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Abstract. The aim of the paper is to show the stability of the finite element
solution for the Stokes system in W 1

∞ norm on general convex polyhedral

domain. In contrast to previously known results, W 2
r regularity for r > 3,

which does not hold for a general convex polyhedral domains, is not required.
The argument uses recently available sharp Hölder pointwise estimates of the

corresponding Green’s matrix together with novel local energy error estimates,

which do not involve an error of the pressure in a weaker norm.

1. Introduction

Consider the following Stokes problem on a convex polyhedral domain Ω ⊂ R3,

−∆~u+∇p = ~f, in Ω,(1.1a)

∇ · ~u = 0, in Ω,(1.1b)

~u = ~0, on ∂Ω.(1.1c)

Here ~u = (u1, u2, u3) represents the velocity of the fluid, p ∈ L2(Ω) the pressure, and
~f = (f1, f2, f3) is a smooth external force vector function. The solution p ∈ L2(Ω)
is unique up to a constant. Our work is motivated by [12], where the stability of
the finite element solution, namely

(1.2) ‖∇~uh‖L∞(Ω) + ‖ph‖L∞(Ω) ≤ C(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)),

was derived under the regularity assumptions ~u ∈W 2
r (Ω)3 and p ∈W 1

r (Ω), for some
r > 3. This result was an important improvement from previous results where the
constant C depended on | log h|; see [8] for instance.

However, the drawback of the result in [12] is the assumption of W 2
r (Ω)3 regu-

larity for some r > 3. The standard regularity results (cf. [4]) for general convex
polyhedral domains only give ~u ∈ H2(Ω)3 and p ∈ H1(Ω), and in order to guaran-
tee ~u ∈ W 2

r (Ω)3 and p ∈ W 1
r (Ω), for some r > 3, one needs additional geometrical

restrictions on Ω. More precisely, the dihedral angles must be less than 3π/4 (cf.
[20, sec. 5.5]). In [12], the authors argued that such condition on Ω is essentially
consistent with (~u, p) ∈ W 1

∞(Ω)3 × L∞(Ω). The condition ~u ∈ W 2
r (Ω)3, for some

r > 3 does imply by Sobolev embedding theorem ~u ∈W 1
∞(Ω)3. However, for a gen-

eral convex polyhedral domain (~u, p) might not belong to W 2
r (Ω)3×W 1

r (Ω) for any
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r > 3, but nevertheless Maz’ya and Rossmann [23] showed that (~u, p) will always
belong to C1+σ(Ω)3 ×Cσ(Ω), where the Hölder exponent σ depends on Ω. We use
this important result to establish (1.2) for general convex polyhedral domains Ω.

A standard argument applied to the above stability result gives the best approx-
imation property:
(1.3)
‖∇(~u−~uh)‖L∞(Ω)+‖p−ph‖L∞(Ω) ≤ C min

(~χ,w)∈~Vh×Mh

(‖∇(~u−~χ)‖L∞(Ω)+‖p−w‖L∞(Ω)).

Such estimates have many applications. Besides the ones mentioned in [12], we
would like to mention state constrained optimal control problems [5]. In such
problem the Lagrange multipliers are just measures and the pointwise stability
estimates are essential.

Our proof is based on the technique developed in the series of papers by Schatz
and Wahlbin (e.g. [30, 31, 32]) and is different from the global weighted technique
used in [8, 12]. Our argument uses dyadic decomposition of Ω and requires local
energy estimates together with sharp pointwise estimates for the corresponding
components of the Green’s matrix. For smooth domains such a technique was
successfully used in [3] for mixed methods and [15] for discontinuous Galerkin (DG)
methods on smooth domains Ω, where higher-order regularity results were used. In
the present paper we only assume C1+σ(Ω)3 ×Cσ(Ω) regularity. In order to prove
(1.2) only assuming (~u, p) ∈ C1+σ(Ω)3×Cσ(Ω) we need to develop several new tools.
The first necessary ingredient is the new local energy estimates. Such estimates are
important and have independent interest. They show how the error depends locally
on the solution. Arnold and Liu [1] proved such estimates for subdomains away
from the boundary. Later, those estimates were used in [3] to show (1.3) on smooth
domains. In [15] such local energy estimates were extended up to the boundary for
DG methods. The common feature of those estimates is the presence of the discrete
pressure error term in some negative-order norm. Then by a duality argument the
pressure term in weaker norm can be handled separately. However, such duality
arguments require additional smoothness of the solution which for general convex
polyhedral domains do not hold. As a result, we can not use those results directly.
One of the main contributions of this paper is deriving new local energy estimates
that do not involve the pressure error term (cf. Sec. 3). The second necessary
ingredient is applying, in a careful way, sharp Hölder pointwise estimates for the
components of the Green’s matrix which were recently derived by Rossmann [27],
(see also [17, 23] for similar results).

We would like to mention that similar Hölder type Green’s function estimates
were obtained in [16] for the Laplace equation and allowed the authors to obtain
uniform stability of the Ritz projection for the Laplace equation on a general convex
polyhedral domain. This paper can be considered as an extension of [16] to the
Stokes problem (1.1). However, the Stokes problem is more technically challenging
and involved. The main difficulty comes from the presence of the pressure term
and the new local energy estimates for the Stokes problem will play a key role to
overcome this difficulty.

The rest of the paper is organized as follows. In section 2 we list the finite element
assumptions and state the main result. Important analytical tools, local energy
estimates and the pointwise estimates for the Green’s matrix of the continuous
problem are given in sections 3 and 4, respectively. In section 5, we provide a proof
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of the main result. For technical reasons we first establish the stability for the
velocity and then for the pressure. Finally, in section 6 we comment on the possible
extensions and open problems.

2. Assumptions and the Main Result

Before stating the main result we list our assumptions on the finite element
spaces.

2.1. Finite Element Approximation. For the finite element approximation of
the problem, let Th, 0 < h < 1, be a sequence of triangulations of Ω, Ω =

⋃
T∈Th T ,

with the elements T mutually disjoint. The partitions are face-to-face so that
simplices meet only in full lower-dimensional faces or not at all. The triangulations
are assumed to be quasi-uniform, i.e. (if necessary after a renormalization of h),
there exists a constant C such that

diam T ≤ h ≤ C(meas T )1/3, ∀T ∈ Th.

The finite element velocity space is denoted by ~Vh ⊂ [H1
0 (Ω)]3 and the pressure

space is denoted byMh ⊂ L2(Ω). We assume that ~Vh contains the space of piecewise
polynomials of degree k and is contained in the space of piecewise polynomials of
degree l. We assume that Mh contains the space of polynomials of degree k − 1.

The finite element approximation (~uh, ph) ∈ (~Vh ×Mh) solves

(∇~uh,∇~v)− (ph,∇ · ~v) = (~f,~v), ∀~v ∈ ~Vh(2.1a)

(q,∇ · ~uh) = 0, ∀q ∈Mh,(2.1b)

where (·, ·) denotes the usual L2(Ω) inner product. The approximation to the
pressure ph is unique up to a constant. We can for example require p, ph ∈ L2

0, i.e.∫
Ω
p(x) dx =

∫
Ω
ph(x) dx = 0. Instead, we will require

(2.2)
∫

Ω

p(x)φ(x) dx =
∫

Ω

ph(x)φ(x) dx = 0,

where φ(x) is an infinitely differentiable function on Ω which vanishes in a neigh-
borhood of the edges and satisfies

(2.3)
∫

Ω

φ(x)dx = 1.

Without loss of generality, we fix φ as above and assume p, ph satisfy (2.2). In other
words, we let p and ph belong to the space

L2
φ(Ω) := {v ∈ L2(Ω) :

∫
Ω

v(x)φ(x) dx = 0}.

2.2. Assumptions. In the analysis below in order to establish the main result,
we assume the existence of two projection operators P : H1

0 (Ω)3 → ~Vh and R :
L2(Ω)→Mh with the following properties:

Assumption 1 (Stability). There exists a constant C independent of h such that

‖P~v‖H1(Ω) ≤ C‖~v‖H1(Ω), ∀~v ∈ H1
0 (Ω)3.

Assumption 2 (Preservation of divergence).

(2.4) (∇ · (~u−P~u), qh) = 0, ∀qh ∈Mh,
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Assumption 3 (Approximation). Let Q ⊂ Qd ⊂ Ω, with d ≥ κh, for some fixed
κ sufficiently large and Qd = {x ∈ Ω : dist(x,Q) ≤ d}. For any ~v ∈ H1(Qd)3 there
exists C independent of h and ~v such that

(2.5a) ‖~v −P~v‖L2(Q) + h‖~v −P~v‖H1(Q) ≤ Ch‖~v‖H1(Qd).

For any ~v ∈ C1+σ(Qd) there exists C independent of h such that

(2.5b) ‖~v −P~v‖W t
∞(Q) ≤ Ch1+σ−t‖~v‖C1+σ(Qd), t = 0, 1,

where

(2.5c) ‖~v‖C1+σ(Q) = ‖~v‖C1(Q) + sup
x,y∈Q
i∈{1,2,3}

|~ei · (∇~v(x)−∇~v(y))|
|x− y|σ

.

Similar approximation properties we need for R. For any q ∈ H1(Qd) there exists
C independent of h and q such that

(2.5d) ‖q −Rq‖L2(Q) + h‖q −Rq‖H1(Q) ≤ Ch‖q‖H1(Qd).

For any q ∈ Cσ(Qd) there exists C independent of h such that

(2.5e) ‖q −Rq‖L∞(Q) ≤ Chσ‖q‖Cσ(Qd).

Assumption 4 (Superapproximation). Let ω ∈ C∞0 (Qd) be a smooth cut-off func-
tion such that ω ≡ 1 on Q and

(2.6a) |Dsω| ≤ Cd−s, s = 0, 1.

We assume,

(2.6b) ‖∇(ω2~v −P(ω2~v))‖L2(Q) ≤ Cd−1‖~v‖L2(Qd), ∀~v ∈ ~Vh,

and

(2.6c) ‖ω2q −R(ω2q)‖L2(Q) ≤ Chd−1‖q‖L2(Qd), ∀q ∈Mh.

Assumption 5 (Inverse inequality). There is a constant C independent of h such
that

‖~v‖H1(Q) ≤ Ch−1‖~v‖L2(Q), ∀~v ∈ ~Vh,(2.7a)

‖q‖H1(Q) ≤ Ch−1‖q‖L2(Q), ∀q ∈Mh.(2.7b)

In the proof of our pointwise estimates we will use the following energy error
estimates.

Proposition 2.1. Let (~u, p) solve (1.1) and (~uh, ph) solve (2.1). Assume the above
assumptions are satisfied, then there exists a constant C independent of h such that,

‖~u− ~uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C min
(~χ,w)∈~Vh×Mh

(‖~u− ~χ‖H1(Ω) + ‖p− w‖L2(Ω)).

Remark 1. In some textbooks, (cf. [9, Prop. 4.14]), the proof assumes that p ∈ L2
0,

however essentially the same proof holds for p ∈ L2
φ.

2.3. Examples of the subspaces. Several common finite element spaces for the
Stokes problem are known to satisfy the above assumptions. For example, MINI and
Taylor-Hood elements of degree greater or equal than three do satisfy. Operators
satisfying Assumptions 2-5 were constructed in [12] and [13]. For low order MINI
elements one can verify the assumptions by following the ideas in [1, Sec. 3].
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2.4. Main Result. The main result establishes the stability of the gradient of the
finite element velocity solution and the pressure in L∞ norm.

Theorem 1. Let (~u, p) and (~uh, ph) satisfy (1.1) and (2.1), respectively. If the
assumptions of section 2.2 are met, then there exists a constant C independent of
h such that

‖∇~uh‖L∞(Ω) + ‖ph‖L∞(Ω) ≤ C(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)).

Applying a standard argument we have the following best approximation prop-
erty.

Corollary 1. Under the assumptions of Theorem 1, there exists a constant C
independent of h such that

‖∇(~u−~uh)‖L∞(Ω)+‖p−ph‖L∞(Ω) ≤ C inf
(~χ,w)∈~Vh×Mh

(‖∇(~u−~χ)‖L∞(Ω)+‖p−w‖L∞(Ω)).

Proof. The proof of the corollary follows easily by taking ~u − ~χ and p − w with
arbitrary ~χ ∈ ~Vh and w ∈ Mh instead of ~u and p in the stability estimate of
Theorem 1 and using that the Stokes projection is invariant on ~Vh ×Mh. �

3. Local Energy Estimates

Local energy estimates are essential to our proof. These estimates are important,
although technical, and show how error depends locally on the solution. Such esti-
mates take their origin from the Caccioppoli inequality for the continuous problem.
In the interior of the domain, Caccioppoli inequality says that if ~v is the solution
of (1.1) with ~f ≡ ~0, then for any two concentric balls B1 and B2 of radii d and 2d,
respectively, such that B1 b B2 b Ω, there exists a constant C independent of ~v
and d such that (cf. [11, Thm. 1.1])

‖∇~v‖L2(B1) ≤
C

d
‖~v‖L2(B2).

In the finite element setting such estimates are not known and the pressure term
usually in a weaker norm enters the estimates. First such interior local error esti-
mates were derived in [1, Lem. 5.1] on subdomains away from the boundary. More
precisely they state that for the discrete version of the homogeneous equation, i.e.
for functions ~vh and qh satisfying

(∇~vh,∇~χ) + (qh,∇ · ~χ) = 0, ∀~χ ∈ ~Vh,(3.1a)

(∇ · ~vh, w) = 0, ∀w ∈Mh,(3.1b)

for any concentric balls B1 and B2 as above and for any nonnegative integer t

‖∇~vh‖L2(B1) + ‖qh‖L2(B1) ≤ Chd
−1
(
‖∇~vh‖L2(B2) + ‖qh‖L2(B2)

)
(3.2)

+ Cd−t−1
(
‖~vh‖H−t(B2) + ‖qh‖H−t−1(B2)

)
.

By a covering argument (cf. [26, Thm. 5.1]) the above estimate can be extended
to any subdomains A1 b A2 b Ω, with d = dist(A1, ∂A2) ≥ κh for some fixed
sufficiently large constant κ. Using (3.2) the authors in [1] it further implies that
the error satisfies,

‖∇(~v − ~vh)‖L2(A1) + ‖q − qh‖L2(A1) ≤ C
(
hr−1(‖~v‖Hr(A2) + h‖q‖Hr(A2))

+ d−t−1‖~v − ~vh‖H−t(A2) + d−t−1‖q − qh‖H−t−1(A2)

)
.
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For details we refer to [1]. Similar local energy estimates were derived in [15] for
discontinuous Galerkin methods for the Stokes problem on smooth domains.

The main common feature of the local error estimates in [1] and [15] is that they
contain the pressure term in some negative norm on the right hand side even if only
the velocity error is to be estimated. Such results are not sufficient in our setting
since handling such terms requires additional smoothness of the exact solution which
for general polyhedral domains we do not have. One significant contribution of our
local energy estimates is that we avoid the pressure term in the negative norm at
the expense of adding the original term on slightly bigger subdomain multiplied by
an arbitrary small number.

In order to state our result we consider (~v, q) ∈ H1
0 (Ω)3 × L2(Ω) and (~vh, qh) ∈

~Vh ×Mh that satisfy the following orthogonality relation

(∇(~v − ~vh),∇~χ) + (q − qh,∇ · ~χ) = 0, ∀~χ ∈ ~Vh,(3.3a)

(∇ · (~v − ~vh), w) = 0, ∀w ∈Mh.(3.3b)

Theorem 2. Suppose (~v, q) ∈ H1
0 (Ω)3 × L2(Ω) and (~vh, qh) ∈ ~Vh × Mh satisfy

(3.3). Then, there exists a constant C such that for every pair of sets A1 ⊂ A2 ⊂ Ω
such that dist(A1, ∂A2\∂Ω) ≥ d ≥ κh (for some fixed constant κ sufficiently large)
the following bound holds

‖∇(~v − ~vh)‖L2(A1) ≤C(‖∇(~v −P~v)‖L2(A2) + ‖q −Rq‖L2(A2) +
C

εd
‖~v −P~v‖L2(A2))

+ ε‖∇(~v − ~vh)‖L2(A2) +
C

εd
‖~v − ~vh‖L2(A2).

The first three terms are usually referred as approximation terms and the last
two are the pollution terms. Notice, that there is no pollution of the pressure term
in out estimates.

By a covering argument we will reduce the above result to the case As = Bs ∩Ω
for s = 1, 2, where Bs = Bsd(x0), is a ball of radius sd centered at x0 ∈ Ω. Before
proving Theorem ??, first we establish the following lemma.

Lemma 3.1. Let As = Bs ∩Ω for s = 1, 2. Furthermore, assume that there exists
a ball B ⊂ A1, such that diam(A1) < d < ρ diam(B), where ρ is a fixed constant
that only depends on Ω. Then, there exists a constant C independent of A1, A2, d,
and h such that for any 0 < ε < 1,

‖∇(~v − ~vh)‖L2(A1) ≤C(‖∇(~v −P~v)‖L2(A2) + ‖q −Rq‖L2(A2) +
C

εd
‖~v −P~v‖L2(A2))

+ ε‖∇(~v − ~vh)‖L2(A2) +
C

εd
‖~v − ~vh‖L2(A2).

Proof. Let ω ∈ C∞0 (A2) be the cut-off function from Assumption 4 such that ω ≡ 1
on A1. Using the product rule

‖∇(~v − ~vh)‖2L2(A1)
≤ ‖ω∇(~v − ~vh)‖2L2(Ω) = (∇(~v − ~vh), ω2∇(~v − ~vh))

(3.4)

= (∇(~v − ~vh),∇(ω2(~v − ~vh)))− (∇(~v − ~vh),∇(ω2)⊗ (~v − ~vh)),

where ~u⊗ ~v denotes a matrix with components uivj for i, j = 1, 2, 3.
By the Cauchy-Schwarz inequality and the property |∇ω| ≤ Cd−1, we get

−(∇(~v − ~vh),∇(ω2)⊗ (~v − ~vh)) ≤ C

d
‖ω∇(~v − ~vh)‖L2(Ω)‖~v − ~vh‖L2(A2).
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By the arithmetic-geometric mean inequality and (3.4), we obtain

(3.5)
1
2
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ (∇(~v − ~vh),∇(ω2(~v − ~vh))) +

C

d2
‖~v − ~vh‖2L2(A2)

.

Adding and subtracting P~v we obtain,

(∇(~v − ~vh),∇(ω2(~v − ~vh))) =(∇(~v − ~vh),∇(ω2(P~v − ~vh)))

+ (∇(~v − ~vh),∇(ω2(~v −P~v))).

The second term on the right hand side can be estimated as follows

(∇(~v − ~vh),∇(ω2(~v −P~v))) ≤ C‖ω∇(~v − ~vh)‖L2(Ω)(‖∇(~v −P~v)‖L2(A2)

+
1
d
‖~v −P~v‖L2(A2)),

where we used that |∇ω| ≤ Cd−1. Therefore by (3.5),

1
4
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ (∇(~v − ~vh),∇(ω2(P~v − ~vh))) + C‖∇(~v −P~v)‖2L2(A2)

(3.6)

+
C

d2
‖~v −P~v‖2L2(A2)

+
C

d2
‖~v − ~vh‖2L2(A2)

.

Put

(3.7) ~Ψ := ω2(P~v − ~vh).

Adding and subtracting ∇P~Ψ, we have

(∇(~v − ~vh),∇(ω2(P~v − ~vh))) = (∇(~v − ~vh),∇~Ψ)

=(∇(~v − ~vh),∇P~Ψ) + (∇(~v − ~vh),∇(~Ψ−P~Ψ)) := I1 + I2.

Hence in view of (3.6),

1
4
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ |I1|+ |I2|+ C‖∇(~v −P~v)‖2L2(A2)

+
C

d2
‖~v −P~v‖2L2(A2)

+
C

d2
‖~v − ~vh‖2L2(A2)

.

To estimate I2 we apply the Cauchy-Schwarz inequality and the superapproximation
Assumption 4, and the arithmetic-geometric mean inequality to obtain,

I2 ≤‖∇(~v − ~vh)‖L2(A2)‖∇(~Ψ−P~Ψ)‖L2(A2)

≤‖∇(~v − ~vh)‖L2(A2)
C

d
‖P~v − ~vh‖L2(A2)

≤ε‖∇(~v − ~vh)‖2L2(A2)
+

C

εd2
(‖P~v − ~v‖2L2(A2)

+ ‖~v − ~vh‖2L2(A2)
),

for any 0 < ε < 1. To estimate I1 we use (3.3a), then add and subtract ∇ · ~Ψ and
use the property of P from Assumption 2, to obtain

I1 = −(q − qh,∇ ·P~Ψ) = −(q − qh,∇ · ~Ψ)− (q −Rq,∇ · (P~Ψ− ~Ψ)) := I3 + I4.
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Next we estimate I4. Similar to the estimate for I2 we use the superapproximation
property (2.6b) and the arithmetic-geometric mean inequality to obtain,

I4 ≤‖q −Rq‖L2(A2)‖∇ · (P~Ψ− ~Ψ)‖L2(A2)

≤‖q −Rq‖L2(A2)
C

d
‖Pv − vh‖L2(A2)

≤‖q −Rq‖2L2(A2)
+
C

d2

(
‖~v − ~vh‖2L2(A2)

+ ‖~v −P~v‖2L2(A2)

)
.

Hence, combining these results we have
1
4
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ |I3|+ ε‖∇(~v − ~vh)‖2L2(A2)

+ ‖q −Rq‖2L2(A2)

+ C‖∇(~v −P~v)‖2L2(A2)
+

C

εd2
‖~v −P~v‖2L2(A2)

+
C

εd2
‖~v − ~vh‖2L2(A2)

.

It remains to estimate I3. Adding and subtracting Rq, we have

I3 = −(q − qh,∇ · ~Ψ) = −(Rq − qh,∇ · ~Ψ)− (q −Rq,∇ · ~Ψ) := I5 + I6.

We can estimate I6 by using the Cauchy-Schwarz inequality, properties of ω, |∇ω| ≤
Cd−1, and the arithmetic-geometric mean and triangle inequalities to obtain,

I6 ≤C‖q −Rq‖2L2(A2)
+

1
8
‖ω∇(~v − ~vh)‖2L2(A2)

+ C‖∇(~v −P~v)‖2L2(A2)
+
C

d2
‖~v −P~v‖2L2(A2)

+
C

d2
‖~v − ~vh‖2L2(A2)

,

and hence,
1
8
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ |I5|+ ε‖∇(~v − ~vh)‖2L2(A2)

+ ‖q −Rq‖2L2(A2)

+ C‖∇(~v −P~v)‖2L2(A2)
+

C

εd2
‖~v −P~v‖2L2(A2)

+
C

εd2
‖~v − ~vh‖2L2(A2)

.

To estimate I5 we note that ~Ψ vanishes on the boundary and as a result

(c,∇ · ~Ψ) = 0.

for any constant c. Hence, for an arbitrary constant c we have

I5 =− (Rq − qh − c,∇ · ~Ψ) = −(Rq − qh − c,∇ · ω2(P~v − ~vh))

=− (Rq − qh − c, (∇ω2) · (P~v − ~vh))− (Rq − qh − c, ω2∇ · (P~v − ~vh)).

Setting
ψ := Rq − qh − c

and using that (∇ · (P~v − ~vh), χ) = 0 for any χ ∈ Mh, which follows from (3.3b)
and (2.1b), we have

I5 = (ψ, (∇ω2) · (P~v − ~vh)) + (ω2ψ,∇ · (P~v − ~vh))

= (ψ, (∇ω2) · (P~v − ~vh)) + (ω2ψ −R(ω2ψ),∇ · (P~v − ~vh)).

Using the superapproximation estimate (2.6c) and the inverse estimate (2.7a) we
can bound the second term as follows

(ω2ψ −R(ω2ψ),∇ · (P~v − ~vh)) ≤ Ch

d
‖ψ‖L2(A2)‖∇(P~v − ~vh)‖L2(A2)

≤ C

d
‖ψ‖L2(A2)‖P~v − ~vh‖L2(A2).
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The first term is also bounded by the right hand side above and a result

I5 ≤
C

d
‖ψ‖L2(A2)‖P~v−~vh‖L2(A2) ≤ ε‖ψ‖

2
L2(A2)

+
C

εd2

(
‖P~v − ~v‖2L2(A2)

+ ‖~v − ~vh‖2L2(A2)

)
.

Combining, we get

1
8
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ε‖ψ‖

2
L2(A2)

+ ε‖∇(~v − ~vh)‖2L2(A2)

+ C‖q −Rq‖2L2(A2)
+ C‖∇(~v −P~v)‖2L2(A2)

+
C

εd2
‖~v −P~v‖2L2(A2)

+
C

εd2
‖~v − ~vh‖2L2(A2)

.

We choose constant c such that ψ has a zero mean on A2. To estimate ‖ψ‖L2(A2)

we require the following lemma.

Lemma 3.2. Assume the hypothesis of Lemma 3.1 hold. Suppose the constant c
is such that ψ = Rq − qh − c has mean zero on A2. Then, there exists a constant
C independent of A2 and ψ, but that depends on ρ (see Lemma 3.1) such that

‖ψ‖L2(A2) ≤ C(‖∇(~v − ~vh)‖L2(A2) + ‖q −Rq‖L2(A2)).

We postpone the proof of this result until the end of this section and finish the
proof of Lemma 3.1. Using the above lemma we obtain,

1
8
‖ω∇(~v − ~vh)‖2L2(Ω) ≤ C ε ‖∇(~v − ~vh)‖2L2(A2)

+ C‖q −Rq‖2L2(A2)

+ C‖∇(~v −P~v)‖2L2(A2)
+

C

εd2
‖~v −P~v‖2L2(A2)

+
C

εd2
‖~v − ~vh‖2L2(A2)

.

This completes the proof after re-defining ε. �

3.1. Proof of Lemma 3.2.

Proof. Define ~w ∈ H1
0 (A2) by

∇ · ~w = ψ in A2

~w = 0 on ∂A2.

We can choose ~w so that the following bound exists

‖~w‖H1(A2) ≤ C‖ψ‖L2(A2).

By Lemma 3.1 of Chapter III.3 in [10], the constant C is independent of ψ and
depends only on the ratio of the diameter A2 and the radius of the largest ball that
can be inscribed into A2 and hence by our hypothesis only depends on ρ. Let us
extend ~w on all of Ω by zero outside of A2. Thus,

‖ψ‖2L2(A2)
=(ψ,ψ)A2 = (ψ,∇ · ~w)A2 = (ψ,∇ · ~w)

=(Rq − qh − c,∇ · ~w)

=(Rq − qh,∇ · ~w)

=(q − qh,∇ · ~w) + (Rq − q,∇ · ~w).
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Using (3.3a), the Cauchy-Schwarz inequality and the stability of P, we have

(q − qh,∇ · ~w) = (q − qh,∇ ·P~w) + (q − qh,∇ · (~w −P~w))

= (∇(~v − ~vh),∇P~w) + (q −Rq,∇ · (~w −P~w))

≤ ‖∇(~v − ~vh)‖L2(A2)‖∇P~w‖L2(A2) + ‖q −Rq‖L2(A2)‖∇ · (~w −P~w)‖L2(A2)

≤ (‖∇(~v − ~vh)‖L2(A2) + ‖q −Rq‖L2(A2))‖~w‖H1(A2),

Hence, we get

‖ψ‖2L2(A2)
≤(‖∇(~v − ~vh)‖L2(A2) + ‖Rq − q‖L2(A2))‖~w‖H1(A2)

≤C(‖∇(~v − ~vh)‖L2(A2) + ‖Rq − q‖L2(A2))‖ψ‖L2(A2).

Therefore, dividing both sides by ‖ψ‖L2(A2) we obtain the lemma. �

3.2. Proof of Theorem 2.

Proof. Let A1 ⊂ A2 ⊂ Ω, be such that dist(A1, ∂A2\∂Ω) ≥ d ≥ κh. It is not
difficult to construct a covering {Gi}Mi=1 of A1, where Gi = B d

2
(xi) ∩ Ω with the

following properties.
(1) A1 ⊂ ∪Mi=1Gi.
(2) xi ∈ A1 for each 1 ≤ i ≤M .
(3) Let Hi = Bd(xi) ∩ Ω. There exists a fixed number L such that each point

x ∈ ∪Mi=1Hi is contained in at most L sets from {Hj}Mj=1.
(4) There exists a ρ > 0 such that for each 1 ≤ i ≤ M there exists a ball

B ⊂ Gi such that diam(Gi) ≤ ρ diam(B).
Since dist(A1, ∂A2\∂Ω) ≥ d, using (2) we have that ∪Mi=1Hi ⊂ A2.

Applying Lemma 3.1 and using (2) and (4) we have

‖∇(~v − ~vh)‖2L2(A1)
≤

M∑
i=1

‖∇(~v − ~vh)‖2L2(Gi)

≤
M∑
i=1

C
(
‖∇(~v −P~v)‖2L2(Hi)

+ ‖q −Rq‖2L2(Hi)
+ (

1
εd

)2‖~v −P~v‖2L2(Hi)

+ (
1
εd

)2‖~v − ~vh‖2L2(Hi)

)
+ ε2‖∇(~v − ~vh)‖2L2(Hi)

.

Using (3) we have

‖∇(~v − ~vh)‖2L2(A1)
≤ CL

(
‖∇(~v −P~v)‖2L2(A2)

+ ‖q −Rq‖2L2(A2)

+ (
1
εd

)2‖~v −P~v‖2L2(A2)
+ (

1
εd

)2‖~v − ~vh‖2L2(A2)

)
+ Lε2‖∇(~v − ~vh)‖2L2(A2)

.

This completes the proof. �

4. Maximum modulus estimates for the Green’s matrix on polyhedral
type domains

The second important ingredient of our proof is the sharp pointwise Green’s
matrix estimates for the continuous problem, which we will introduce next.

Let φ(x) be an infinitely differentiable function in Ω which vanishes in a neigh-
borhood of the edges such that

(4.1)
∫

Ω

φ(x)dx = 1.
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The matrix

(4.2) G(x, ξ) =
(
Gi,j(x, ξ)

)4
i,j=1

,

is called Green’s matrix for the problem (4.5) if the vector functions

~Gj = (G1,j , G2,j , G3,j)T

and the functions G4,j for j = 1, 2, 3, 4 are solutions of the problem

−∆x
~Gj(x, ξ) +∇xG4,j(x, ξ) =δ(x− ξ)(δ1,j , δ2,j , δ3,j)T , for x, ξ ∈ Ω,

(4.3a)

−∇x · ~Gj(x, ξ) =(δ(x− ξ)− φ(x))δ4,j , for x, ξ ∈ Ω,(4.3b)

~Gj(x, ξ) =~0, for x ∈ ∂Ω, ξ ∈ Ω(4.3c)

and G4,j satisfies the condition

(4.4)
∫

Ω

G4,j(x, ξ)φ(x)dx = 0, for ξ ∈ Ω, j = 1, 2, 3, 4.

Here, δ(x) is the delta function, and δi,j is the Kronecker delta symbol. In addition,

Gi,j(x, ξ) = Gj,i(ξ, x) for x, ξ ∈ Ω, i, j = 1, 2, 3, 4.

The following theorem, (cf. [21, 22] and [19, Thm. 4.5]) give us the existence and
uniqueness of such matrix.

Theorem 3. There exists a uniquely determined Green’s matrix G(x, ξ) such that
the vector functions

x→ ζ(x, ξ)
(
~Gj(x, ξ), G4,j(x, ξ)

)
belong to the space H1

0 (Ω)3 × L2(Ω) for each ξ ∈ Ω and for every infinitely differ-
entiable function ζ(·, ξ) equal to zero in a neighborhood of the point x = ξ.

We will also need to consider the Stokes problem with non-zero divergence. Let
(~u, p) ∈ H1

0 (Ω)× L2
φ(Ω) solve

−∆~u+∇p = ~f in Ω,

−∇ · ~u = q in Ω,

~u = ~0 on ∂Ω,

(4.5)

for arbitrary ~f ∈ H−1(Ω)3 and q ∈ L2
0(Ω) with q vanishing on the singular points

of Ω; see [4]. If q ∈ H1(Ω)∩L2
0(Ω) and vanishing on the edges of Ω and ~f ∈ L2(Ω)3

we have the following elliptic regularity result [4],

(4.6) ‖~u‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖q‖H1(Ω)).

Furthermore, the components of (~u, p) admit the following representation (cf. [28])
in terms of the Green’s matrix

~ui(x) =
3∑
j=1

∫
Ω

Gi,j(x, ξ)fj(ξ) dξ +
∫

Ω

Gi,4(x, ξ)q(ξ) dξ, i = 1, 2, 3,(4.7a)

p(x) =
3∑
j=1

∫
Ω

G4,j(x, ξ)fj(ξ) dξ +
∫

Ω

G4,4(x, ξ)q(ξ) dξ.(4.7b)
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Next we state maximum modulus estimates for the Green’s function in polyhedral
domains. The first estimate was established in papers of [19, 21, 22] (see also [24,
Sec. 11.5]). The second sharper estimate was established recently in [27].

Theorem 4. Let Ω ⊂ R3 be a convex domain of polyhedral type. Then there exists
a constant C such that
(4.8a)∣∣∂αx ∂βξGi,j(x, ξ)∣∣ ≤ C|x− ξ|−1−|α|−|β|−δi,4−δj,4 , for |α| ≤ 1− δi,4, |β| ≤ 1− δj,4,

for x, ξ ∈ Ω, x 6= ξ, and multi-indexes 0 ≤ |α|, |β| ≤ 1.
Moreover, for polyhedral domain the Green’s matrix satisfy Hölder type estimate,

|∂αx ∂
β
ξGi,j(x, ξ)− ∂αy ∂

β
ξGi,j(y, ξ)|

|x− y|σ
≤ C

(
|x− ξ|−1−σ−δj,4−δi,4−|β|−|α|(4.8b)

+ |y − ξ|−1−σ−δj,4−δi,4−|β|−|α|
)
,

for |α| ≤ 1− δi,4 and |β| ≤ 1− δj,4. Here σ is a sufficiently small positive number
which depends on the geometry of the domain.

Here and in the rest of the paper we adopt the standard multi-index notation.
Thus, for a multi-index α = (α1, α2, α3), we denote |α| = α1 + α2 + α3 and ∂αx =

∂|α|

∂x
α1
1 ∂x

α2
2 ∂x

α3
3

.

5. Proof of the main result.

For technical reasons we split the proof of our main result, Theorem 1, into two
parts: stability of the gradient of the velocity and the stability of the pressure.
First we will deal with the velocity.

5.1. Part 1, Velocity. Let z be an arbitrary point of Ω and let Tz ∈ Th contain
z. We will estimate |∂xj (~uh)i(z)|, where 1 ≤ i, j ≤ 3 are arbitrary. The idea of the
proof is to represent the discrete solution in terms of the smooth Green’s function.
Then after some manipulations the problem is reduced to estimating the error of
the Green’s function in L1(Ω) norm. To start we define a smooth delta function.
Let δzh(x) = δh ∈ C1

0 (Tz) be a smooth function such that

(5.1) r(z) = (r, δh)Tz ∀r ∈ P l(Tz),
where P l(Tz) is the space of polynomials of degree at most l defined on Tz, with
the properties

(5.2) ‖δh‖Wk
q (T ) ≤ Ch−k−3(1−1/q), 1 ≤ q ≤ ∞, k = 0, 1.

Thus in particular ‖δh‖L1(Tz) ≤ C and ‖∇δh‖L2(Tz) ≤ Ch−5/2. The explicit con-
struction of a such function is given in [32, Appendix].

Next, we define the approximate Green’s function (~g, λ) ∈ H1
0 (Ω)3 × L2

φ(Ω) to
be the solution of the following equation,

−4~g +∇λ = (∂xjδh)~ei in Ω,(5.3a)

∇ · ~g = 0 in Ω,(5.3b)

~g = ~0 on ∂Ω.(5.3c)

Here ~ei is the i-th standard basis vector in R3 and will be fixed throughout the
paper. Again, λ is unique up to a constant.
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In the course of the proof we will need to estimate ~g and λ in certain Hölder
norms on subdomains away from the singular point z.

Lemma 5.1. Let D ⊂ Ω be such that dist(D, z) ≥ d. Then there exists a constant
C independent of d and D such that

‖~g‖C1+σ(D) + ‖λ‖Cσ(D) ≤ Cd−3−σ.

Proof. Using the Green’s function representation (4.7a) with q = 0 and recalling
that index i in the definition of regularized Green’s function (~g, λ) in (5.3) is fixed,
we have,

∂x~gk(x)− ∂y~gk(y) =
∫

Ω

(∂xGk,i(x, ξ)− ∂yGk,i(y, ξ))∂ξ(δh(ξ)) dξ

= −
∫
Tz

(∂ξ∂xGk,i(x, ξ)− ∂ξ∂yGk,i(y, ξ))δh(ξ) dξ, k = 1, 2, 3.

Let x, y ∈ D, x 6= y, then using that 1 ≤ i ≤ 3 by (4.8b),

|∂x~gk(x)− ∂y~gk(y)|
|x− y|σ

≤ max
ξ∈Tz

|∂ξ∂xGk,i(x, ξ)− ∂ξ∂y ~Gk,i(y, ξ)|
|x− y|σ

‖δh‖L1(Tz)

≤ C max
ξ∈Tz

(|x− ξ|−3−σ + |y − ξ|−3−σ) ≤ Cd−3−σ, k = 1, 2, 3.

In the last inequality we used that for any ξ ∈ Tz, |x − ξ|, |y − ξ| ≥ Cd, and
‖δh‖L1(Tz) ≤ C. Therefore, taking the supremum over k we can conclude,

sup
x,y∈D

|∇~g(x)−∇~g(y)|
|x− y|σ

≤ Cd−3−σ.

The proof for ‖λ‖Cσ(D) is very similar. �

Let (~gh, λh) ∈ ~Vh ×Mh be the corresponding finite element solution, i.e. the
unique solution that satisfies

(∇~gh,∇~χ) + (∇λh, ~χ) = (∇~g,∇~χ) + (∇λ, ~χ), ∀~χ ∈ ~Vh,(5.4a)

(∇ · ~gh, w) = 0, ∀w ∈Mh,(5.4b)

and λh ∈ L2
φ(Ω).

We have,

−∂xj (~uh)i(z) = (~uh, (∂xjδh)~ei) (by (5.1))

= (~uh,−∆~g +∇λ) (by (5.3a))

= (∇~uh,∇~g) + (~uh,∇λ) ( integration by parts)

= (∇~uh,∇~g) + (~uh,∇λh) + (∇~uh,∇(~gh − ~g)) (by (5.4a))

= (∇~uh,∇~gh) (by (5.4b))

= (∇~u,∇~gh) + (∇(p− ph), ~gh) (by (2.1))

= (∇~u,∇~gh) + (∇p,~gh) (by (5.4b))

= (∇~u,∇(~gh − ~g)) + (∇~u,∇~g) + (∇p,~gh − ~g) + (~u,∇λ) (by (1.1b), (5.3b))

= (∇~u,∇(~gh − ~g)) + (~u,−∆~g +∇λ) + (~g − ~gh,∇p) (integration by parts)

= (∇~u,∇(~gh − ~g))− (
∂(~u)i
∂xj

, δh)− (∇ · (~g − ~gh), p). (by (5.3a))
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Taking supremum over all partial derivatives and using that ‖δh‖L1(Ω) ≤ C, we
obtain

‖∇~uh‖L∞(Ω) ≤
(
‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)

)
(C + ‖∇(~gh − ~g)‖L1(Ω)).

Thus, we in order to show the stability for the velocity, we only need establish the
following result.

Lemma 5.2. There exists a constant C independent of h and ~g such that

‖∇(~g − ~gh)‖L1(Ω) ≤ C.

Proof. The proof is based on the ideas developed in papers by Schatz and Wahlbin,
e.g. [30, 31, 32]. We will break it down into four steps.

Step 1: Dyadic decomposition Without loss of generality we assume that
the diameter of Ω is less than 1. Put dj = 2−j and consider a dyadic decomposition
of Ω,

(5.5a) Ω = Ω∗ ∪
J⋃
j=0

Ωj ,

where

Ω∗ = {x ∈ Ω : |x− z| ≤ Kh},(5.5b)

Ωj = {x ∈ Ω : dj+1 ≤ |x− z| ≤ dj},(5.5c)

where K is a sufficiently large constant to be chosen later and J is an integer such
that 2−(J+1) ≤ Kh ≤ 2−J . In the analysis below the generic constants will be
denoted by C, but we will keep track on the explicit dependence of the constants
on K.

Using the diadic decomposition and the Cauchy-Schwarz inequality, we have

‖∇(~g − ~gh)‖L1(Ω) ≤ CK3/2h3/2‖∇(~g − ~gh)‖L2(Ω∗) + C

J∑
j=0

d
3/2
j ‖∇(~g − ~gh)‖L2(Ωj).

We start with the first term on the right-hand side. Using the Cauchy-Schwarz
inequality, global a priori error estimates, Proposition (2.1), approximation prop-
erties of P and R (2.5d), (2.5a), H2 regularity (4.6), and (5.2), we have

h3/2‖∇(~g − ~gh)‖L2(Ω∗) ≤ Ch3/2+1(‖~g‖H2(Ω) + ‖λ‖H1(Ω)) ≤ Ch5/2‖∇δh‖L2(T ) ≤ C.

Thus, we have

(5.6) ‖∇(~g−~gh)‖L1(Ω) ≤ CK3/2 +
J∑
j=0

Mj , with Mj := d
3/2
j ‖∇(~g−~gh)‖L2(Ωj).

Step 2: Initial Estimate for Mj. Define the following sets:

Ω′j = {x ∈ Ω : dj+2 ≤ |x− z| ≤ dj−1},
Ω′′j = {x ∈ Ω : dj+3 ≤ |x− z| ≤ dj−2}.



MAXIMUM NORM ESTIMATES FOR THE STOKES 15

Notice that Theorem 2 holds for A1 = Ωj and A2 = Ω′j with d = dj , j = 1, 2, . . . , J .
Thus, by the local energy estimate, Theorem 2, and any 0 < ε < 1,

‖∇(~g − ~gh)‖L2(Ωj) ≤C(‖∇(~g −P~g)‖L2(Ω′j)
+

1
εdj
‖~g −P~g‖L2(Ω′j)

+ ‖λ−Rλ‖L2(Ω′j)
)

+ ε‖∇(~g − ~gh)‖L2(Ω′j)
+

C

εdj
‖~g − ~gh‖L2(Ω′j)

.

First we will treat the first two terms on the right hand side. By the Cauchy-
Schwarz inequality and the approximation result (2.5b), we have,

‖∇(~g −P~g)‖L2(Ω′j)
+ d−1

j ε−1‖~g −P~g‖L2(Ω′j)

≤ Cd3/2
j

(
‖∇(~g −P~g)‖L∞(Ω′j)

+ d−1
j ε−1‖~g −P~g‖L∞(Ω′j)

)
≤ Cd3/2

j hσ(1 + hd−1
j ε−1)‖~g‖C1+σ(Ω′′j ).

Applying Lemma 5.1 with D = Ω′′j , we obtain

(5.7) ‖~g‖C1+σ(Ω′′j ) ≤ Cd−3−σ
j .

Thus, we have shown that

‖∇(~g −P~g)‖L2(Ω′j)
+ d−1

j ε−1‖~g −P~g‖L2(Ω′j)
≤ C(1 + hd−1

j ε−1)d−3/2−σ
j hσ.

Similarly, using the Cauchy-Schwarz inequality and the approximation estimate
(2.5e), we have

‖λ−Rλ‖L2(Ω′j)
≤ Cd3/2

j ‖λ−Rλ‖L∞(Ω′j)
≤ Cd3/2

j hσ‖λ‖Cσ(Ω′′j ).

Again applying Lemma 5.1 with D = Ω′′j , we have

(5.8) ‖λ‖Cσ(Ω′′j ) ≤ Cd−3−σ
j

and as a result

(5.9) ‖λ−Rλ‖L2(Ω′j)
≤ Cd−3/2−σ

j hσ.

To summarize,

Mj ≤ C
(

(1 + hd−1
j ε−1)(h/dj)σ + d

1/2
j ε−1‖~g − ~gh‖L2(Ω′j)

+ εd
3/2
j ‖∇(~g − ~gh)‖L2(Ω′j)

)
.

Next, we will use a duality argument to estimate ‖~g − ~gh‖L2(Ω′j)
.

Step 3: Duality argument. We have the following representation

‖~g − ~gh‖L2(Ω′j)
= sup

~v∈C∞c (Ω′j)

‖~v‖L2(Ω′
j
)≤1

(~g − ~gh, ~v).

For each such ~v, let ~w, ϕ be the solution of the following problem

−∆~w +∇ϕ = ~v, in Ω,(5.10a)

∇ · ~w = 0, in Ω,(5.10b)

~w = ~0, on ∂Ω.(5.10c)
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Thus, using that (∇ · P~w, χ) = 0 and (∇ · (~g − ~gh), χ) = 0 for any χ ∈ Mh and
∇ · ~w = 0, we have

(~g−~gh, ~v) = (∇(~g − ~gh),∇~w)− (ϕ,∇ · (~g − ~gh))

= (∇(~g − ~gh),∇(~w −P~w)) + (∇(~g − ~gh),∇P~w)− (ϕ−Rϕ,∇ · (~g − ~gh))

= (∇(~g − ~gh),∇(~w −P~w))− (λ− λh,∇ ·P~w)− (ϕ−Rϕ,∇ · (~g − ~gh))

= (∇(~g − ~gh),∇(~w −P~w))− (λ−Rλ,∇ · (P~w − ~w))− (ϕ−Rϕ,∇ · (~g − ~gh))
:= J1 + J2 + J3.

We split J1 into two terms as follows

J1 = (∇(~g − ~gh),∇(~w −P~w))Ω′′j + (∇(~g − ~gh),∇(~w −P~w))Ω\Ω′′j .

First we estimate (∇(~g − ~gh),∇(~w − P~w))Ω′′j . By the Cauchy-Schwarz inequality,
the global a priori error estimate, and H2 regularity we have

(∇(~g − ~gh),∇(~w −P~w))Ω′′j ≤ ‖∇(~g − ~gh)‖L2(Ω′′j )‖∇(~w −P~w)‖L2(Ω)

≤ ‖∇(~g − ~gh)‖L2(Ω′′j )Ch‖~w‖H2(Ω)

≤ Ch‖∇(~g − ~gh)‖L2(Ω′′j ).

Next we estimate the second term of J1. By the Hölder inequality and (2.5b),

(∇(~g − ~gh),∇(~w −P~w))Ω\Ω′′j ≤ ‖∇(~g − ~gh)‖L1(Ω)‖∇(~w −P~w)‖L∞(Ω\Ω′′j )

≤ ‖∇(~g − ~gh)‖L1(Ω)Ch
σ‖~w‖C1+σ(Ω\Ω′′j ).

Since Ω\Ω′′j is separated from Ω′j by at least dj , for x, y ∈ Ω\Ω′′j , using (4.8b), we
have

|∂x ~wk(x)− ∂y ~wk(y)|
|x− y|σ

≤
∫

Ω′j

|∂xGk,i(x, ξ)− ∂yGk,i(y, ξ)|
|x− y|σ

|~v(ξ)|dξ

≤ C max
ξ∈Ω′j

(|x− ξ|+ |y − ξ|)−2−σ
∫

Ω′j

|~v(ξ)|dξ(5.11)

≤ Cd−2−σ
j d

3/2
j ‖~v‖L2(Ω′j)

≤ Cd−1/2−σ
j , for k = 1, 2, 3.

Hence,

‖~w‖C1+σ(Ω\Ω′′j ) ≤ Cd
−1/2−σ
j ,

which implies

(∇(~g − ~gh),∇(~w −P~w))Ω\Ω′′j ≤ Ch
σd
−1/2−σ
j ‖∇(~g − ~gh)‖L1(Ω).

Hence,

(5.12) J1 ≤ Chσd−1/2−σ
j ‖∇(~g − ~gh)‖L1(Ω) + Ch‖∇(~g − ~gh)‖L2(Ω′′j ).

Similarly we can split J3 into two terms

J3 = −(ϕ−Rϕ,∇ · (~g − ~gh))Ω′′j − (ϕ−Rϕ,∇ · (~g − ~gh))Ω\Ω′′j .
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By the Cauchy-Schwarz inequality, the global a priori error estimate, and H2 reg-
ularity we have

(ϕ−Rϕ,∇ · (~g − ~gh))Ω′′j ≤ ‖ϕ−Rϕ‖L2(Ω)‖∇(~g − ~gh)‖L2(Ω′′j )

≤ Ch‖∇ϕ‖L2(Ω)‖∇(~g − ~gh)‖L2(Ω′′j )

≤ Ch‖∇(~g − ~gh)‖L2(Ω′′j ).

Next we estimate the second term of J3. By the Hölder inequality and (2.5e),

(ϕ−Rϕ,∇ · (~g − ~gh))Ω\Ω′′j ≤ ‖ϕ−Rϕ‖L∞(Ω\Ω′′j )‖∇(~g − ~gh)‖L1(Ω)

≤ Chσ‖ϕ‖Cσ(Ω\Ω′′j )‖∇(~g − ~gh)‖L1(Ω).

Since Ω\Ω′′j is separated from Ω′j by at least dj , we have for x, y ∈ Ω\Ω′′j , using
(4.8b)

|ϕ(x)− ϕ(y)|
|x− y|σ

≤
∫

Ω′j

|G4,i(x, ξ)−G4,i(y, ξ)|
|x− y|σ

|~v(ξ)|dξ

≤ C max
ξ∈Ω′j

(|x− ξ|+ |y − ξ|)−2−σ
∫

Ω′j

|~v(ξ)|dξ

≤ Cd−2−σ
j d

3/2
j ‖~v‖L2(Ω′j)

≤ Cd−1/2−σ
j .

Hence,
‖ϕ‖Cσ(Ω\Ω′′j ) ≤ Cd

−1/2−σ
j ,

which implies that

(ϕ−Rϕ,∇ · (~g − ~gh))Ω\Ω′′j ≤ Ch
σd
−1/2−σ
j ‖∇(~g − ~gh)‖L1(Ω).

Hence,

(5.13) J3 ≤ Chσd−1/2−σ
j ‖∇(~g − ~gh)‖L1(Ω) + Ch‖∇(~g − ~gh)‖L2(Ω′′j ).

Thus, it remains to estimates J2. Similar to above we split it into two terms,

J2 = −(λ−Rλ,∇ · (~w −P~w))Ω′′j − (λ−Rλ,∇ · (~w −P~w))Ω\Ω′′j .

By the Cauchy-Schwarz inequality, the global a priori error estimate, and H2 reg-
ularity we have

(λ−Rλ,∇ · (~w −P~w))Ω′′j ≤ ‖λ−Rλ‖L2(Ω′′j )‖∇(~w −P~w)‖L2(Ω)(5.14)

≤ ‖λ‖L2(Ω′′j )Ch‖~w‖H2(Ω) ≤ Ch‖λ‖L2(Ω′′j ).

Using (4.8a) and that dist(Ωj , T ) = O(dj) we have

λ(x) =
3∑
k=1

∫
Tz

G4,k(x, ξ)(∂ξδh(ξ))δi,k dξ(5.15)

= −
∫
Tz

∂ξG4,i(x, ξ)δh(ξ) dξ ≤ Cd−3
j ‖δh‖L1(Tz) ≤ Cd

−3
j .

Thus,
‖λ‖L2(Ω′′j ) ≤ Cd

−3/2
j

and
(λ−Rλ,∇ · (~w −P~w))Ω′′j ≤ Chd

−3/2
j .
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The second term in J2 by the Hölder inequality and (2.5e), we can estimate as

(λ−Rλ,∇(~w −P~w))Ω\Ω′′j ≤ ‖λ−Rλ‖L1(Ω)‖∇(~w −P~w)‖L∞(Ω\Ω′′j )

≤ Chσ‖~w‖C1+σ(Ω\Ω′′j ).

In the last step we used ‖λ − Rλ‖L1(Ω) ≤ C, which we will establish in Section
5.1.1. Since

‖~w‖C1+σ(Ω\Ω′′j ) ≤ Cd
−1/2−σ
j ,

we have
(λ−Rλ,∇ · (~w −P~w))Ω\Ω′′j ≤ Ch

σd
−1/2−σ
j ,

and as a result,

(5.16) J2 ≤ Chd−3/2
j + Chσd

−1/2−σ
j .

Therefore, estimates for J1, J2, and J3, (5.12), (5.16) and (5.13), respectively, give

d
1/2
j ε−1‖~g − ~gh‖L2(Ω′j)

≤ Chd−1
j ε−1 + Chσd−σj ε−1 + Chσd−σj ε−1‖∇(~g − ~gh)‖L1(Ω)

+ Chd
1/2
j ε−1‖∇(~g − ~gh)‖L2(Ω′′j ).

To summarize,

Mj ≤ C
(
(1 + ε−1)(h/dj)σ + (h/dj)ε−1 + (h/dj)σε−1‖∇(g − gh)‖L1(Ω)

+ (hd1/2
j ε−1 + ε)‖∇(g − gh)‖L2(Ω′′j )

)
.

Step 4: Double kick-back argument. Summing over j we obtain
J∑
j=0

Mj ≤
C(1 + ε−1)

Kσ
+
Cε−1

K
+
Cε−1

Kσ
‖∇(~g − ~gh)‖L1(Ω)

+ C

(
h

dJ
ε−1 + ε

) J∑
j=0

d
3/2
j ‖∇(~g − ~gh)‖L2(Ω′′j ),

where we have used that
J∑
j=0

(hd−1
j )σ ≤ hσ

J∑
j=0

2jσ ≤ Chσ2σJ ≤ CK−σ and d−1
j ≤ d

−1
J .

Clearly,
J∑
j=0

d
3/2
j ‖∇(~g − ~gh)‖L2(Ω′′j ) ≤ C

J∑
j=0

Mj + C(Kh)3/2‖∇(~g − ~gh)‖L2(Ω∗)

≤ C

J∑
j=0

Mj + CK3/2.

Thus, using that h/dJ ≤ K−1, and taking K large enough and ε small enough, we
have

J∑
j=0

Mj ≤ CK,ε +
Cε−1

Kσ
‖∇(~g − ~gh)‖L1(Ω).

Therefore, if we plug this result into (5.6) we get

‖∇(~g − ~gh)‖L1(Ω) ≤ CK,ε +
Cε−1

Kσ
‖∇(~g − ~gh)‖L1(Ω).
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Again by choosing K large enough we can conclude

‖∇(~g − ~gh)‖L1(Ω) ≤ CK,ε.

Thus the proof of Lemma (5.2) is complete. �

5.1.1. Estimate of ‖λ−Rλ‖L1(Ω). In this section we prove the following result.

Lemma 5.3. There exists a constant C independent of h and λ such that

‖λ−Rλ‖L1(Ω) ≤ C.

Proof. Using the dyadic decomposition defined in (5.5) and the Cauchy-Schwarz
inequality, we have

‖λ−Rλ‖L1(Ω) ≤ CK3/2h3/2‖λ−Rλ‖L2(Ω∗) + C

J∑
j=0

d
3/2
j ‖λ−Rλ‖L2(Ωj).

Using the approximation property of R (2.5d), H2-regularity (4.6), and (5.2), we
have

h3/2‖λ−Rλ‖L2(Ω∗) ≤ Ch3/2+1‖∇λ‖L2(Ω) ≤ Ch5/2‖∇δh‖L2(T ) ≤ C.

In (5.9) we already established that

‖λ−Rλ‖L2(Ωj) ≤ Cd
−3/2−σ
j hσ,

hence,

‖λ−Rλ‖L1(Ω) ≤ CK3/2 + C

J∑
j=0

d−σj hσ ≤ CK .

�

5.2. Part 2, Stability for Pressure. Our goal is to show that there exists a
constant C independent of p and h such that

(5.17) ‖ph‖L∞(Ω) ≤ C
(
‖p‖L∞(Ω) + ‖∇~u‖L∞(Ω)

)
.

Let z ∈ Tz be such that ‖ph‖L∞(Ω) = |ph(z)|. Let δh be a smooth delta function
defined in (5.1). Define a pair (~Θ,Σ) ∈ H1

0 (Ω)3 × L2
φ(Ω) by the equation

(5.18)

−∆~Θ +∇Σ = 0 in Ω,

∇ · ~Θ = δh − φ in Ω,

~Θ = 0 on ∂Ω.

Note that (2.3) implies that
∫
Ω

(δh(x)− φ(x)) dx = 0. Then,

(5.19) ph(z) = (ph, δh) = (ph, δh − φ) + (ph, φ).

The second term on the right hand side of (5.19) can be estimated by using the
Cauchy-Schwarz inequality and the a-priori error estimate from Proposition 2.1 as

(ph, φ) =(ph − p, φ) + (p, φ)

≤C(‖p− ph‖L2(Ω) + ‖p‖L2(Ω))‖φ‖L2(Ω)

≤C(‖∇~u‖L2(Ω) + ‖p‖L2(Ω))

≤C(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)).
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To estimates the first term on the right hand side of (5.19) we use (5.18), property
of P, namely (2.4), to obtain

(ph, δh − φ) = (ph,∇ · ~Θ) = (ph,∇ ·P~Θ)

= (p,∇ ·P~Θ) + (ph − p,∇ ·P~Θ) := I1 + I2.

Using (5.18), the Hölder inequality, and the properties of φ and δh we have,

I1 = (p,∇ · (P~Θ− ~Θ)) + (p,∇ · ~Θ)

= (p,∇ · (P~Θ− ~Θ)) + (p, δh − φ)

≤ ‖p‖L∞(Ω)

(
‖∇(P~Θ− ~Θ)‖L1(Ω) + ‖φ‖L1(Ω) + ‖δ‖L1(Ω)

)
≤ ‖p‖L∞(Ω)

(
‖∇(P~Θ− ~Θ)‖L1(Ω) + C

)
.

To estimates I2 we use orthogonality of ~u− ~uh and (5.18) to obtain,

I2 = (∇(~u− ~uh),∇P~Θ) = (∇(~u− ~uh),∇~Θ) + (∇(~u− ~uh),∇(P~Θ− ~Θ))

= −(Σ,∇ · (~u− ~uh)) + (∇(~u− ~uh),∇(P~Θ− ~Θ))

= −(Σ−RΣ,∇ · (~u− ~uh)) + (∇(~u− ~uh),∇(P~Θ− ~Θ))

≤ ‖∇(~u− ~uh)‖L∞(Ω)

(
‖∇(P~Θ− ~Θ)‖L1(Ω) + ‖Σ−RΣ‖L1(Ω)

)
.

Since we have already estimated ‖∇(~u− ~uh)‖L∞(Ω), to obtain the desired estimate
of the error for the pressure we need to establish

Lemma 5.4.
‖∇(P~Θ− ~Θ)‖L1(Ω) + ‖Σ−RΣ‖L1(Ω) ≤ C.

Proof. Using the dyadic decomposition (5.5) and the triangle inequality we have

‖∇(P~Θ− ~Θ)‖L1(Ω) + ‖Σ−RΣ‖L1(Ω) ≤ ‖∇(P~Θ− ~Θ)‖L1(Ω∗) + ‖Σ−RΣ‖L1(Ω∗)

+
J∑
j=1

‖∇(P~Θ− ~Θ)‖L1(Ωj) + ‖Σ−RΣ‖L1(Ωj).(5.20)

By the Cauchy-Schwarz inequality, approximation properties (2.5d) and (2.5a), and
H2 regularity (4.6) we have

‖∇(P~Θ− ~Θ)‖L1(Ω∗) + ‖Σ−RΣ‖L1(Ω∗)

≤ CK3/2h3/2
(
‖∇(P~Θ− ~Θ)‖L2(Ω) + ‖Σ−RΣ‖L2(Ω)

)
≤ CK3/2h3/2+1

(
‖~Θ‖H2(Ω) + ‖Σ‖H1(Ω)

)
≤ CK3/2h3/2+1(‖δh‖H1(Ω) + ‖φ‖H1(Ω)) ≤ C.

To estimate the terms over Ωj we use the Hölder inequality and the approximation
theory to obtain

‖∇(P~Θ− ~Θ)‖L1(Ωj) + ‖Σ1 −RΣ1‖L1(Ωj)

≤ Cd3
j

(
‖∇(P~Θ− ~Θ)‖C(Ωj) + ‖Σ−RΣ‖C(Ωj)

)
≤ Chσd3

j

(
‖~Θ‖C1+σ(Ωj) + ‖Σ‖Cσ(Ωj)

)
.
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By the Green’s matrix representation (4.7a) and (4.7b), and using (4.4), we have

(~Θ)i(x) =
∫

Ω

Gi,4(x, ξ)δh(ξ)dξ, i = 1, 2, 3,

and

Σ(x) =
∫

Ω

G4,4(x, ξ)δh(ξ)dξ.

Using the above representation, (4.8b), and the fact that dist(T,Ωj) = O(dj) we
obtain

∂x(~Θ)i(x)− ∂y(~Θ)i(y)
|x− y|σ

=
∫
Tz

∂xGi,4(x, ξ)− ∂yGi,4(y, ξ)
|x− y|σ

δ(ξ) dξ

≤ C max
ξ∈T

(|x− ξ|−3−σ + |y − ξ|−3−σ) ≤ Cd−3−σ
j .

Similarly,

Σ(x)− Σ(y)
|x− y|σ

=
∫
Tz

G4,4(x, ξ)−G4,4(y, ξ)
|x− y|σ

δ(ξ) dξ

≤ C max
ξ∈T

(|x− ξ|−3−σ + |y − ξ|−3−σ) ≤ Cd−3−σ
j .

Hence the sum in (5.20) can be bound as
J∑
j=1

(
‖∇(P~Θ−~Θ)‖L1(Ωj) + ‖Σ−RΣ‖L1(Ωj)

)
≤ C

J∑
j=1

hσd3
j

(
‖~Θ‖C1+σ(Ωj) + ‖Σ‖Cσ(Ωj)

)
≤ C

J∑
j=1

hσd−σj ≤ C.

Thus we have established Lemma 5.4, (5.17), and as a result Theorem 1. �

6. Extensions and open problems.

In this section we comment briefly on possible extensions and some open prob-
lems.

6.1. Localized estimates. In [29], pointwise error estimates having a sharply lo-
cal character for scalar second order elliptic equations were proved. In the following
publications such localized estimates were established for mixed methods [6], discon-
tinuous Galerkin methods [2, 14], parabolic problems [18], and the Stokes problem
on smooth domains [3, 15]. The main result in [3] essentially says that when ∂Ω
is smooth and certain assumptions are satisfied, then for any z ∈ Ω, the following
estimate holds,

|∇(~u− ~uh)(z)|+ |(p− ph)(z)| ≤ C`h,s min
(~χ,w)∈(~Vh,Mh)

(
‖~u− ~χ‖W 1

∞(Ω),σ,s(6.1)

+ ‖p− w‖L∞(Ω),σ,s

)
,

where ‖ · ‖W 1
∞(Ω),σ,s and ‖ · ‖L∞(Ω),σ,s are weighted Sobolev norms with weight

function σsz(y) =
(

h
h+|z−y|

)s
. Here 0 ≤ s ≤ k and `h,s is a logarithmic factor which

is needed when s = k. In [16] it was remarked that similar localized estimates
hold for convex polyhedral domains for second-order problems as well, except that
the allowed range of s above is restricted by the maximum interior angle of ∂Ω
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as well as by the polynomial degree k. It is possible to prove a similar result
here. In particular, (6.1) holds for a similar range of s. The proof of (6.1) for
convex polyhedra may be accomplished by following the current proof with factoring
the weight function from the terms in the dyadic decomposition and a careful
bookkeeping.

6.2. Graded meshes. Our result, like in most results on finite element estimates
in maximum norm, assumes that the mesh is quasi-uniform. However, in [7] the
stability of the Ritz projection in W 1

∞ norm was established for more general graded
meshes, that hold in most adaptive codes. The essential part of the proof was
interior error estimates in W 1

∞ norm. Such interior error estimates were established
for the second order elliptic equations for quasi-uniform meshes away from the
boundary in [32], but for the Stokes problems such estimates are not known. The
only result in this direction is [25], which establishes maximum-norm interior error
estimates for stable finite element approximations of the Stokes equations in the
case of translation invariant meshes.

Acknowledgements: We are indebted to Jürgen Rossmann for many discus-
sions on Green’s function estimates. We would also like to thank Alan Demlow and
Hongjie Dong for valuable discussions.
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