (’Potentially no zero in search interval.’)
end

while (abs(b-a) > tol)
c = (a+b)/2.;
fc = f(c);

if (fcxfa <= 0)

b =c;
fb = fc;
else
a=c;
fa = fc;
end
end

disp(’Final Interval:’)
a
b

end

function y = f_part_a(x)
y = exp(x)+x~2-x-4;
end
function y = f_part_b(x)
y = x73-x"2-10%x+7;
end
function y = f_part_c(x)
y = 1.05 - 1.04#*x+log(x);
end

Results:

tol = 1.0000e-06
Interval at start:
a= -2



b=-1

Final Interval:

a = -1.5071

b = -1.5071

tol = 1.0000e-06
Interval at start:

a= 1

b= 2

Final Interval:
a = 1.2887

b = 1.2887
Part b)

tol = 1.0000e-06
Interval at start:

a= -4

b = -3

Final Interval:
a = -3.0427

b = -3.0427

tol = 1.0000e-06
Interval at start:

a=20

b= 1

Final Interval:
a = 0.68522

b = 0.68522

tol = 1.0000e-06
Interval at start:

a= 3

b= 4

Final Interval:
a = 3.3575

b = 3.3575
Part c)

tol = 1.0000e-06
Interval at start:

a = 0.80000
b= 1

Final Interval:
a = 0.82718

b = 0.82718

tol = 1.0000e-06
Interval at start:

a= 1

b = 1.2000
Final Interval:
a = 1.1097

b= 1.1097



