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Abstract. In this article, we propose a novel discontinuous Galerkin method for convection-
diffusion-reaction problems, characterized by three main properties. The first is that the method
is hybridizable; this renders it efficiently implementable and competitive with the main existing
methods for these problems. The second is that, when the method uses polynomial approximations
of the same degree for both the total flux and the scalar variable, optimal convergence properties are
obtained for both variables; this is in sharp contrast with all other discontinuous methods for this
problem. The third is that the method exhibits superconvergence properties of the approximation to
the scalar variable; this allows us to postprocess the approximation in an element-by-element fashion
to obtain another approximation to the scalar variable which converges faster than the original
one. In this paper, we focus on the efficient implementation of the method and on the validation
of its computational performance. With this aim, extensive numerical tests are devoted to explore
the convergence properties of the novel scheme, to compare it with other methods in the diffusion-
dominated regime, and to display its stability and accuracy in the convection-dominated case.
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1. Introduction. This paper is devoted to the study of new discontinuous
Galerkin (DG) methods for convection-diffusion-reaction problems. Three novel, in-
terrelated features render these methods attractive. The first is that they are hy-
bridizable and hence efficiently implementable; we refer to them as local discontinuous
Galerkin-hybridizable (LDG-H) methods. The second is that they provide approxima-
tions for the flux which are optimally convergent when, on each element, both the flux
and the scalar variable are approximated by polynomials of the same degree. Finally,
the third feature is that the approximations to the scalar variable superconverge; this
is why we call them superconvergent. As a consequence of this last property, a new
approximation for the scalar unknown can be locally obtained which converges faster
than the original approximation.
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We carry out the study of LDG-H methods as applied to the following convection-
diffusion-reaction model problem:

-V - (aVu+ Bu)+ru=f in Q,
u=g on 0Q2p,
—(aVu+ Bu)-n=qn on Iy,

where Q@ C R? is a polyhedral domain (d > 2) with boundary 9Q = 9Qp U dQy,
Ip NIy =0, f € L3(R), a is a symmetric d x d matrix function that is uniformly
positive definite on © with components in L> ().

The work we present here can be considered part of the series of papers [6], [5],
and [7]. Indeed, in [6] a unifying framework for the hybridization of mixed, discon-
tinuous, continuous, and nonconforming methods for second order elliptic problems
was proposed; however, no convection or reaction terms were considered. Later, in [5]
this unifying framework was exploited to devise a new DG method, called the single-
face hybridizable (SF-H) method, which can be thought of as being in between the
Raviart—Thomas (RT) [15] and the Brezzi-Douglas—Marini (BDM) [2] mixed meth-
ods. The properties of optimal convergence of both the scalar (primal) and the flux
(dual) variables, and of superconvergence of projections of the error of the scalar and
hybrid variables, shared by the RT and BDM methods, were proven to hold for the
SF-H method; again, no convection or reaction terms were considered. Recently, and
for the same model problem, it was shown in [7] that these properties hold for many
DG methods not belonging to the class DG of methods analyzed in [1]. On the other
hand, the class of methods considered in [7] does include the LDG-H methods we con-
sider here. In other words, we extend here some of the LDG-H methods considered
in [7] to the case in which convection and reaction are added to the model equation.

The inclusion of the convective term in the context of hybridized mixed methods is
not straightforward, as it can be done in several ways; see [9]. Here we have chosen to
provide an approximation to the total flux g := —(aVu+ Bu), a variable that in many
realistic applications has more importance than wu itself. This is the case, for example,
of reservoir simulation where v is the hydraulic pressure and q is Darcy’s velocity [4],
or the semiconductor device modeling where u represents the carrier concentration
and g is the associated current density [13]. In other words, the weak formulation of
our LDG-H methods is based on the following rewriting of the original equations:

1.1a) cq+Vu+bu=0 in €,
1.1b) V-g+ru=f in €,
1.1¢) u=g ondQp,
1.1d) g-m=qn on Ny,

where ¢ :=a~! and b := ¢f3.

We immediately see that the purely hyperbolic case, namely, the case a = 0, is
precluded by this rewriting. So, we restrict ourselves to dealing with the diffusion-
dominated case, and we start our validation of the computational performance of the
LDG-H method by showing experimentally that the convergence properties theoreti-
cally proved in [5] and [7], in the case where there is no convection or reaction, remain
the same when these terms are present.

Then, we continue our numerical validation with a thorough comparison of the
LDG-H formulation with the standard continuous Galerkin (CG) method and with
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approaches that provide a direct approximation of the flux variable, namely, the dual
mixed hybridized RT and BDM methods. This comparison shows that the LDG-H
method performs remarkably well with respect to the other considered schemes. In
particular, it turns out that the L?-order of convergence of the approximate flux of
a LDG-H method using polynomials of degree k (for k& > 1) is the same as that of a
CG scheme using polynomials of degree k + 1, while the convergence rate of a LDG-
H method using polynomials of degree k is one order higher than that of a BDM
scheme using polynomials of degree k (for the flux). This latter result agrees with the
conclusions of [9], where it is shown that suboptimal convergence of the BDM method
is to be expected when the total advective-diffusive flux is treated as an independent
variable instead of the sole diffusive flux.

Finally, we complete the validation process by testing the performance of the
LDG-H method also in the convection-dominated case. Preliminary results demon-
strate that an upwinding-like selection of the stabilization parameter 7 allows the
LDG-H method to accurately compute sharp fronts in the solution u, as with more
established methods for problems with dominating hyperbolic terms [3, 11, 16], while
computing at the same time a conservative and superconvergent approximation of the
flux g, as with standard mixed finite element schemes for elliptic problems.

The paper is organized as follows. In section 2, we define the LDG-H approxi-
mation, we address the issue of its efficient implementation using the hybridization
technique, we discuss the choice of the finite element spaces and the stabilization
parameter, and we present the local postprocessings. In section 3, we discuss the
numerical experiments, and in section 4 we draw some concluding remarks.

2. The LDG-H methods.

2.1. Definition of the methods. In order to describe the LDG-H methods,
we need to introduce some notation. We denote by Q, = {K} a triangulation of
the domain 2 of shape-regular tetrahedra K, hx being the diameter of K, and set
oYy, = {0K : K € ;,}. We associate with this triangulation the set of interior faces
&} and the set of boundary faces @@,? . We say that e € & if there are two simplexes
K+ and K~ in Q, such that e = 0K N 0K, and we say that e € &7 if there is a
simplex in , such that e = 9K N 0N. We set &, := & U &7.

The LDG-H methods seek an approximation (g, un, As,) to the exact solution
(g, dq, uls 00, ) of (1.1) in a finite dimensional space V', x W}, x M, of the form

(2.1a) Vi :={ve L*(Q) : v|x € V(K) VK € Q},
(2.1b) Wiy ={w e L*(Q) : w|lx € W(K) VK € Q},
(2.1¢) M, :={m € L*(0Q4) : m|. € M(e) Ve€ &, ml|sa, =0},

and determines it by requiring that

(2.2&) (C qh,’l})gh + (bu,’l})gh — (uh, AV 'U)Qh + <1/J:h,’v . n>th =0,
(2.2b) —(qp, Vw)o, + (@), - n,w)aq, + (run,w)a, = (f,w)a,,
(2.2¢) (@, -, 1o, = (AN, ooy

for all (v,w, ) € Vi, x Wy, x M},. Here, we have used the notation

Gwa, = 3 /K (@) w()de and  (Cv-non, = > [ (()w(y) ndy,

KeQy, Keq, ’ 0K
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and (o,v)q, = ijl (0j,v;)q, for any functions o, v in H'(Qy) := [H'(Q)]? and
¢,w in HY(Q). The outward normal unit vector to K is denoted by n.

To complete the definition of the LDG-H method, the numerical traces g, and
Uy, have to be provided. Following [6], we take

. Psg on 0K NINp,
(2.3a) up = .
AL otherwise,
(2.3b) q, = qp, + 7 (up, — Up)n,

where Py denotes an L?-projection defined as follows. Given any function ¢ € L?(&},)
and an arbitrary face e € &}, the restriction of Py( to e is defined as the element of
M (e) that satisfies

(2.4) (PaC — C,w)e =0 Vw e M(e).

The stabilization function 7 is defined for each element K € € in such a way that
7 is nonnegative over K and is constant over each face of 0K . Notice that for each
e = 0K NOK, we have, in general, 75 |, # 7K |.. More details about the choice
of 7 are discussed in section 2.3.

From definition (2.3a), we see that @y, provides an approximation to u on all the
faces of &}. Note also that the last equation of the weak formulation of the LDG-H
method, (2.2¢), is what was called in [6] the conservativity condition. Indeed, since
such equation can be rewritten as

Z([[?Ih-n]],meJr@h-n,M)aQN =(an, ooy V€ M,
ecé}

we see that, besides imposing the Neumann boundary conditions, it imposes that the
jump of the normal component of the numerical trace g;, namely,

[@,-n] =ay -n* +q, -n,

be equal to zero (weakly) across interelement boundaries. Such a numerical trace
would then be single-valued (provided the space My, is rich enough) and, hence, would
have the important property of being conservative; see [1].

To ensure the existence and uniqueness of the approximate solution, we have to
properly choose the local spaces V(K), W(K), and M (e) as well as the stabilization
function 7. Before describing the choice we take in this paper, let us assume that the
approximate solution is actually well defined, and let us show how the structure of
these methods allows for them to be hybridized and, hence, efficiently implemented.

2.2. Implementation by hybridization. To do that, we extend the approach
introduced in [6] to our setting. Thus, we begin by introducing the local solvers.
The first local solver lifts functions on faces of the simplexes of the triangulation
to functions on (2. It associates with each function m in L?(&},) the pair (Qm, Um)
defined on each element K as the function in V' (K) x W (K) determined by requiring
that the equations

(2.5a) (cOm,v)k + (b Um,v)xg — (UM, V- v)g = —(m, v n)ox,
(2.5b) —(9Qm,Vw)g + (Qm n, Wk + (r Um,w)g =0,
(2.5¢) (:)m:Qm—i—T(Um—m)n
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hold for all (v,w) € V(K) x W(K). The second local solver associates with each f €
L?(Q) the pair (Qf, Uf) defined on each element K as the function in V(K) x W(K)
such that the equations

(2.6a) (cQf,v)k + (bUf,v)k — (Uf, V- -v)g =0,
(2.6b) —(Qf, V) +(Qf n, wok + (r Uf,w)x = (f, )k,
(2.6¢) Qf=0f+7 Ufn

hold for all (v,w) € V(K) x W(K). Note that, to define these local solvers we have
used the LDG-H method on each element K € €2j,. Since we are assuming the LDG-H
method is well defined, so are the local solvers.

Next, we give a characterization of the approximate solution in terms of the local
solvers and the function \;, € Mj,.

THEOREM 2.1 (characterization of the approximate solution). Assume that there
is a unique solution (qp,,up) € Vi, Xx Wy, of (2.2) and (2.3). Then we have that

(gn,un) = (QAn + Qg + Qf, UMy + Ug + US),
the function A\, € My, being the unique solution of
(2.7) an(Ans ) = bn(p) ¥V p € M,

where ap(n, p) = (p, Ln-M)oq, and bp(p) = (1, (Lf +2g) -n)oe, —(an, ooy for
all n and p € My,.

Proof. The function (qy,, un) := (QAp + Qg + Qf, UN, + Ug + USf) € V), x Wy
clearly satisfies (2.2a) and (2.2b), by the very definition of the local solvers (2.5) and
(2.6). It also satisfies (2.2c) since this is nothing but a rewriting of (2.7). This implies
that (g, @) must be equal to the unique solution (g, un). |

Theorem 2.1 shows that the only degrees of freedom that are globally coupled are
those of Ap. Once )\, is computed by solving problem (2.7), then the approximate
solution can be easily obtained by solving the postprocessing problems (2.5) and (2.6)
in an element-by-element fashion.

Theorem 2.1 also contains information about the sparsity structure of the matrix
for the degrees of freedom of Ap. Indeed, the variational formulation (2.7) defining
An € Mj, can be rewritten in matrix form as

(2.8) AAp] =0,

where [u]t A[An] = an(An, 1) and [u]tb = by (u). Here [p] is the vector of coefficients
of the representation of x4 in a given basis of M}. By Theorem 2.1,

A=Y Ax and b= ) bg,

KeTy, KeTy,

where the matrix Ak is defined by [u]' Ax [n] = —(u, Qp - nYsr and the matrix by
by [u]'bx = (u, (Qf +Qg) -n)orx — (AN, K)orxnoay - As discussed in [6], the only
nonzero entries of the matrices Ay and by are the ones associated with the degrees of
freedom of p and 7 on the border of the element K. This implies, in particular, that
the nonzero entries of the matrix A are blocks of square matrices of order dim M (e).
In each block-row, there are at most five nonzero matrices in two-space dimensions if
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we are using meshes made of triangles, and at most seven nonzero matrices in three-
space dimensions if we are using meshes made of tetrahedra. The nonzero entries
of A and bk can be interpreted as the local stiffness matrix and load vector of a
standard displacement-based finite element formulation. Their actual computation
requires the solution of algebraic linear systems corresponding to the local problems
(2.5) and (2.6). The method can thus be efficiently implemented; see section 3.2,
where the method is compared with other finite element methods.

2.3. Choice of the local spaces and stabilization parameter. In this paper,
we take the following local spaces:

V(K):=P(K), W(K):=P(K), and M(e):=Pg(e),

where k is a nonnegative integer and Py (K) = [P(K)]¢, Px(D) being the space of
polynomials of total degree at most k defined on the domain D.

The precise choice of the local stabilization function 7 has a strong influence on
the accuracy of the method, as shown in [5] and in [7] in the case in which there is no
convection and no reaction. In order to borrow from these references the definition of 7
and extend to the case where convection and reaction are presently the corresponding
properties of the LDG-H formulation, we assume that problem (1.1) is in the diffusion-
dominated regime, i.e., that there exists a positive constant v < 1 such that the
following coercivity condition is satisfied (cf. [10]):

(2.9) BlcB < (1 —7)4r.
Then, we introduce the following quantities:
(2.10) Tk =Tl  and Tk :=max7lo\cr,

e} being any face of K where 7|px is maximum. We notice that in [5] the function
7 was chosen in such a way that Tx = 0 for every K € €, whereas in [7], Tx was
allowed to be different from zero. Proceeding as in [5, 7], we can prove the following
result.

THEOREM 2.2 (well-posedness of the LDG-H method). Assume that (2.9) is
satisfied and that T > 0 for each K € Qy,. Then, there is a unique solution (g, up) €
Vi, x Wy of (2.2) and (2.3), or, equivalently, the linear algebraic system (2.8) is
uniquely solvable.

The assumptions in Theorem 2.2 are verified by the LDG-H method used in sec-
tion 3.1, where we investigate how its convergence properties depend on the actual
choice of 7 and Tx. An alternative to the coercivity assumption (2.9) consists of as-
suming that the mesh size h is small enough, as will be shown in detail in a forthcoming
paper devoted to the analysis of the LDG-H method. To conclude this discussion, one
may legitimately wonder about the behavior of the LDG-H formulation proposed in
the present article in the important case where problem (1.1) is convection-dominated.
With this purpose, the numerical experiments of section 3.3 show that if the defini-
tion of the stabilization function 7 enforces the classical upwinding stabilization of the
classical DG method for hyperbolic problems, then the LDG-H method turns out to
be well defined also in the convection-dominated regime.
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2.4. Postprocessing of the approximate solution.

Postprocessing of the total flux. Let us show how to postprocess q;, and gy,
with an element-by-element procedure to obtain an optimally convergent approx-
imation of g, denoted g}, belonging to H(div, Q); see [5, 7] and the references
therein. On each simplex K € Qy,, we define the function g as the only element
of P¥(K) + x PF(K) satisfying, for k > 0,

(2.11a) (g —qp) nyme = 0 Vu € PFe) V faces e of K,
(2.11b) (g, —q,,v)xk = 0 Yve P YK).

Clearly, if £ = 0, the second set of equations is empty. Note that the function g},
belongs to H(div, Q).

Postprocessing of the scalar variable. Next, we show how to postprocess uj,
and g, with an element-by-element procedure to obtain a better approximation to u,
denoted uj. With this aim, we assume that the advective flow is potential driven,
ie., B := aV¢, for a given potential function & € W1°°(Q), as typically happens
in the modeling of electrochemical ionic transport [17] and in semiconductor device
simulation [13]. Let us introduce the change of dependent variable

U=V e_f,

which is a special instance of the classical Cole-Hopf transformation employed in the
study of parabolic equations with quadratic gradient nonlinearities [8, 12]. Using the
above change of variable, the advective-diffusive flux ¢ = —(aVu+ Bu) can be written
in the following equivalent diffusive form: g = —ae~¢Vv. On each element K € Q,,
we define v}, an approximation to v, as follows. First, assume that r|x = 0. Then we
write vy, = Uy + Uy, where 7, := % fK up, €& dz, and 7y, is the element of TPISH(K)
which satisfies

(a€_£Vl~/h, V’LU)K = (fa w)K - <ah ! n7w>3K Vw € :})IS+1(K)
If r|x is not zero, we take v, to be the element of P*+1(K) such that
(ae™Vun, V)i + (re v, w)k =(f,w)k — (@), - n,w)or Yw € PK).

Finally, the approximation uj of u, called ezponential-fitting, is defined by

ul = vje s,
where v := Uy, +7p,. Notice that uj, unlike v}, is not a polynomial.

Let us end by emphasizing that, when 3 is not potential driven, it is still pos-
sible to construct u; by using a straightforward extension to the present case of the
corresponding quantity defined in the purely elliptic case in [5, 7].

3. Numerical results. This section is devoted to an extensive validation of the
computational performance of the LDG-H method, in terms of convergence, accuracy,
stability, and efficiency, as applied to problem (1.1) in the case where 2 is a two-
dimensional polygon (d = 2).

Section 3.1 deals with the experimental study of the theoretical convergence prop-
erties of the method in the diffusion-dominated regime. Special emphasis will be put
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on investigating the dependence of the orders of convergence of the method upon
different choices of the stabilization parameters 7k and T defined by (2.10).

Section 3.2 deals with the comparison of the LDG-H formulation with the stan-
dard conforming Galerkin (CG) finite element method and with approaches that pro-
vide a direct approximation of the flux variable, namely, the dual mixed hybridized
RT and BDM methods. Exploiting the similarities among the LDG-H, BDM, and RT
formulations, these three methods are implemented in a single FORTRAN90 code to
allow the user a flexible tool for immediate cross-validation of the various methods.
In the case of the BDM and RT mixed schemes, 7 and T are set equal to zero.

The concluding section (section 3.3) discusses a preliminary assessment of the
performance of the LDG-H method in the convection-dominated regime.

Throughout the section, we use uniform grids of triangles. The grid associ-
ated to the integer “1” is obtained by meshing the domain with squares of size
h = 27!, which are then divided into two triangles. We also use the weighted norm
Il - lz2ne) = (cv) ')512/5’ and the projection P’ defined as follows. Given a function
¢ € HY(Q) and an arbitrary simplex K € €2, the restriction of P¢¢ to K is (for
¢ > 0) the L2-projection of ¢ over P*(K). If £ < 0, we let P’ be the zero operator.
Moreover, we use the following norm for a function 1 € L*(&},):

1/2
I ll2(s,:n) = < > hK||77|%2(8K)> :

KeQy,

3.1. Validation in the diffusion-dominated regime. The test case consid-
ered in this section is a modification of that proposed in [14]. The problem data are
as follows: Q = [0,1] x [0,1], @ = eI, where I denotes the 2 x 2 identity matrix,
B =[-a% —yY", r =z +y? and f = xy (4ani(y) + 6y°n5(x)), having defined for
s > 1 the function 7S (t) = 1—exp ((t* — 1)/(se)). The exact solution of the problem is
u(z,y) = zyn5(z)ni(y). Here we take e = 0.5, so that the coercivity condition (2.9)
is satisfied for all z,y € Q, and problem (1.1) models a diffusion-dominated regime.

The aim of the numerical experiments is to explore the convergence properties of
the method for different choices of the stabilization parameters 7 and 7. Tables 3.1,
3.2, and 3.3 indicate that the orders of convergence for [l eq ||z2(0,:e); || €ullz2(00)>
| eq* [I22(Qn;e)» and || eur [ 22(q,) are optimal as long as T < C' < 7 for all K € Qp,
C being a positive constant. This means that the optimal combinations of Tx and
T correspond to the intersection of the second and third columns with the first and
second rows of the above mentioned tables. These results agree with the theoretical
estimates proved in [7] in the purely elliptic case. Moreover, if Tx is set equal to zero
for all K € Qy, it turns out that optimal convergence orders can be obtained only if
Tk 18 not too small, in full agreement with the results in [5] for the purely diffusive
case.

Next, to evaluate the effect of the polynomial degree k on the efficiency of the
LDG-H method, we plot in Figure 3.1 the errors as a function of the computational
complexity (see also the numerical values in Table 3.4), which we define as the number
of nonzero entries of the stiffness matrix after the static condensation of the local
degrees of freedom. We refer to section 3.2 for some considerations concerning the
computational cost of the local problems arising from the lifting operators.

For these tests, the stabilization parameters are 7 = Tx = 1; similar results are
obtained for different choices of 7 and Tx. For the problems under consideration,
the number of nonzero entries of the above-mentioned stiffness matrix for the LDG-H
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TABLE 3.1
Experimental orders of convergence of eq = ||q — ay, ||2(q),;c) and euw = [[u —up [|2(q,) for
E>1.
FK = O(%) ?K = O(l) FK = O(h),O
eq eu eq eu eq eu
w=0(3) | k k+1 | k+1 k41| k+1 k+1
T =01) | — — k+1 k+1| k+1 k+1
=00 | - - - - k k
TABLE 3.2
Eaxperimental orders of convergence of eqx = || @ —aj, | 12(q, ;) ond eux = [[u—uj [[12¢q,), oF
eur = [P*"(u—un) llL2(q,)s or eur = [[Pou =4 [IL2(s,,n) for k > 1.
FK = O(%) ?K = O(l) FK = O(h),O
€q* Eqy* Eq* Eyu* €q* Cq*
k=03 | k k+1|k+1 k+2|k+1 k+2
T =001) | — — | k41 k42| k+1 k+2
Tk =0(h) | — - - - ko k+1
TABLE 3.3
Experimental orders of convergence of eq = ||q — qy, ||2(q),;c) and euw = [[u —up [|2(q,) for
k=0.
T =0(3) | Tx =0(1) | Tx = O(h),0
eq eu eq eu eq eu
" =0(3) | 0 0 1 1 1 1
=01 | - - 1 1 1 1
Tk = 0O(h) | — - - -

method using polynomials of degree k on a uniform mesh of size h = 1/n is, for n > 3,
(k+1)% (1502 — 18n + 4).
In view of the forthcoming sections, we also note that for the BDM and RT methods
the number of nonzero entries of the stiffness matrix is the same as for the LDG-H
method, while for the CG method it is
(15k% =6k —2)n? + (—18k* —20k> +16)n + (4 k% + 24k — 11).

Results in Figure 3.1 show that the efficiency of the LDG-H method increases with
the polynomial degree k.
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10°*
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number of nonzero entries of the stiffness matrix number of nonzero entries of the stiffness matrix

Fic. 3.1. The effect of the polynomial degree k on the convergence properties of the error in u,
lu—uj lL2¢q) (left), and on those of the error in q, | q — aj; | 2(q) (Tight).

TABLE 3.4
Comparison between the LDG-H and CG methods.

LDG-H LDG-H
o = ufSlp2g, ) | e = wiP9 M2y | e a9l 2, o | la-ai”Mi2g, o
k 1 error order error order error order error order
1 2.64e-02 - 6.07e-02 -
2 1.49e-02 0.82 4.22e-02 0.52
3 7.60e-03 0.97 2.48e-02 0.77
0 4 3.77e-03 1.01 1.33e-02 0.90
5 1.87e-03 1.01 6.86e-03 0.96
6 9.29e-04 1.01 3.47e-03 0.98
7 4.63e-04 1.01 1.75e-03 0.99
1 1.43e-02 - 8.10e-03 - 8.03e-02 - 2.55e-02 -
2 5.21e-03 1.45 2.54e-03 1.67 5.14e-02 0.64 1.05e-02 1.28
3 1.49e-03 1.81 7.11e-04 1.84 2.82e-02 0.87 3.15e-03 1.74
1 4 3.86e-04 1.95 1.85e-04 1.94 1.45e-02 0.96 8.37e-04 1.91
5 9.74e-05 1.99 4.71le-05 1.98 7.29e-03 0.99 2.14e-04 1.97
6 2.44e-05 2.00 1.18e-05 1.99 3.65e-03 1.00 5.39e-05 1.99
7 6.10e-06 2.00 2.97e-06 2.00 1.83e-03 1.00 1.35e-05 1.99
1 3.45e-03 - 1.94e-03 - 3.57e-02 - 9.63e-03 -
2 6.57e-04 2.39 4.13e-04 2.23 1.35e-02 1.40 2.04e-03 2.24
3 9.25e-05 2.83 6.36e-05 2.70 3.97e-03 1.77 3.06e-04 2.74
2 4 1.18e-05 2.97 8.52e-06 2.90 1.04e-03 1.93 4.05e-05 2.92
5 1.49e-06 2.99 1.09e-06 2.97 2.64e-04 1.98 5.16e-06 2.97
6 1.86e-07 3.00 1.37e-07 2.99 6.63e-05 1.99 6.49e-07 2.99
7 2.33e-08 3.00 1.72e-08 2.99 1.65e-05 2.00 8.13e-08 3.00
1 8.86e-04 - 5.64e-04 - 1.32e-02 - 2.87e-03 -
2 9.95e-05 3.16 6.83e-05 3.05 2.84e-03 2.22 3.05e-04 3.23
3 7.38e-06 3.75 5.39e-06 3.66 4.27e-04 2.74 2.29e-05 3.73
3 4 4.71e-07 3.97 3.63e-07 3.89 5.57e-05 2.94 1.52e-06 3.91
5 2.89e-08 4.03 2.32e-08 3.97 6.99e-06 2.99 9.68e-08 3.97
6 1.77e-09 4.03 1.46e-09 3.99 8.71e-07 3.01 6.09e-09 3.99
7 1.09e-10 4.02 9.17e-11 4.00 1.08e-07 3.01 3.81e-10 4.00

3.2. Comparison with other finite element approximations. This section
deals with the comparison of the LDG-H formulation with the CG finite element
method and with the hybridized versions of the RT and BDM mixed methods. Defin-
ing a metric for such a comparison is not obvious, since the considered methods
present not only quantitative differences, such as number of degrees of freedom and
error norms, but also qualitative ones, such as local conservation properties, possible
upwinding strategies, and ease of hp grid adaptation. Here we restrict ourselves to
comparing different error norms as functions of the computational complexity. In
general terms, we have that the computational complexity of a finite element method,
and hence its computational cost, is the sum of two components: the construction of
the local stiffness matrices (in our case, the matrices Ax introduced in section 2.2),
and the construction and resolution of the resulting global linear system (in our case,
problem (2.8)). The first component essentially requires a loop over the elements and,
for methods with hybridization, also includes the local solvers Q and U, while the
second component requires a linear solver. In general, it is not possible to identify a
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priori which of these two components will be responsible for the largest computational
cost, since they scale differently when changing either the size of the problem or the
implementation. The first component scales linearly with the number of elements,
and when considering parallel implementations it does not pose any difficulty. The
second component, on the contrary, can be expected to increase more than linearly
with the number of elements, and it also represents a limitation to an efficient par-
allel implementation because of the implied global communications. For this reason,
the computational costs of these two components should be kept separate. Here, we
mainly consider the complexity associated with the linear system, as it is defined in
section 3.1, since its definition is independent from the particular implementation. To
complete this information, we also include some results concerning the CPU times for
the sole computation of the local matrices.

We consider the same test case as in the previous section. We start with the com-
parison between the LDG-H method, with stabilization parameters 7 = Tx = 1, and
the CG method. Table 3.4 illustrates the obtained results for the errors ||u—wunl/z2(q,)
and ||q — q;,[/22(0,;¢), Tespectively. Therein, we have denoted the solutions provided
by the LDG-H and CG schemes by the superscripts “LDG-H”and “CG,”respectively.

We can see that the error [|u — upl[z2(q,) converges with the optimal order of
k 4+ 1 for both methods. The result is expected for the CG method, while for the
LDG-H method it agrees with conclusions drawn in the previous section. As far as
the amplitude of the error, it turns out that the LDG-H solution is more accurate than
that of the CG method. This should be ascribed to the fact that the total number
of degrees of freedom over € in the case of the LDG-H method is far superior to
the corresponding quantity for a CG method of the same polynomial degree. We can
also see that the order of convergence of the error ||q — q;[/12(q,;e) for the LDG-H
scheme of degree k is the same as that of a CG scheme of degree k 4 1. This is to be
expected, because ||g—gq%¢ | L2(q2;¢) 18, roughly speaking, the H'-error on u for the CG
method. The CPU time for the computation of the local matrices in the two methods
is given in Figure 3.2, for two serial implementations with comparable optimization.
The same computational grid with n = 32 is used for different polynomial orders k,
and problem coding is organized assuming that all coefficients in (1.1) are spatially
varying functions, so that the local matrices cannot be precomputed. On the z-axis
in Figure 3.2, we indicate the order k + 1 for the LDG-H method and k for the CG
method, while on the y-axis we indicate the quantity

ta/nnz(A)
R=—r—7——,
tace, /nnz(Ac,)

ta and nnz(A) denoting (for each method) the CPU time required to assembly the
local stiffness matrices Ay, and the number of nonzero entries of A, respectively.
Moreover, for the LDG-H method, the time spent in the postprocessing of the scalar
variable is also indicated, while we do not include gj, since the projector (2.11) does
not depend on the problem coefficients and the associated cost is negligible. Results
clearly show that the computational effort required by the LDG-H method to construct
the local stiffness matrices is comparable with that required by a CG method of the
same degree, the difference of the costs being mainly due to the computation of
the lifting operator Q, especially for large values of k. A key point of the efficient
implementation of LDG-H is the use of the Cholesky factorization for inverting the
mass matrix obtained from (¢Qm,v)k in (2.5a). Further improvement is possible in
the case where the diffusion coefficient is constant, by choosing an orthogonal basis
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A CG
-~ LDG-H
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relative CPU time
-
'y

order

Fi1c. 3.2. Normalized CPU time for the CG and LDG-H methods, in correspondence with
different polynomial orders k and fixed spatial resolution | = 5. On the x axis, the order is k for the
CG method and k + 1 for the LDG-H method.

TABLE 3.5
The local spaces LDG-Hy(K), BDMy(K), and RTy(K).

method V(K) x W(K) Dimension Degree
BDM,, PF(K) x PF—1(K) (k+1)(3k/2+2) k>1
LDG-Hy, PF(K) x PH(K) (k+1)(3k/2+3) k>0

RT}, (PH(K) + 2 PF(K)) x PF(K)  (k+1)(3k/24+4) k>0

for V. Finally, we mention that an experimental analysis of the conditioning of the
global stiffness matrix A reveals that it is of the same order for the two methods,
irrespectively from the choice of 7 and Tk, and grows like O(h~2) as in standard
displacement-based formulations.

Let us now compare the LDG-H method and the RT and BDM methods. We
denote the solutions given by the RT and BDM methods by the superscripts “BDM”
and “RT,” respectively. The stabilization parameters for the LDG-H scheme are the
same as in the previous comparison.

Note that for these three methods, the space My, is identical since they all take
M (e) = Pi(e). However, the spaces used to compute the local solvers V(K) x W(K)
on each element K are different for each of these methods. In Table 3.5 we display
those spaces. Note that for each k > 1, we have

RTk_l(K) C BDMk(K) C LDG—Hk(K) C RTk(K),
with
dim(RTy(K)) — dim(LDG-Hy,(K)) = dim(LDG-Hy (K)) — dim(BDMj(K)) = k + 1.

In Table 3.6 we display the history of convergence of the approximations given
by the LDG-H, BDM, and RT methods. For the LDG-H method, we consider the
quantities ||u —ujy||z2(0,), 14— @} |lL2(0p:e), and ||V - (@ — @};) | L2(0,), Whereas for the
BDM and RT methods, the postprocessed flux gj; is replaced by the approximate flux
q;, directly computed by the BDM and RT formulations.

We can see that the error [|u—uj|/12(q,) converges with the optimal order of k+-2
for the LDG-H and RT methods, whereas it converges with the suboptimal order of
k+ 1 for the BDM method. This degradation of accuracy is to be ascribed to the
presence of convection in the differential model, and is consistent with the theoretical
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TABLE 3.6

Convergence history for the LDG-H, BDM, and RT methods.

U e = BPET, la — ap Py 19 - (a—ap P,
h L=(Qy,) h L=2(Qp5e) h L=(Qy)
k 1 error order error order error order
1 5.72e-02 - 4.78e-02 - 2.00e-01 -
2 1.99e-02 1.52 3.72e-02 0.36 1.13e-01 0.82
3 6.82e-03 1.55 2.16e-02 0.78 6.10e-02 0.89
0 4 2.98e-03 1.19 1.13e-02 0.93 3.13e-02 0.96
5 1.50e-03 0.99 5.75e-03 0.98 1.58e-02 0.99
6 7.66e-04 0.97 2.89e-03 0.99 7.90e-03 1.00
7 3.89e-04 0.98 1.45e-03 1.00 3.95e-03 1.00
1 6.29e-03 - 2.68e-02 - 7.20e-02 -
2 7.87e-04 3.00 1.01e-02 1.41 2.91e-02 1.31
3 9.44e-05 3.06 2.93e-03 1.79 8.41e-03 1.79
1 4 1.17e-05 3.02 7.68e-04 1.93 2.19e-03 1.94
5 1.46e-06 3.00 1.95e-04 1.98 5.53e-04 1.99
6 1.83e-07 2.99 4.91e-05 1.99 1.38e-04 2.00
7 2.31e-08 2.99 1.23e-05 2.00 3.46e-05 2.00
1 6.34e-04 - 8.90e-03 - 3.17e-02 -
2 4.99e-05 3.67 1.72e-03 2.37 6.33e-03 2.32
3 3.28e-06 3.93 2.52e-04 2.77 9.14e-04 2.79
2 4 2.05e-07 4.00 3.31e-05 2.93 1.19e-04 2.94
5 1.27e-08 4.02 4.21e-06 2.98 1.50e-05 2.99
6 7.86e-10 4.01 5.29e-07 2.99 1.88e-06 3.00
7 4.89e-11 4.01 6.62e-08 3.00 2.53e-07 3.00
1 7.98e-05 - 2.25e-03 - 9.01e-03 -
2 3.25e-06 4.62 2.29e-04 3.29 8.85e-04 3.34
3 1.20e-07 4.76 1.71e-05 3.74 6.42e-05 3.78
3 4 3.89e-09 4.95 1.13e-06 3.92 4.19e-06 3.94
5 1.22e-10 5.00 7.16e-08 3.98 2.64e-07 3.98
6 3.78e-12 5.01 4.49e-09 3.99 1.66e-08 4.00
7 1.18e-13 5.00 2.81e-10 4.00 1.04e-09 4.00
_ ,*,BDM _ oBDM X _ ,BDM
l = 20, ) la = apPMil 20 0 19 (a = aRPMl 2,
k ! error order error order error order
1 7.84e-03 - 2.96e-02 - 1.98e-01 -
2 1.31e-03 2.58 1.16e-02 1.35 1.15e-01 0.79
3 2.89e-04 2.18 4.17e-03 1.48 6.11e-02 0.91
1 4 7.25e-05 2.00 1.64e-03 1.35 3.11e-02 0.97
5 1.86e-05 1.96 7.41e-04 1.15 1.56e-02 0.99
6 4.78e-06 1.96 3.59e-04 1.04 7.82e-03 1.00
7 1.22e-06 1.96 1.78e-04 1.01 3.91e-03 1.00
1 1.02e-03 - 1.00e-02 - 7.52e-02 -
2 1.17e-04 3.12 2.36e-03 2.09 2.93e-02 1.36
3 1.10e-05 3.41 4.75e-04 2.32 8.35e-03 1.81
2 4 1.11e-06 3.31 1.03e-04 2.20 2.16e-03 1.95
5 1.26e-07 3.14 2.43e-05 2.09 5.45e-04 1.99
6 1.52e-08 3.05 5.93e-06 2.04 1.37e-04 2.00
7 1.88e-09 3.01 1.47e-06 2.02 3.42e-05 2.00
1 1.18e-04 - 3.08e-03 - 3.30e-02 -
2 6.74e-06 4.14 3.68e-04 3.07 6.25e-03 2.40
3 4.03e-07 4.06 4.10e-05 3.17 8.87e-04 2.82
3 4 2.43e-08 4.05 4.84e-06 3.08 1.15e-04 2.95
5 1.44e-09 4.08 5.88e-07 3.04 1.45e-05 2.99
6 8.56e-11 4.07 7.23e-08 3.02 1.81e-06 3.00
7 5.18e-12 4.05 8.95e-09 3.01 2.27e-07 3.00
_ o oRT _ oRT . _ 4RT
A P la = aiTll 20, 0 19 - (a =il 2,
k ! error order error order error order
1 1.18e-02 - 5.26e-02 - 1.98e-01 -
2 4.39e-03 1.42 3.69e-02 0.51 1.15e-01 0.79
3 1.29e-03 1.77 2.10e-02 0.81 6.11e-02 0.91
0 4 3.37e-04 1.93 1.09e-02 0.95 3.11e-02 0.97
5 8.55e-05 1.98 5.50e-03 0.99 1.56e-02 0.99
6 2.15e-05 1.99 2.75e-03 1.00 7.82e-03 1.00
7 5.38e-06 2.00 1.38e-03 1.00 3.91e-03 1.00
1 2.71e-03 - 2.62e-02 - 7.52e-02 -
2 4.62e-04 2.55 9.52e-03 1.46 2.93e-02 1.36
3 6.32e-05 2.87 2.73e-03 1.80 8.35e-03 1.81
1 4 8.05e-06 2.97 7.15e-04 1.93 2.16e-03 1.95
5 1.01e-06 3.00 1.82e-04 1.97 5.45e-04 1.99
6 1.25e-07 3.00 4.58e-05 1.99 1.37e-04 2.00
7 1.56e-08 3.00 1.15e-05 2.00 3.42e-05 2.00
1 6.07e-04 - 8.51e-03 - 3.30e-02 -
2 4.72e-05 3.68 1.58e-03 2.43 6.25e-03 2.40
3 3.04e-06 3.95 2.29e-04 2.78 8.87e-04 2.82
2 4 1.88e-07 4.02 3.02e-05 2.92 1.15e-04 2.95
5 1.15e-08 4.02 3.85e-06 2.97 1.45e-05 2.99
6 7.13e-10 4.02 4.85e-07 2.99 1.81e-06 3.00
7 4.43e-11 4.01 6.08e-08 3.00 2.27e-07 3.00
1 8.07e-05 - 2.08e-03 - 9.47e-03 -
2 3.30e-06 4.61 2.01e-04 3.37 8.89e-04 3.41
3 1.18e-07 4.81 1.49e-05 3.75 6.38e-05 3.80
3 4 3.74e-09 4.98 9.87e-07 3.92 4.15e-06 3.94
5 1.15e-10 5.02 6.29e-08 3.97 2.62e-07 3.99
6 3.55e-12 5.02 3.96e-09 3.99 1.64e-08 4.00
7 1.10e-13 5.01 2.48e-10 4.00 1.03e-09 4.00
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analysis of [9] where it is shown that suboptimal convergence (for the flux variable)
is to be expected when the total advective-diffusive flux is treated as an indepen-
dent variable instead of the sole diffusive flux. As a matter of fact, numerical tests
carried out on reaction-diffusion problems reveal that the optimal convergence rate
O(hF+2=9%.1) is recovered also for the BDM formulation.

We also see that, for k£ > 0, the error ||q — gj;||L2(q,;e) converges with the optimal
order of k + 1 for the LDG-H scheme of degree k and the RT scheme of the same
degree, the accuracy of the RT method being slightly better most probably because
of the higher dimension of the local finite element space. Again, a degradation of the
order of convergence to k is visible for the BDM method of degree k, k > 1.

Concerning the L? error of the divergence, we see that the LDG-H and the RT
discretization have orders of convergence higher by one order than those of the BDM
method.

To have an idea of the relative efficiency of the method under consideration, we
plot in Figures 3.3 and 3.4 the errors as a function of the computational complexity of
the method as defined in the previous subsection. In the plots of Figure 3.3, we put
together the approximations given by the different methods using the same polynomial
degree for the unknown \,. We see that, as expected, the CG and BDM methods
are outperformed by the RT and LDG-H methods which give similar answers, the RT
method being slightly better.

Next, we compare the approximations given by the different methods that con-
verge with the same order. Thus, in each of the plots of Figure 3.4, we compare the
approximations given by the CG and BDM methods of degree k + 1 with those of
the LDG-H and RT methods of degree k. We see that all of these methods behave
essentially in the same manner, with the BDM method outperforming all of the other
methods.

Two important conclusions can be drawn from the several tests and compar-
isons discussed in this section. The first conclusion is that hybridization is the key
for a highly efficient implementation of the LDG formulation. The second conclu-
sion is that the LDG-H method has a computational cost completely comparable
with that of a standard displacement-based finite element scheme of the same order.
These two conclusions provide a strongly encouraging motivation towards a system-
atic use of the novel formulation in a wide variety of problems arising in computational
fluid-mechanics, where flux conservation and self-equilibrium, as well as displacement
superconvergence, are desirable, and often even mandatory, requirements.

3.3. Performance in the convection-dominated regime. In this section
we present a preliminary assessment of the performance of the LDG-H method in the
convection-dominated regime. To start, we assume that the problem coefficients ¢, 3,
and r are constant over {2. Then, we define the velocity v := —3 and, as customary
with the approximation of hyperbolic problems using the discontinuous Galerkin (DG)
method, we define for each simplex K € j, the inflow and outflow boundaries of K
as OK™ := {x € 0K, v-n <0} and 0K°“ := {x € 0K, v-n > 0}, respectively.

The stabilization parameter that we propose to use to deal with the case where

the problem (1.1) is in the convection-dominated regime is defined as

(31) T = Tell + Thyps
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FIG. 3.3. Comparison of the convergence of the L?-error in u (left) and in q (right) for different
methods. The postprocessed solution uj was taken as the approzimation for the BDM, LDG-H, and
RT methods. The postprocessed solution qj was taken as the approzimation for the LDG-H method.

where
(3.2)
€
7 on e, 0 on OK°ut,
Tell = Thyp =
0 otherwise, |3 - n| otherwise,

where L is a characteristic length of the problem (for example, the diameter of {2 or
the edge length |eX]).

Notice that, in terms of the parameters 7x and Tx introduced in (2.10), rela-
tion (3.1) leads to various possibilities depending on the choice of eX, with possible

forms of 7% and T being /L, |3 - n|, ¢/L(1 + |B - n|L/e), and, for the sole T, 0.
As a consequence, Tk is constant with respect to h, while 7k is either proportional
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FIG. 3.4. Comparison of the convergence of the L?-error in u (left) and in q (right) for different
methods. Only approximations converging at the same order are compared. The postprocessed solu-
tion uy was taken as the approzimation for the BDM, LDG-H, and RT methods. The postprocessed
solution qj was taken as the approzimation for the LDG-H method.

to h~!, for L = |ef|, or constant, for other choices of L. In the vanishing viscos-
ity limit ¢ — 07, the LDG-H formulation using the upwind stabilization parameters
(3.1) tends to reproduce exactly the DG approximation, which provides the desired
upwinding behavior to the method. To prove this, let us start to observe that (2.2a)
gives q;, = —Buy, for each K € {2y, so that, replacing this quantity into (2.2b), with
Ten — 07, we get for all w € W(K)

—/ t Bul - nwdy on OK°u,
8KO’U.

(3.3) / Gy - mwdy =
oK — BAp - nw dy on OK™.
aKi'n.

Enforcing the conservativity condition (2.2¢) on each face e € &}, and denoting by
KUPst™ and K" the two neighboring mesh simplexes located upstream and down-
stream with respect to the velocity v, we get for all u € M(e)

- own KgpSt" upstr
OZ/HQh'n]]Md'VZ/(_IB)\h'"d — Bu, P 1 dy

from which it follows that

Kupstr
/\h|e:uh(3 e 66(9@}“
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TABLE 3.7
Convergence_history for the LDG-H methods in the convection-dominated regime. The errors
are computed in = (0,0.9)% C Q.

* *
”“_“h”L2(§zh) Hq_qh”L2(th;c) HV-(q—qh)HLz(gh)
k ! error order error order error order
1 5.78e-02 - 8.95e-00 - 9.76e-02 -
2 3.33e-02 0.80 6.48e-00 0.46 5.36e-02 0.86
3 1.99e-02 0.74 3.53e-00 0.88 2.72e-02 0.98
9 4 9.77e-03 1.03 1.83e-00 0.95 1.32e-02 1.04
5 4.93e-03 0.99 9.65e-01 0.92 6.59e-03 1.01
6 2.53e-03 0.96 4.99e-01 0.95 3.32e-03 0.99
7 1.28e-03 0.98 2.51e-01 0.99 1.66e-03 1.00
8 6.33e-04 1.02 1.25e-01 1.00 8.29e-04 1.00
1 1.22e-02 - 2.57e-00 -
2 3.54e-03 1.79 7.13e-01 1.85
3 9.09e-04 1.96 2.0le-01 1.83
1 4 2.14e-04 2.09 4.92e-02 2.03
5 5.41e-05 1.98 1.23e-02 2.00
6 1.35e-05 2.00 3.07e-03 2.00
7 3.34e-06 2.02 7.62e-04 2.01
8 8.13e-07 2.04 1.86e-04 2.03

i.e., the value of the hybrid variable A\, on each face of the triangulation equals the
upstream trace of the discrete solution wuy, in the interior of each simplex. Replacing
the obtained expression for Ay|. into (3.3)2, we immediately see that the boundary
term [, SK q;, - nwdy computed by the LDG-H formulation with the upwinding-like
choice (3.1) of the stabilization parameter 7 coincides with the corresponding term in
the standard DG approximation of a linear hyperbolic problem.

The above result establishes a precise link between mixed-hybridized formulations
and DG methods, and considerably widens the range of applicability of the LDG-H
method to the treatment of parabolic-hyperbolic problems in any fluid-dynamical
regime.

3.3.1. A convection-dominated problem with homogeneous boundary
conditions. In the first example, the problem data are Q = [0,1]2, e = 1074, B =
[—1,—17T, r =0, and f = 2(zm (z) +ym(y)) — ( +y)ni (z)m (y), with the boundary
condition u = 0 on 9f2. Table 3.7 summarizes the convergence history of the upwind-
stabilized formulation for the cases & = 0 and k& = 1, the errors being computed
on the reduced domain Q = (0,0.9)? C € to exclude the unresolved boundary layer
(see [16]). This convergence analysis does not consider k£ > 2 since in this case the
solution ue, = xy of the reduced problem (corresponding to taking e = 0) belongs
to the finite element space and the errors are negligible even for a very coarse choice
of the grid size. For the same reason, the error in the divergence of ¢* for k = 1
is also omitted. It can be seen that the theoretically expected convergence rates are
attained. For these tests we set L = |eX| in (3.2). In Figure 3.5, we address the issue
of the robustness of the method when increasingly small diffusivity is considered.
Here, we set the grid size equal to h = 1/64, progressively reduce ¢ from 0.5 to 107,
and compare the upwind stabilized LDG-H method with L = |ef| and the plain
version of the method with 7 = 1/h, 7 = 0. The L? errors computed on the domain

Q = (0,0.99)? C Q are shown the scalar variable uy; analogous results are obtained
for g, and g}, which we do not report here. For large values of ¢ the boundary layer
can be captured by the computational grid, and the upwind-stabilized method yields
a solution similar to that of the plain method. For smaller values of e, such that
the boundary layer cannot be resolved on the chosen grid, the solution of the plain
version of the method is affected by spurious oscillations, resulting in large errors,
while the upwind-stabilized method converges to the solution of the reduced problem.
Figure 3.6 shows the quantities u; and \j, in the case k = 3, computed by the LDG-
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A —o—stab / o—stab
8- s —a-
10 /) & -non stab A & -non stab

Fic. 3.5. Error ||u — uh”[ﬁ(é ) for k =0 (left) and k = 1 (right) for € varying from 0.5 to
h

102 for the upwind-stabilized and the plain version of the LDG-H method.

Fic. 3.6. Approzimate solution in the case k = 3. Left: uy, right: \p.

H method with 7 as in (3.1) on a rather coarse triangulation with average grid size
h = 1/4. The complete absence of spurious oscillations for uy, at the outflow boundary
layer clearly indicates the ability of the upwinded LDG-H method in dealing with the
almost hyperbolic nature of the problem. Similar results can be obtained for other
values of the polynomial degree k, while the use of the plain (nonupwinded) LDG-H
formulation (i.e., with 7 = 7.;;) would provide a completely meaningless solution.
We investigate in Figure 3.7 the dependence of the condition number cond(A) of the
stiffness matrix A on the value of the diffusion coefficient e. Figure 3.7 (left) shows
cond(A) for the stabilized LDG-H method as a function of increasing values of ¢!
for kK = 0,...3, and for a given mesh size h = 1/32. The obtained results indicate
that, for each considered value of k, the condition number becomes independent of
e~ ! as the problem enters the convective-dominated regime, with a mild increase of
cond(A) as k increases. Figure 3.7 (right) compares the stabilized version of the LDG-
H method with the CG method for £ = 1 and the plain versions of the LDG-H and
RT methods for £ = 0. For the CG method, a finer grid with h = 1/94 is adopted to
have a similar number of nonzero entries in the matrix. Results clearly demonstrate
the effectiveness of the upwinding choice of 7, as cond(A) immediately deteriorates in
highly convective-dominated regimes for the nonstabilized formulations.

3.3.2. The Smith and Hutton benchmark test case. In the second ex-
ample, we study the well-known Smith and Hutton benchmark test case [18]. The
diffusion coefficient is ¢ = 107%, r = f = 0, while the (divergence-free) advective field
is B = (2y(1 — 2?), —22(1 — y?))T. The computational domain is Q = [-1,1] x [0,1],
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10° 10° ‘
k=0 —— LDG-H, stab.
k=1 1107} - CG 4
k=2 —— LDG-H, non-stab.
k;3 —— RT

cond(A)

10°F 1

10° 10° gl 10° 10° 10° 10° &t 10° 10°

FIG. 3.7. Condition number for the LDG-H method as a function of e~ in the cases k =
0,1,2,3 (left); comparison with the nonstabilized LDG-H and RT methods of degree zero and the
nonstabilized CG method of degree 1 (right).
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Fia. 3.8. Approzimate solution q;, (left) and X\;, (right) in the case k = 3.

and a uniform triangulation with 40 subdivisions along the z axis and 20 subdivisions
along the y axis is used. The boundary conditions at the inflow boundary y = 0,
x € [—1,0] are such that the solution u almost exhibits a discontinuity at = = —0.5.
This discontinuity is then transported by the advective field in a clockwise rotation
and exits out of the domain at the outflow boundary located at y = 0, = € [0, 1].

Figure 3.8 shows the quantities gq; and A, computed by the upwind-stabilized
LDG-H method in the case k = 3. Results show that a very accurate and numerically
stable solution is obtained, whereas severe spurious oscillations would arise if the plain
LDG-H formulation were adopted.

4. Concluding remarks. In this article, we have introduced a novel class of
discontinuous Galerkin methods, called LDG-H methods, for convection-diffusion-
reaction problems. Extensive numerical experiments demonstrate that the novel pro-
posed formulation is competitive with more standard displacement-based approaches,
as far as the balance between computational effort and accuracy is concerned, while
computing at the same time a conservative and superconvergent approximation of the
flux variable and a superconvergent approximation of the scalar variable, as with stan-
dard mixed finite element schemes for elliptic problems. In the convection-dominated
regime, a proper choice of the stabilization parameter 7 allows one to recover a numer-
ical scheme which is very close to classical DG approximations of hyperbolic problems.
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This turns out to be particularly effective in the highly accurate and stable treatment
of the sharp boundary and internal layers arising in the exact solution, and con-
siderably widens the range of applicability of the novel method to the treatment of
parabolic-hyperbolic problems in any fluid-dynamical regime.

A complete theoretical analysis of the well-posedness and a priori error estimates
of the proposed LDG-H method will be presented in a forthcoming paper.
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