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Abstract. We prove stability in W 1,∞(Ω) and L∞(Ω) for the velocity and pressure approx-
imations, respectively, using the lowest-order Taylor-Hood finite element spaces to solve the
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1. Introduction

Consider the Stokes problem on a convex polyhedral domain Ω ⊂ R3

−∆~u+∇p = ~f in Ω(1.1a)

∇ · ~u = 0 in Ω(1.1b)

~u = ~0 on ∂Ω.(1.1c)

Here ~u is the velocity and p is the pressure. The aim of this paper is to prove W 1,∞ stability
of the lowest order Taylor-Hood (see for example [1]) approximation in three dimensions. More
specifically, we prove the bound

‖∇~uh‖L∞(Ω) + ‖ph‖L∞(Ω) ≤ C(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)).

where ~uh ∈ ~Vh, ph ∈Mh are the Taylor-Hood approximations.
In previous papers, W 1,∞ [18, 5] stability was proven for many inf-sup stable pair of spaces,

but one major exception was the lowest order Taylor-Hood pair in three dimensions. The reason
for this is that in both papers it was assumed that there exists a Fortin projection Πh (i.e. it
commutes with the divergence operator) to the finite element velocity space that is quasi-local,

i.e. Πh ∈ L(H1
0 (Ω)3, ~Vh) satisfies the following properties

(qh,∇ · (Πh(~w)− ~w))Ω = 0, ∀~w ∈ H1
0 (Ω)3, ∀qh ∈Mh.

|Πh(~v)− ~v|Wm,q(T ) ≤ Ch
s−m+3( 1

q
− 1
p

)

T |v|W s,p(∆T ), ∀T ∈ Th, ∀~v ∈W s,p(Ω)3

for all real numbers 1 ≤ sk + 1, 1 ≤ p, q ≤ ∞, and integer m = 0 or 1 such that W s,p(Ω) ⊂
Wm,q(Ω). The constant C is independent of h and T , and ∆T is a suitable macro-element
containing T . Although such a Fortin projection exists for many inf-sup pair of spaces [16],
existence of a quasi-local Fortin projection for the lowest-order Taylor-Hood element in three
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dimensions is still open. In this paper, we instead use a quasi-local inf-sup condition which holds
for the Taylor-Hood element and avoid the use of a Fortin projection.

The local inf-sup condition has been used before by Arnold and Liu [20] to prove local energy
estimates for Stokes problem. The local energy results in Arnold and Liu were proven only for
interior domains. Chen [19] assuming local energy results (both interior domains and also sub-
domains touching the boundary ∂Ω) proved W 1,∞ stability for finite element approximations to
the Stokes problem for domains Ω that have a smooth boundary.

The techniques used by Chen [19] cannot easily be extended to our setting where we assume
that Ω is a convex polyhedral domain. First, higher elliptic regularity results were used by Chen,
which do not hold in our setting. Second, we cannot use directly the local energy estimates that
Chen assumed because this will require us to estimate the pressure error in a negative order
norm which we do not know how to estimate with the given regularity of the problem. Instead
we prove a local energy estimate that does not contain the error of the pressure which is very
similar to the estimates obtained in [5] ( see also [6]). Of course, the estimates derived in [5]
assumed the existence of a quasi-local Fortin projection.

There will be many similarities between the proofs in this paper and the proofs in article [5].
In order to make our paper self contained we provide many details. However, we will compare
the individual results below to corresponding results in [5]. We prove max-norm estimates for
Stokes elements which satisfy assumptions A1-A6 below. As a corollary we show that the lowest-
order Taylor-Hood element in three dimensions satisfies these assumptions. For simplicity we
only consider Stokes elements that use continuous pressures.

2. W 1,∞ stability result

In this section we state our main result in Theorem 1. The finite element approximation
problems, and the assumptions of our result are presented bellow.

2.1. Preliminaries and Assumptions. For the finite element approximation of the problem,
let Th, 0 < h < 1, be a sequence of partitions of Ω, Ω = ∪T∈ThT , with the elements T mutually
disjoint. Let hT denote the diameter of the element T and h := maxT hT . The partitions
are face-to-face so that simplices meet only in full lower-dimensional faces or not at all. The
family of triangulation are shape regular and quasi-uniform. The finite element velocity space

is denoted by ~Vh ⊂ [H1
0 (Ω)]3 and the pressure space is denoted by Mh ⊂ L2(Ω). We assume

that ~Vh contains the space of piecewise polynomials of degree k (k ≥ 2) and is contained is the
space of piecewise polynomials of degree l. We assume that Mh contains the space of continuous
piecewise polynomial of degree k − 1.

The finite element approximation (~uh, ph) ∈ ~Vh ×Mh solves

(∇~uh,∇~v)− (ph,∇ · ~v) = (~f,~v) ∀~v ∈ ~Vh(2.1a)

(q,∇ · ~uh) = 0 ∀q ∈Mh(2.1b)

where (·, ·) denotes the usual L2(Ω) inner product. The approximation to the pressure ph
is unique up to a constant. We can for example require p, ph ∈ L2

0(Ω), i.e.,
∫

Ω p(x)dx =∫
Ω ph(x)dx = 0. Instead, we will require

(2.2)

∫
Ω
p(x)φ(x)dx =

∫
Ω
ph(x)φ(x)dx = 0,

where φ(x) is an infinitely differentiable function on Ω that vanishes in a neighborhood of the
edges and satisfies
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(2.3)

∫
Ω
φ(x)dx = 1.

Without loss of generality, we fix φ as above and assume p, ph satisfy (2.2). In other words,
we let p and ph belong to the space L2

φ.

We assume the existence of two projection operators P : [H1
0 (Ω)]3 → ~Vh and R : L2(Ω) →

Mh with following properties

A1 (Stability). There exists constants C1, C2 independent of h such that

(2.4a) ‖P~v‖H1(Ω) ≤ C1‖~v‖H1(Ω), ∀~v ∈ [H1
0 (Ω)]3.

(2.4b) ‖Rq‖L2(Ω) ≤ C2‖q‖L2(Ω), ∀q ∈ L2(Ω).

A2 (Local Approximation) Let Q ⊂ Qd ⊂ Ω with d ≥ κh, for some fixed κ sufficiently large
and Qd = {x ∈ Ω : dist(x,Ω) ≤ d}. For any ~v ∈ [H l(Qd)]

3 there exists C independent
of h and ~v such that

(2.5a) ‖~v −P~v‖L2(Q) + h‖~v −P~v‖H1(Q) ≤ Chl‖~v‖Hl(Qd) for l = 1, 2.

For any ~v ∈ [C1+σ(Qd)]
3 there exists a constant C independent of h such that

(2.5b) ‖~v −P~v‖W t
∞(Q) ≤ Ch1+σ−t‖~v‖C1+σ(Qd) for t = 0, 1,

where

‖~v‖C1+σ(Q) = ‖~v‖C1(Q) + sup
x,y∈Q
i∈{1,2,3}

|~ei · (∇~v(x)−∇~v(y))|
|x− y|σ

For any q ∈ H1(Qd) there exists a constant C independent of h and Q such that

(2.5c) ‖q −Rq‖L2(Q) ≤ Ch‖q‖H1(Qd).

For any q ∈ Cσ(Qd) there exists a constant C independent of h such that

(2.5d) ‖q −Rq‖L∞(Q) ≤ Chσ‖q‖Cσ(Qd).

A3 (Superapproximation). Let ω ∈ C∞0 (Qd) be a smooth cut-off function such that ω ≡ 1
on Q and

(2.6a) |Dsω| ≤ Cd−s, s = 0, 1.

We assume that

(2.6b) ‖ω2~v −P(ω2~v)‖L2(Q) ≤ Chd−1‖~v‖L2(Qd), ∀~v ∈ ~Vh

(2.6c) ‖∇(ω2~v −P(ω2~v))‖L2(Q) ≤ Cd−1‖~v‖L2(Qd), ∀~v ∈ ~Vh
and
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(2.6d) ‖∇(ω2q −R(ω2q))‖L2(Q) ≤ Chd−1‖q‖L2(Qd), ∀q ∈Mh.

A4 (Inverse inequality). There exists a constant C independent of h such that

(2.7a) ‖~v‖H1(Q) ≤ Ch−1‖~v‖L2(Qd)

A5 (Local inf-sup condition). There exists β > 0 and ` ≥ 1 such that for every set B ⊂ Ω
there exist Bh ⊇ B, with dist(B, ∂Bh\∂Ω) ≤ `h, and β > 0 such that

(2.8) sup
~v∈~Vh\{~0}

supp(~v)⊂Bh

(q,∇ · ~v)

‖~v‖H1(Bh)
≥ βh‖∇q‖L2(B), ∀q ∈Mh.

A6 (L1 inf-sup condition). There exists a constant γ > 0 independent of h such that

(2.9) sup
~v∈~Vh\{~0}

(q,∇ · ~v)

‖~v‖W 1
∞(Ω)

≥ γh‖∇q‖L1(Ω), ∀q ∈Mh.

When B = Ω property A5 is the standard inf-sup condition for Stokes finite element spaces.
We now state the main result of the paper.

Theorem 1. Let (~u, p) and (~uh, ph) satisfy (1.1) and (2.1), respectively. Under the Assumptions
1-6, there exists a constant C independent of h such that

‖∇~uh‖L∞(Ω) + ‖ph‖L∞(Ω) ≤ C(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)).

Of course, as a corollary we have

‖∇(u− ~uh)‖L∞(Ω) + ‖p− ph‖L∞(Ω) ≤ C( sup
~v∈~Vh

‖∇(~u− ~v)‖L∞(Ω) + sup
q∈Qh

‖p− q‖L∞(Ω)).

The proof of Theorem 1 is presented in section 4. In section 4.1 we state some Green’s function
estimates, established in [9, 7, 8, 11] which are used in section 4.2 to prove a key estimate for
the gradient of the finite element approximation of the Green’s function in the L1 norm. Finally
in section 4.3 we prove the stability in L∞ norm of the velocity and the pressure.

3. Local energy estimate

An essential ingredient of our proof is the local energy estimate that we derive in this section.

Consider (~v, q) ∈ [H1
0 (Ω)]3×L2(Ω) and (~vh, qh) ∈ ~V ×Mh satisfying the following orthogonality

relation:

(∇(~v − ~vh),∇~χ)− (q − qh,∇ · ~χ) = 0 ∀~χ ∈ ~Vh(3.1a)

(w,∇ · (~v − ~vh)) = 0 ∀w ∈Mh(3.1b)

Theorem 2. Suppose (~v, q) ∈ [H1
0 (Ω)]3 × L2(Ω) and (~vh, qh) ∈ ~V ×Mh satisfy (3.1). Then,

there exists a constant C > 0 such that for every pair of sets A1 ⊂ A2 ⊂ Ω such that
dist(A1, ∂A2\∂Ω) ≥ d ≥ κh ( for some fixed large enough constant κ) and for any ε ∈ (0, 1),
the following bound holds:



MAX-NORM STABILITY OF LOW ORDER TAYLOR-HOOD ELEMENTS IN THREE DIMENSIONS 5

‖∇(~v − ~vh)‖L2(A1) ≤ C
(
ε−1‖∇(~v −P~v)‖L2(A2) + (εd)−1‖(~v −P~v)‖L2(A2) + ‖q −Rq‖L2(A2)

)
+ε‖∇(~v − ~vh)‖L2(A2) +

C

εd
‖(~v − ~vh)‖L2(A2)

The above result is similar to Theorem 2 in [5]. The main difference is that the term
ε−1‖∇(~v −P~v)‖L2(A2) appears in our result.

Proof. We first prove the statement with the following assumption for the sets A1 and A2.

A7 Redefine the sets as As = Bsd/2 ∩ Ω for s = 1, 2, where Bsd/2 is a ball of radius sd/2

centered at x0 ∈ Ω̄ and assume that there exists a ball B ⊂ A1, such that diam(A1) ≤
d < ρ diam(B), where ρ is a fixed constant that only depends on Ω.

We will compete the proof for general sets by a covering argument.
Consider ω ∈ C∞0 (A3/2) the cut-off function defined in assumption A3, for Q = A1 and

Qd = A2. Define ~e = ~v−~vh, ~η = ~v−P~v, ~ξ = P~v−~vh, eq = q− qh, ηq = q−Rq and ξq = Rq− qh
then

(3.2) ‖∇~e‖L2(A1) ≤ ‖ω∇~e‖L2(Ω) = (∇~e,∇(ω2~e))− (∇~e,∇(ω2)⊗ ~e)

Throughout this proof we will estimate the middle term of (3.2). We first obtain an estimate
for the second term on the right hand side of (3.2), by Cauchy-Schwartz (C-S.) inequality and
the property of ω (2.6a) we obtain

−(∇~e,∇(ω2)⊗ ~e) ≤ C

d
‖ω∇~e‖L2(Ω)‖~e‖L2(A3/2).

Applying the arithmetic-geometric mean (a-g.m.) inequality and (3.2), we get

(3.3)
1

2
‖ω∇~e‖L2(Ω) ≤ (∇~e,∇(ω2~e)) +

C

d2
‖~e‖2L2(A3/2).

Now for the first term on the right hand side of (3.3), we use ~e = ~η + ~ξ, obtaining

(∇~e,∇(ω2~e)) = (∇~e,∇(ω2~ξ)) + (∇~e,∇(ω2~η))

≤ (∇~e,∇(ω2~ξ)) + C‖ω∇~e‖L2(Ω)(‖∇~η‖L2(A3/2) +
1

d
‖~η‖L2(A3/2)),(3.4)

in the last line we have estimated the second term using (2.6a). The term (∇~e,∇(ω2~ξ)) is
more involved, we decompose it as follows

(3.5) (∇~e,∇(ω2~ξ)) = (∇~e,∇P(ω2~ξ)) + (∇~e,∇(ω2~ξ)−P(ω2~ξ)) =: I1 + I2.

Summarizing, by (3.4), the a-g.m. inequality , the definition of I1 and I2 and (3.3) we have

(3.6)
1

4
‖ω∇~e‖L2(Ω) ≤ I1 + I2 + C‖∇~η‖2L2(A3/2) +

C

d2
‖~η‖2L2(A3/2) +

C

d2
‖~e‖2L2(A3/2).

We estimate I2 applying C-S. inequality, the superapproximation assumption A3 (2.6b) and
the a-g.m. inequality for 0 < ε < 1, obtaining
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I2 ≤ ‖∇~e‖L2(A3/2)‖∇(ω2~ξ −P(ω2~ξ))‖L2(A3/2) ≤ ‖~e‖L2(A3/2)
C

d
‖~ξ‖L2(A2)

= ε‖∇~e‖2L2(A3/2) +
C

εd2
(‖~η‖2L2(A2) + ‖~e‖2L2(A2)),

To estimate I1 we use (3.1a), then adding and subtracting Rq we break I1 into three parts

I1 = −(eq,∇ ·P(ω2~ξ))

= −(eq,∇ · (ω2~ξ))− (ηq,∇ · (P(ω2~ξ)− ω2~ξ))− (ξq,∇ · (P(ω2~ξ)− ω2~ξ)) = I3 + I4 + I5

Similar to the estimate for I2, we estimate I4

I4 ≤ ‖ηq‖L2(A3/2)‖∇ · (P(ω2~ξ)− ω2~ξ)‖L2(A3/2) ≤ ‖ηq‖L2(A3/2)
C

d
‖~ξ‖L2(A2)

= ‖ηq‖2L2(A3/2) +
C

d2
(‖~η‖2L2(A2) + ‖~e‖2L2(A2)),

Next we estimate I5. We use integration by parts (taking into account that Mh is continuous),
C-S. inequality, superapproximation assumption A3

I5 = (∇ξq,P(ω2~ξ)− ω2~ξ) ≤ ‖∇ξq‖L2(A3/2)‖P(ω2~ξ)− ω2~ξ‖L2(A3/2)

≤ ‖∇ξq‖L2(A3/2)
Ch

d
‖~ξ‖L2(A2)

Using the local inf-sup condition assumption A5 we know there exists A3/2 ⊂ Bh with
dist(A3/2, ∂Bh\∂Ω) ≤ `h such that

β‖∇ξq‖L2(A3/2) ≤ sup
~z∈~Vh

supp ~z⊂Bh

(ξq,∇ · ~z)
‖~z‖H1(Bh)

.

Since d ≥ κh and we can choose κ > 2` then we have that Bh ⊂ A2, and so

β‖∇ξq‖L2(A3/2) ≤ sup
~z∈~Vh

supp ~z⊂A2

(ξq,∇ · ~z)
‖~z‖H1(A2)

Now using equation (3.1a) and a-g.m. inequality to obtain
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I5 ≤ C

d
sup
~z∈~Vh

supp ~z⊂A2

(ξq,∇ · ~z)
‖~z‖H1(A2)

‖~ξ‖L2(A2)

≤ C

d

‖ηq‖L2(A2) + sup
~z∈~Vh

supp ~z⊂A2

(eq,∇ · ~z)
‖~z‖H1(A2)

 ‖~ξ‖L2(A2)

≤ C

d

‖ηq‖L2(A2) + sup
~z∈~Vh

supp ~z⊂A2

(∇eq, ~z)
‖~z‖H1(A2)

 ‖~ξ‖L2(A2)

≤ C

d

‖ηq‖L2(A2) + sup
~z∈~Vh

supp ~z⊂A2

(∇~e,∇~z)
‖~z‖H1(A2)

 ‖~ξ‖L2(A2)

≤ C

d

(
‖ηq‖L2(A2) + ‖∇~e‖L2(A2)

)
‖~ξ‖L2(A2)

≤ ‖ηq‖2L2(A2) + ε‖∇~e‖2L2(A2) +
C

d2
(1 + ε−1)(‖~e‖2L2(A2) + ‖~η‖2L2(A2))

Until now, combining the estimates for I2, I4 and I5 in (3.6) we have

1

4
‖ω∇~e‖L2(Ω) ≤ I3 + C‖∇~η‖2L2(A2) + ‖ηq‖2L2(A3/2) +

C

εd2
(‖~η‖2L2(A2) + ‖~e‖2L2(A2)) + ε‖∇~e‖2L2(A2)

It remains to estimate I3. Again we use that eq = ηq + ξq decomposing I3 into two terms

I3 = −(eq,∇ · (ω2~ξ)) = −(ηq,∇ · (ω2~ξ))− (ξq,∇ · (ω2~ξ)) =: I6 + I7

The estimate for I6 is obtained applying C-S. inequality, property (2.6a) for s = 0 and s = 1,
and the a-g.m. inequality, resulting

I6 ≤ C‖ηq‖2L2(A3/2) +
1

8
‖ω∇~e‖2L2(A3/2) + C‖∇~η‖2L2(A3/2) +

C

d2
‖~η‖2L2(A3/2) +

C

d2
‖~e‖2L2(A3/2).

In order to estimate I7 we note that, by definition of ω

(c,∇ · (ω2~ξ)) = 0

for c constant. Set ξ̂q = ξq − c and choose c such that ξ̂q has zero mean on A3/2. Then by

product rule and adding and subtracting R(ω2(ξ̂q)) we have

I7 = −(ξ̂q,∇(ω2) · ~ξ)− (ξ̂q, ω
2∇ · ~ξ)

= −(ξ̂q,∇(ω2) · ~ξ)− (ω2ξ̂q −R(ω2ξ̂q),∇ · ~ξ)− (R(ω2ξ̂q),∇ · ~ξ) =: I8 + I9 + I10

We estimate I8 using C-S. inequality and property (2.6a)

I8 ≤
C

d
‖ξ̂q‖L2(A3/2)‖~ξ‖L2(A3/2).
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Using the superapproximation property (2.6c) and the inverse estimate assumption A4 we
estimate I9 as follows

I9 ≤
Ch

d
‖ξ̂q‖L2(A3/2)‖∇~ξ‖L2(A3/2) ≤

C

d
‖ξ̂q‖L2(A3/2)‖~ξ‖L2(A2).

To estimate I10 we apply the equation (3.1b), the property of R (2.4b), (2.6a), the local
inf-sup condition A5 and C-S. inequality obtaining

I10 = (R(ω2ξ̂q),∇ · ~η) ≤ C‖ξ̂q‖L2(A3/2)‖∇~η‖L2(A3/2).

We claim that ‖ξ̂q‖L2(A3/2) ≤ C(‖∇~e‖L2(A2) +‖ηq‖L2(A2)). We prove this claim in Lemma 3.1.

Therefore, we have

I7 ≤ C(‖ηq‖L2(A2) + ‖∇~e‖L2(A2))(‖∇~η‖L2(A3/2) +
1

d
‖~ξ‖L2(A2))

≤ ε(‖ηq‖2L2(A2) + ‖∇~e‖2L2(A2)) +
C

εd2
(‖~η‖2L2(A2) + ‖~e‖2L2(A2)) +

C

ε
‖∇~η‖2L2(A2).

The estimates for I6 and I7 yield

1

8
‖ω∇~e‖L2(Ω) ≤ C(

1

ε
‖∇~η‖2L2(A2) + ‖ηq‖2L2(A2) +

1

εd2
‖~η‖2L2(A2)) +

C

εd2
‖~e‖2L2(A2) + ε‖∇~e‖2L2(A2).

The exact statement of Theorem 2 is attached using ε2. This completes the proof under
Assumption A7.

Now we extend the result for general sets A1 ⊂ A2 ⊂ Ω with dist(A1, ∂A2\∂Ω) ≥ d ≥ κh. It
is not difficult to construct a covering {Gi}Mi=1 of A1, where Gi = Bd/2(xi)∩Ω with the following
properties:

(1) A1 ⊂
M⋃
i=1

Gi.

(2) xi ∈ A1 for each 1 ≤ i ≤M .

(3) Let Hi = Bd(xi) ∩ Ω. There exists a fixed number L such that each point x ∈
M⋃
i=1

Hi is

contained in at most L sets from {Hj}Mj=1.

(4) There exists a ρ > 0 such that for each 1 ≤ i ≤M there exists a ball B ⊂ Gi such that
diam(Gi) ≤ ρdiam(B).

Since dist(A1, ∂A2\∂Ω) ≥ d, using property 2 we have that

M⋃
i=1

Hi ⊂ A2.

Applying the result proved above and using properties 1 and 4 we have

‖∇(~v − ~vh)‖2L2(A1) ≤
M∑
i=1

‖∇(~v − ~vh)‖2L2(Gi)
≤

M∑
i=1

C
(
‖∇(~v −P~v)‖2L2(Hi)

+ ‖q −Rq‖2L2(Hi)

+ (
1

εd
)2‖~v −P~v‖2L2(Hi)

)
+ ε2‖∇(~v − ~vh)‖2L2(Hi)

+ (
C

εd
)2‖~v − ~vh‖2L2(Hi)

.

Using property 3 we have
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‖∇(~v − ~vh)‖2L2(A1) ≤ CL
(
‖∇(~v −P~v)‖2L2(A2) + ‖q −Rq‖2L2(a2)

+ (
L

εd
)2‖~v −P~v‖2L2(A2)

)
+ Lε2‖∇(~v − ~vh)‖2L2(A2) + (

CL

εd
)2‖~v − ~vh‖2L2(A2).

The exact statement of Theorem 2 is attached using ε2.
�

The next result is exactly the same as Lemma 3.2 in [5]. However, the proof in [5] used the
existence of a quasi-local Fortin projection.

Lemma 3.1. Under the assumption A7, there exists a constat C independent of A3/2 and ξ̂q,
but depends on ρ sucht that

‖ξ̂q‖L2(A3/2) ≤ C(‖∇~e‖L2(A2) + ‖ηq‖L2(A2)).

Proof. Define ~w ∈ H1
0 (A3/2) as the solution of the problem

∇ · ~w = ξ̂q in A3/2

~w = ~0 on ∂A3/2

We can choose ~w so that ‖~w‖H1(A3/2) ≤ C‖ξ̂q‖L2(A3/2).

By Lemma 3.1 in Chapter III.3 in [11], the constant C is independent of ξ̂q and depends only
on the ratio of the diameter of A3/2 and the radius of the largest ball that can be inscribed
into A3/2 and hence by our hypothesis only depends on ρ. Let us extend ~w on all of Ω by zero
outside of A3/2. We note that this implies that P~w vanishes outside of A2 by A3. Then,

‖ξ̂q‖2L2(A3/2) = (ξ̂q, ξ̂q)A3/2
= (ξ̂q,∇ · ~w) = (ξq,∇ · ~w)

= (eq,∇ · ~w)− (ηq,∇ · ~w).

Using (3.1a),

(eq,∇ · ~w) = (eq,∇ ·P~w) + (eq,∇ · (~w −P~w))

= (∇~e,∇P~w) + (ηq,∇ · (~w −P~w)) + (ξq,∇ · (~w −P~w))

= (∇~e,∇P~w) + (ηq,∇ · (~w −P~w))− (∇ξq, ~w −P~w)

≤ ‖∇~e‖L2(A2)‖∇P~w‖L2(A2) + ‖ηq‖L2(A2)‖∇(~w −P~w)‖L2(A2)

‖∇ξq‖L2(A3/2)‖~w −P~w‖L2(A3/2)

≤ C(‖∇~e‖L2(A2) + ‖ηq‖L2(A2) + h‖∇ξq‖L2(A3/2))‖~w‖H1(A3/2)

Using the local inf-sup condition A5 we have

h‖∇ξq‖L2(A3/2) ≤ C(‖ηq‖L2(A2) + ‖∇~e‖L2(A2))

Therefore

‖ξ̂q‖2L2(A3/2) ≤ C(‖ηq‖L2(A2) + ‖∇~e‖L2(A2))‖~w‖H1(A3/2)

≤ C(‖ηq‖L2(A2) + ‖∇~e‖L2(A2))‖ξ̂q‖H1(A3/2)

which implies the result. �
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4. Proof of Theorem 1

4.1. Green’s function estimates. In this section we recall pointwise estimates for the Green’s
matrix. Let φ(z) be an infinitely differentiable function in Ω which vanishes in a neighborhood
of the edges of Ω such that

(4.1)

∫
Ω
φ(x)dx = 1.

Consider the Stokes problem with non-zero divergence. Let (~u, p) ∈ [H1
0 (Ω)]3 × L2

φ(Ω) solve

−∆~u+∇p = ~f in Ω(4.2a)

∇ · ~u = q in Ω(4.2b)

~u = ~0 on ∂Ω.(4.2c)

for arbitrary ~f ∈ [H−1(Ω)]3 and q ∈ L2
0(Ω) with q vanishing on the singular points of Ω (see

[2]). If q ∈ H1(Ω) ∩ L2
0(Ω) with q vanishing on the edges of Ω and ~f ∈ [L2(Ω)]3 we have the

following elliptic regularity result (see [2])

(4.3) ‖~u‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖~f‖L2(Ω) + ‖q‖H1(Ω)).

The Green’s matrix for the problem (4.2) ~Gj = (G1,j , G2,j , G3,j)
T and the functions G4,j for

j = 1, 2, 3, 4 are solutions of the problem

−∆x
~Gj(x, ξ) +∇xG4,j(x, ξ) = δ(x− ξ)(δ1,j , δ2,j , δ3,j)

T for x, ξ ∈ Ω(4.4a)

∇x · ~Gj(x, ξ) = (δ(x− ξ)− φ(x))δ4,j for x, ξ ∈ Ω(4.4b)

~Gj(x, ξ)( = ~0 for x ∈ ∂Ω, ξ ∈ Ω.(4.4c)

and G4,j satisfies the condition

(4.5)

∫
Ω
G4,j(x, ξ)φ(x)dx = 0, for ξ ∈ Ω, j = 1, 2, 3, 4.

Here, δ(x) is the delta function, and δi,j is the Kronecker delta symbol. In addition,

Gi,j(x, ξ) = Gj,i(ξ, x) for x, ξ ∈ Ω, i, j = 1, 2, 3, 4/

The following Theorem, (cf. [7], [8]) gives us the existence and uniqueness of such a matrix.

Theorem 3. There exists a uniquely determined Green’s matrix G(x, ξ) such that the vector
functions

x→ ζ(x, ξ)(~Gj(x, ξ), G4,j(x, ξ))

belong to the space [H1
0 (Ω)]3 × L2(Ω) for each ξ ∈ Ω and for every infinitely differentiable

function ζ(·, ξ) equal zero in a neighborhood of the point x = ξ.

Then, we have the following representation (cf. [12]) of the solution of problem 4.2 in terms
of the Green’s matrix
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ui(x) =

3∑
j=1

∫
Ω
Gi,j(x, ξ)fj(ξ)dξ +

∫
Ω
Gi,4(x, ξ)q(ξ)dξ i = 1, 2, 3.(4.6a)

p(x) =
3∑
j=1

∫
Ω
G4,j(x, ξ)fj(ξ)dξ +

∫
Ω
G4,4(x, ξ)q(ξ)dξ(4.6b)

The following estimates were established in papers of [9, 7, 8, 11] ( see also [10] Sec. 11.5).

Theorem 4. Let Ω ⊂ R3 be a convex domain of polyhedral type. Then there exists a constant
C such that

(4.7) |∂αx ∂
β
ξGi,j(x, ξ)| ≤ C|x− ξ|−1−|α|−|β|−δi,4−δj,4 ,

for |α| ≤ 1− δi,4, |β| ≤ 1− δj,4, x, ξ ∈ Ω, x 6= ξ, and multi-indices 0 ≤ |α|, |β| ≤ 1.
Moreover, for polyhedral domain the Green’s matrix satisfies the Hölder type estimate

(4.8)

|∂αx ∂
β
ξGi,j(x, ξ)− ∂

α
y ∂

β
ξGi,j(y, ξ)|

|x− y|σ
≤ C(|x− ξ|−1−σ−|α|−|β|−δi,4−δj,4 + |y− ξ|−1−σ−|α|−|β|−δi,4−δj,4),

for |α| ≤ 1− δi,4, |β| ≤ 1− δj,4. Here σ is a sufficiently small positive number which depends
on the geometry of the domain.

4.2. Preliminary results. Let z be an arbitrary point of Ω and let Tz ∈ Th be the element
containing z. Our aim is to estimate |∂xj (~uh)i(z)| and |ph(z)|, where 1 ≤ i, j ≤ 3 are arbitrary.
We will start representing them in terms of the smooth Green’s function. Then after some
manipulations the problem is reduced to estimate the error of the Green’s function in L1(Ω)
norm, that estimate is presented in this section and we leave the rest of the proof for section
4.3. Preliminarily, we define the smooth delta function. Let δzh(x) = δh ∈ C1

0 (Tz) be a smooth
function such that

(4.9) r(z) = (r, δh)Tz , ∀r ∈ P l(Tz),

where P l(Tz) is the space of polynomials of degree at most l defined on Tz, with the following
property

‖δh‖Wk
q (Tz) ≤ Ch−k−3(1−1/q), 1 ≤ q ≤ ∞, h = 0, 1.

We highlight that, in particular,

‖δh‖L1(Tz) ≤ C(4.10a)

‖δh‖L2(Tz) ≤ Ch−3/2.(4.10b)

The explicit construction of a such function is given in [13]. Next, we define the approximate
Green’s function (~g, λ) ∈ [H1

0 (Ω)]3 × L2
φ(Ω) to be the solution of the following equation:
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∆~g +∇λ = a(∂xjδh)~ei in Ω(4.11a)

∇ · ~g = b(δh − φ) in Ω(4.11b)

~g = ~0 on ∂Ω.(4.11c)

Here ~ei denote the i-th standard basis vector in R3 and will be fixed throughout the paper
and a, b ∈ R. Note that (2.3) implies that

∫
Ω(δh(x) − φ(x))dx = 0. Again, λ is unique up to a

constant. In the course of the proof we will need estimates ~g and λ in certain Hölder norms on
subdomains away from the singular point z. The next lemma is almost identical to Lemma 5.1
in [5]. We include the proof for completeness.

Lemma 4.1. Let D ⊂ Ω be such that dist(D, z) ≥ d ≥ 2h. Then there exists a constant C
independent of d and D such that

‖~g‖C1+σ(D) + ‖λ‖Cσ(D) ≤ Cd−3−σ.

Proof. We use the Green’s function representation presented in Section 4.1

(~g)k(x) = gk(x) = a

∫
Ω
Gk,i(x, ξ)(∂ξδh(ξ))dξ + b

∫
Ω
Gi,4(x, ξ)δh(ξ)dξ

λ(x) = a

∫
Ω
G4,i(x, ξ)(∂ξδh(ξ))dξ + b

∫
Ω
G4.4(x, ξ)δh(ξ)dξ

for k = 1, 2, 3 and i fixed. Then, we have

∂xgk(x)− ∂ygk(y) = a

∫
Ω

(∂xGk,i(x, ξ)− ∂yGk,i(y, ξ))(∂ξδh(ξ))dξ

+b

∫
Ω

(∂xGi,4(x, ξ)− ∂yGi,4(y, ξ))δh(ξ)dξ

= −a
∫

Ω
∂ξ(∂xGk,i(x, ξ)− ∂yGk,i(y, ξ))δh(ξ)dξ

+b

∫
Ω

(∂xGi,4(x, ξ)− ∂yGi,4(y, ξ))δh(ξ)dξ.

Let x, y ∈ D, x 6= y, then using that 1 ≤ i ≤ 3 by (4.8), we have

|∂xgk(z)− ∂ygk(y)|
|x− y|σ

≤ amax
ξ∈Tz

|∂ξ∂xGk,i(x, ξ)− ∂ξ∂yGk,i(y, ξ))|
|x− y|σ

‖δh‖L1(Tz)

+bmax
ξ∈Tz

|∂xGk,i(x, ξ)− ∂yGk,i(y, ξ)|
|x− y|σ

‖δh‖L1(Tz)

≤ 2C max{a, b}max
ξ∈Tz

(|x− ξ|−3−σ + |y − ξ|−3−σ) ≤ C max{a, b}d−3−σ

The last inequality is due to that for any ξ ∈ Tz, |x − ξ|, |y − ξ| ≥ d/2, and ‖δh‖L1(Tz) ≤ C.
Therefore, taking supremum over k we conclude∑

x,y∈D

|∇~g(x)−∇~g(y)|
|x− y|σ

≤ C max{a, b}d−3−σ.

Similarly, for λ we have
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λ(x)− λ(y) = −a
∫

Ω
(∂ξG4,i(x, ξ)− ∂ξG4,i(y, ξ))δh(ξ)dξ

+b

∫
Ω

(G4.4(x, ξ)−G4.4(y, ξ))δh(ξ)dξ

Then, for x, y ∈ D, x 6= y,

|λ(x)− λ(y)|
|x− y|σ

≤ amax
ξ∈Tz

|∂ξG4,i(x, ξ)− ∂ξG4,i(y, ξ)|
|x− y|σ

‖δh‖L1(Tz)

+bmax
ξ∈Tz

|G4.4(x, ξ)−G4.4(y, ξ)|
|x− y|σ

‖δh‖L1(Tz)

≤ 2C max{a, b}max
ξ∈Tz

(|x− ξ|−3−σ + |y − ξ|−3−σ) ≤ C max{a, b}d−3−σ

This completes the proof after taking the supremum. �

Let (~gh, λh) ∈ ~Vh ×Mh be the corresponding finite element solution, i.e., the unique solution
that satisfies

(∇(~g − ~gh),∇~χ)− (λ− λh,∇ · ~χ) = 0, ∀~χ ∈ ~Vh(4.12a)

(w,∇ · (~g − ~gh)) = 0 ∀w ∈Mh(4.12b)

and λh ∈ L2
φ(Ω). The next lemma is the analogue to lemma 5.2 in [5]. In this case we use the

local inf-sup condition instead of the quasi-local Fortin projection to achieve the result.

Lemma 4.2. There exists a constant C, independent of h and ~g, such that

(4.13) ‖∇(~g − ~gh)‖L1(Ω) ≤ C.

Proof. At this point we introduce some notations. Let ~e~g = ~g−~gh , ~η~g = ~g−P~g and ~ξ~g = P~g−~gh,

clearly ~e~g = ~η~g+~ξ~g. Similarly, for the scalar variables eλ = λ−λh , ηλ = λ−Rλ and ξλ = Rλ−λh.
The proof is broken down, as the proof of Lemma 5.2 in [5], into four steps.
Step 1 (Dyadic decomposition). We assume without loss of generality that |Ω| ≤ 1. Define

dj = 2−j and J be the integer such that 2−(J+1) ≤ Kh ≤ 2−J where K is a large enough
constant to be chosen later. Then, consider the following decomposition of Ω

(4.14) Ω = Ω∗ ∪
J⋃
j=0

Ωj

where Ω∗ = {x ∈ Ω : |x− z| ≤ Kh}, Ωj = {x ∈ Ω : dj+1 ≤ |x− z| ≤ dj}.
Henceforth, we will denote by C the generic constants not depending on K or h.
We break (4.13) using the dyadic decomposition (4.14) and then applying the Cauchy-Schwartz
(C-S.) inequality we obtain

‖∇~e~g‖L1(Ω) ≤ CK3/2h3/2‖∇~e~g‖L1(Ω∗) + C
J∑
j=0

d
3/2
j ‖∇~e~g‖L1(Ωj).
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Firstly, we estimate the term involving the set Ω∗

h3/2‖∇~e~g‖L2(Ω∗) ≤ h3/2‖∇~e~g‖L2(Ω) ≤ Ch5/2(‖~g‖H2(Ω) + ‖λ‖H1(Ω))

≤ Ch5/2‖∇δh‖L2(T ) ≤ C

Defining Mj = d
3/2
j ‖∇~e~g‖L2(Ωj), it follows that

(4.15) ‖∇~e~g‖L1(Ω) ≤ CK3/2 +
J∑
j=0

Mj .

Step 2 (Initial Estimate for Mj). Let us define the following sets:

Ω′j = {x ∈ Ω : dj+2 ≤ |x− z| ≤ dj−1}
Ω′′j = {x ∈ Ω : dj+3 ≤ |x− z| ≤ dj−2}
Ω′′′j = {x ∈ Ω : dj+4 ≤ |x− z| ≤ dj−3}
Ω′′′′j = {x ∈ Ω : dj+5 ≤ |x− z| ≤ dj−4}

We apply the local energy estimate proved in Theorem 2 to A1 = Ωj and A2 = Ω′j (d = dj),
and any 0 < ε < 1,

‖∇~e~g‖L2(Ωj) ≤ C
(
ε−1‖∇~η~g‖L2(Ω′j)

+ (εdj)
−1‖~η~g‖L2(Ω′j)

+ ‖ηλ‖L2(Ω′j)

)
(4.16)

+ε‖∇~e~g‖L2(Ω′j)
+

C

εdj
‖~e~g‖L2(Ω′j)

= CI + ε‖∇~e~g‖L2(Ω′j)
+

C

εdj
‖~e~g‖L2(Ω′j)

.(4.17)

We start treating the first three terms on the right-hand side.

I ≤ Cd
3/2
j

(
ε−1‖∇~η~g‖L∞(Ω′j)

+ (εdj)
−1‖~η~g‖L∞(Ω′j)

+ ‖ηλ‖L∞(Ω′j)

)
(by C-S. ineq.)

≤ Cd
3/2
j hσ

(
(ε−1 + ε−1 h

dj
)‖~g‖C1+σ(Ω′′j ) + ‖λ‖Cσ(Ω′′j )

)
(by A2)

≤ Cd
3/2
j hσ

(
(ε−1 + ε−1 h

dj
)d−3−σ
j + d−3−σ

j

)
(by Lemma 4.1)

≤ Cd
−3/2
j

(
h

dj

)σ (
ε−1 + ε−1 h

dj
+ 1

)
≤ Cd

−3/2
j

(
h

dj

)σ
ε−1

(
1 +

h

dj

)
Summarizing, we obtain the following estimate for Mj

Mj ≤ C

(
h

dj

)σ
ε−1

(
1 +

h

dj

)
+ εd

3/2
j ‖∇~e~g‖L2(Ω′j)

+ Cd
1/2
j ε−1‖~e~g‖L2(Ω′j)

In Step 3 below we present a duality argument to estimate the last term on the right-hand
side.

Step 3 ( Duality argument). We use the following duality representation of the L2 norm.
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‖~eg‖L2(Ω′j)
= sup

~v∈C∞c (Ω′j)

‖~v‖L2(Ω′
j
)≤1

(~e~g, ~v).

Now, for each ~v ∈ C∞c (Ω′j) with ‖~v‖L2(Ω′j)
≤ 1, let ~w, ϕ be the solution of the problem:

−∆~w +∇ϕ = ~v in Ω

∇ · ~w = 0 in Ω

~w = ~0 on ∂Ω.

Now, we test the variational problem associated with ~g − ~gh, i.e.

(~e~g, ~v) = (∇~e~g,∇~w)− (ϕ,∇ · ~e~g)
= (∇~eg,∇(~w −P~w)) + (∇~eg,∇P~w)− (ϕ−Rϕ,∇ · ~eg)
= (∇~eg,∇~ηw)− (eλ,∇ ·P~w)− (ηϕ,∇ · ~eg)
= (∇~eg,∇~ηw)− (eλ,∇ · ~ηw)− (ηϕ,∇ · ~eg)
= (∇~eg,∇~ηw)− (ηλ,∇ · ~ηw)− (ξλ,∇ · ~ηw)− (ηϕ,∇ · ~eg)
= (∇~eg,∇~ηw)− (ηλ,∇ · ~ηw) + (∇ξλ, ~ηw)− (ηϕ,∇ · ~eg)
=: J1 + J2 + J3 + J4

In order to make the estimates for J1, J2, J3, J4 clearer, we establish the following results.

Proposition 4.1. There exists C > 0 independent of h such that

(i) ‖∇~η~w‖L2(Ω) + ‖ηϕ‖L2(Ω) ≤ Ch

(ii) ‖∇~η~w‖L∞(Ω\Ω′′′j ) + ‖ηϕ‖L∞(Ω\Ω′′′j ) ≤ C

(
h

dj

)σ
d
−1/2
j

(iii) ‖ηλ‖L2(Ω′′′′j ) ≤ Cd
−3/2
j

(iv) ‖ηλ‖L1(Ω) ≤ C.

Next, we split Ji, into two terms as follows Ji = Ji|Ω′′′j + Ji|Ω\Ω′′′j , for i = 1, 2, 3, 4.

For example J1 = J1|Ω′′′j +J1|Ω\Ω′′′j = (∇~eg,∇~ηw)Ω′′′j
+(∇~eg,∇~ηw)Ω\Ω′′′j and estimate them using

Cauchy-Schwartz inequality, in L2 norm in Ω′′′j and in L1 − L∞ norms in Ω\Ω′′′j .

We start estimating J1, and J4 using Proposition 4.1 (i) and (ii)

J1|Ω′′′j ≤ ‖∇~e~g‖L2(Ω′′′j )‖∇~η~w‖L2(Ω) ≤ Ch‖∇~e~g‖L2(Ω′′′j ),

J1|Ω\Ω′′′j ≤ ‖∇~e~g‖L1(Ω)‖∇~η~w‖L∞(Ω\Ω′′′j ) ≤ Cd
−1/2
j

(
h

dj

)σ
‖∇~e~g‖L1(Ω),

J4|Ω′′′j ≤ ‖ηϕ‖L2(Ω)‖∇~e~g‖L2(Ω′′′j ) ≤ Ch‖∇~e~g‖L2(Ω′′′j ),

J4|Ω\Ω′′′j ≤ ‖ηϕ‖L∞(Ω\Ω′′j )‖∇~e~g‖L1(Ω) ≤ Cd
−1/2
j

(
h

dj

)σ
‖∇~e~g‖L1(Ω).

Hence
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(4.18) J1 + J4 ≤ Ch‖∇~e~g‖L2(Ω′′′j ) + Cd
−1/2
j

(
h

dj

)σ
‖∇~eg‖L1(Ω)

To estimate J2 we apply Proposition 4.1 (i) and (ii) as before and then apply (iii) and (iv)

J2|Ω′′′j ≤ ‖ηλ‖L2(Ω′′′j )‖∇~η~w‖L2(Ω) ≤ ‖ηλ‖L2(Ω′′′j )Ch ≤ Chd
−3/2
j

J2|Ω\Ω′′′j ≤ ‖ηλ‖L1(Ω)‖∇~η~w‖L∞(Ω\Ω′′′j ) ≤ ‖ηλ‖L1(Ω)C

(
h

dj

)σ
d
−1/2
j ≤ C

(
h

dj

)σ
d
−1/2
j .

Then

(4.19) J2 ≤ C(hd
−3/2
j +

(
h

dj

)σ
d
−1/2
j )

It remains to estimate J3. We first estimate J3|Ω′′′j . Applying C-S. inequality and Prop. 4.1

(i), we get

J3|Ω′′′j = (∇ξλ, ~η~w)Ω̃′′′j
≤ ‖∇ξλ‖L2(Ω′′′j )‖~η~w‖L2(Ω) ≤ Ch2‖∇ξλ‖L2(Ω′′′j )

To estimate the term in the right-hand side we use the local inf-sup condition A5, the identity
eλ = ηλ + ξλ, integration by parts, (4.12a), C-S. inequality and Prop. 4.1 (iii), obtaining

βh‖∇ξλ‖L2(Ω′′′j ) ≤ sup
~z∈~Vh

supp(~z)⊆Ω̃′′′j

(ξλ,∇ · ~z)
‖~z‖H1(Ω̃′′′j )

≤ sup
~z∈~Vh

supp(~z)⊆Ω̃′′′j

(eλ − ηλ,∇ · ~z)
‖~z‖H1(Ω̃′′′j )

≤ ‖ηλ‖L2(Ω̃′′′j ) + sup
~z∈~Vh

supp(~z)⊆Ω̃′′′j

(eλ,∇ · ~z)
‖~z‖H1(Ω̃′′′j )

≤ ‖ηλ‖L2(Ω̃′′′j ) + sup
~z∈~Vh

supp(~z)⊆Ω̃′′′j

(∇~e~g, ~z)
‖~z‖H1(Ω̃′′′j )

≤ ‖ηλ‖L2(Ω̃′′′j ) + ‖∇~e~g‖L2(Ω̃′′′j ) ≤ Cd
−3/2
j + ‖∇~e~g‖L2(Ω̃′′′j ),

where Ω̃′′′j ⊇ Ω′′′j with dist(Ω̃′′′j ,Ω
′′′
j ) ≤ lh. Observe that Ω′′′j ⊆ Ω̃′′′j ⊂ Ω′′′′j

Hence,

(4.20) J3|Ω′′′j ≤ Ch(Cd
−3/2
j + ‖∇~e~g‖L2(Ω̃′′′j ))

For J3|Ω\Ω′′′j , C-S. inequality and Prop. 4.1 (ii) yield to

J3|Ω\Ω′′′j ≤ ‖∇ξλ‖L1(Ω)‖~η~w‖L∞(Ω\Ω′′′j ) ≤ C

(
h

dj

)σ
d
−1/2
j h‖∇ξλ‖L1(Ω)

To estimate the term in the right-hand side we use the L1 inf-sup condition (A 6), the identity
eλ = ηλ + ξλ, integration by parts, (4.12a), C-S. inequality and Prop. 4.1 (iv), obtaining
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γ‖∇ξλ‖L1(Ω) ≤ sup
~z∈~Vh

(ξλ,∇ · ~z)
‖~z‖W 1

∞(Ω)
= sup

~z∈~Vh

(eλ − ηλ,∇ · ~z)
‖~z‖W 1

∞(Ω)

≤ ‖ηλ‖L1(Ω) + sup
~z∈~Vh

(eλ,∇ · ~z)
‖~z‖W 1

∞(Ω)

= ‖ηλ‖L1(Ω) + sup
~z∈~Vh

−(∇eλ, ~z)
‖~z‖W 1

∞(Ω)

≤ ‖ηλ‖L1(Ω) + sup
~z∈~Vh

(∇~e~g,∇~z)
‖~z‖W 1

∞(Ω)

≤ ‖ηλ‖L1(Ω) + ‖∇~e~g‖L1(Ω) ≤ C + ‖∇~e~g‖L1(Ω).

Then

(4.21) J3|Ω\Ω′′′j ≤ C

(
h

dj

)σ
d
−1/2
j (C + ‖∇~e~g‖L1(Ω))

It follows from (4.20) and (4.21) that

(4.22) J3 ≤ Ch‖∇~e~g‖L2(Ω̃′′′j ) + C

(
h

dj

)σ
d
−1/2
j ‖∇~e~g‖L1(Ω) + Cd

−1/2
j (hd−1

j +

(
h

dj

)σ
).

Therefore, estimate for J1 + J4, J2 and J3, (4.18),(4.19) and (4.22), respectively, give

d
1/2
j ‖~e~g‖L2(Ω′j)

≤ Chd−1
j + C

(
h

dj

)σ
+ C

(
h

dj

)σ
‖∇~e~g‖L1(Ω)

+Chd
1/2
j (‖∇~e~g‖L2(Ω′′′j ) + ‖∇~e~g‖L2(Ω̃′′′j )).

To summarize,

Mj ≤ C

(
h

dj

)σ
(1 +

1

ε
) + C

h

djε
+ C(

hd
1/2
j

ε
+ εd

3/2
j )‖∇~e~g‖L2(Ω′′′′j ) +

C

ε

(
h

dj

)σ
‖∇~e~g‖L1(Ω)

Step 4 (Double kick-back argument). We sum over j in the last expression obtaining

J∑
j=0

Mj ≤
J∑
j=0

{
C

(
h

dj

)σ
(1 +

1

ε
) + C

h

djε
+
C

ε

(
h

dj

)σ
‖∇~e~g‖L1(Ω)

}

+C(
h

dJε
+ ε)

J∑
j=0

d
3/2
j ‖∇~e~g‖L2(Ω′′′′j )

Observe that

J∑
j=0

(
h

dj

)σ
= hσ

J∑
j=0

(2j)σ = hσ
(2σ)J+1 − 1

2σ − 1
≤
(
h

dJ

)σ 2σ

2σ − 1
≤ CK−σ

in the last expression C depends on σ which is fixed. Then,
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J∑
j=0

Mj ≤ C
(1 + ε−1)

Kσ
+ C

1

εK
+

C

εKσ
‖∇~e~g‖L1(Ω) + C(

1

εK
+ ε)

J∑
j=0

d
3/2
j ‖∇~e~g‖L2(Ω′′′′j )

Observing that Ω′′′′j ⊂ Ω∗ ∪
⋃
s∈S Ωs, for some finite number S, we can bound the last term

in the right-hand side as follows

J∑
j=0

d
3/2
j ‖∇~e~g‖L2(Ω′′′′j ) ≤ C

J∑
j=0

Mj + C(Kh)3/2‖∇~e~g‖L2(Ω∗) ≤ C

J∑
j=0

Mj + CK3/2.

Choosing K large enough and a sufficiently small ε we have

J∑
j=0

Mj ≤ CK,ε +
C

εKσ
‖∇~e~g‖L1(Ω)

This result allows us to conclude in (4.15) that

‖∇~e~g‖L1(Ω) ≤ CK,ε +
C

Kσε
‖∇~e~g‖L1(Ω)

which, by means of a large enough choice of K, implies the desired result

‖∇~e~g‖L1(Ω) ≤ CK,ε.

This completes the proof. �

Proof. ( Proposition 4.1 )

(i) By H2-regularity and property of R we have

‖∇~η~w‖L2(Ω) + ‖ηϕ‖L2(Ω) ≤ Ch(‖w‖H2(Ω) + ‖∇ϕ‖L2(Ω)) ≤ Ch

the last inequality is due to ‖v‖L2(Ω′j)
≤ 1

(ii) We observe that by Hölder inequality ‖~ηw‖L∞(Ω\Ω′′′j ) ≤ Chσ‖~w‖C1+σ(Ω\Ω′′j )

Then, since Ω\Ω′′j is separated from Ω′j by at least dj , for x, y ∈ Ω\Ω′′j , using (4.6a) and

(4.8) ,we have

|∂xwk(x)− ∂ywk(y)|
|x− y|σ

≤
3∑
i=1

∫
Ω′j

∂xGk,i(x, ξ)− ∂yGk,i(y, ξ)|
|x− y|σ

|~v(ξ)|dξ

≤ C max
ξ∈Ω′j

(|x− ξ|+ |y − ξ|)−2−σ
∫

Ω′j

|~v(ξ)|dξ

≤ Cd−2−σ
j d

3/2
j ‖~v‖L2(Ω′j)

≤ Cd
−1/2−σ
j , for k = 1, 2, 3.

It follows that

‖~ηw‖L∞(Ω\Ω′′′j ) ≤ C

(
h

dj

)σ
d
−1/2
j .

Similarly, for x, y ∈ Ω\Ω′′j , using (4.6b) and (4.8) ,we have
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|ϕ(x)− ϕ(y)|
|x− y|σ

≤
3∑
i=1

∫
Ω′j

∂xG4,i(x, ξ)− ∂yG4,i(y, ξ)|
|x− y|σ

|~v(ξ)|dξ

≤ C max
ξ∈Ω′j

(|x− ξ|+ |y − ξ|)−2−σ
∫

Ω′j

|~v(ξ)|dξ

≤ Cd−2−σ
j d

3/2
j ‖~v‖L2(Ω′j)

≤ Cd
−1/2−σ
j , for k = 1, 2, 3.

Then, by A3 we have

‖ηϕ‖L∞(Ω\Ω′′′j ) ≤ Chσ‖ϕ‖Cσ(Ω\Ω′j) ≤
(
h

dj

)σ
d
−1/2
j .

(iii) Using (4.6b), (4.7) and dist(Ω′′′′j , Tz) = O(dj) we have

λ(x) =
3∑

k=1

∫
Tz

G4,k(x, ξ)(∂ξδh(ξ))δi,kdξ

= −
∫
Tz

∂ξG4,i(x, ξ)δh(ξ)dξ ≤ Cd−3
j ‖δh‖L1(Tz) ≤ Cd−3

j .

Thus, ‖ηλ‖L2(Ω′′′′j ) ≤ C‖λ‖L2(Ω′′′′j ) ≤ Cd
−3/2
j .

(iv) Using the dyadic decomposition (4.14) and C-S. inequality, we have

‖ηλ‖L1(Ω) ≤ CK3/2h3/2‖ηλ‖L2(Ω∗) + C

J∑
j=0

d
3/2
j ‖ηλ‖L2(Ωj).

Approximation property of R A2, H2-regularity and (4.10b) imply that

h3/2‖ηλ‖L2(Ω∗) ≤ Ch3/2+1‖∇λ‖L2(Ω) ≤ Ch5/2‖∇δh‖L2(T ) ≤ C.

Finally, using (iii) we conclude that

‖ηλ‖L1(Ω) ≤ CK3/2 + C

J∑
j=0

(
h

dj

)σ
≤ CK .

�

4.3. Proof of Theorem 1. We start this section with the L∞ estimate for the velocity. Con-
sider the problem (4.11) with a = 1 and b = 0. We will estimate |∂xj (~u)i(z)|, where 1 ≤ i, j ≤ 3

are arbitrary and arbitrary z ∈ Ω̄. We start the estimate using the definition of the delta
function, then we have
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−∂(~uh)i(z) = (~uh, (∂xjδh)~ei)
= (~uh,−∆~g +∇λ
= (∇~uh,∇~g) + (~uh,∇λ)
= (∇~uh,∇~g) + (~uh,∇λh) + (∇~uh,∇(~gh − ~g))
= (∇~uh,∇~gh)
= (∇~u,∇~gh) + (∇(p− ph), ~gh)
= (∇~u,∇~gh) + (∇p,~gh)
= (∇~u,∇~gh) + (∇~u,∇~g) + (∇p,~gh − ~g) + (~u,∇λ)
= (∇~u,∇~gh) + (~u,−∆~g +∇λ) + (~g − ~gh,∇p)
= (∇~u,∇~gh)− (∂(~u)i

∂xj
, δh)− (∇ · (~g − ~gh), p).

We take supremum over all partial derivatives in both sides of the equation, and taking into
account that ‖δh‖L1(Ω) ≤ C, then we can conclude that

(4.23) ‖∇~uh‖L∞(Ω) ≤ (C + ‖∇(~g − ~gh)‖L1(Ω))(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)).

The result (4.23) is completed by Lemma 4.2.

Next, we prove the stability of the pressure in the maximum norm.
Let z ∈ Tz and consider the problem (4.11) with a = 0 and b = 1. Then, using the definition

of the delta function we have

ph(z) = (ph, δh) = (ph, δh − φ) + (ph, φ).

We estimate the second term in the right hand side using C-S. inequality and the a priori
error estimate as follows

(ph, φ) = (ph − p, φ) + (p, φ)

≤ C(‖p− ph‖L2(Ω) + ‖p‖L2(Ω))‖φ‖L2(Ω)

≤ C(‖∇~u‖L2(Ω) + ‖p‖L2(Ω))

≤ C(‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)).

Now, to estimate (ph, δh − φ) we use (4.11b)

(ph, δh − φ) = (ph,∇ · ~g) = (ph,∇ · ~gh) = (p,∇ · ~gh) + (ph − p,∇ · ~gh)

= (p,∇ · ~g) + (p,∇ · (~gh − ~g)) + (∇(u− uh),∇~gh)

= (p,∇ · ~g) + (p,∇ · (~gh − ~g)) + (∇(u− uh),∇(~gh − ~g)) + (∇(u− uh),∇~g)

= (p,∇ · ~g) + (p,∇ · (~gh − ~g)) + (∇(u− uh),∇(~gh − ~g)) + (∇ · (u− uh), λ)

= (p, δh − φ) + (p,∇ · (~gh − ~g)) + (∇(u− uh),∇(~gh − ~g))

+ (∇ · (u− uh), λ−Rλ)

≤ (‖∇(u− uh)‖L∞(Ω) + ‖p‖L∞(Ω))(‖δh‖L1(Ω) + ‖φ‖L1(Ω)

+ ‖∇(~gh − ~g)‖L1(Ω) + ‖λ−Rλ‖L1(Ω))

≤ (‖∇(u− uh)‖L∞(Ω) + ‖p‖L∞(Ω))(C + ‖∇(~gh − ~g)‖L1(Ω) + ‖λ−Rλ‖L1(Ω))

The result (4.23) is completed by Lemma 4.2, Proposition 4.1 and the previous estimate for
the velocity in the L∞ norm.
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5. Taylor-Hood elements

We consider the Taylor-Hood elements of degree 2 in three dimension (d = 3), i.e.

~Vh = {~v ∈ [C0(Ω̄)]3 : ~v|T ∈ [P2]3, ∀T ∈ TH , ~v|∂Ω = ~0 }(5.1)

Mh = {q ∈ C0(Ω̄) : q|T ∈ P1, ∀T ∈ Th } ∩ L2
0(Ω).(5.2)

Assumptions A1-A3 hold for example by choosing P and R to be the Scott-Zhang [17]

interpolants onto ~Vh and Mh, respectively (see [14] and [3]). It is clear that the A4 assumption
holds in this case. We will prove assumptions A5 and A6 also hold.

We start with the local inf-sup condition A5.

Definition 1. Let ~b be a vertex of Th. We define σ(~b) , the patch associated to the vertex ~b, as

the set of all elements containing ~b, i.e.

σ(~b) := {T ∈ Th| ~b ∈ T}

Lemma 5.1. Assume that every mesh element has at least 3 edges in int(Ω). Let B ⊂ Ω. Then,
there exists a constant c and a set Bh ⊂ Th which contains B and dist(B, ∂Bh\Ω) ≤ 2h such
that the following inequality holds

sup
~v∈~Vh

supp(~v)⊂Bh

∫
Ω q∇ · ~v
‖~v‖H1(Bh)

≥ c

∑
T∈Bh

h2
T |q|2H1(T )

1/2

≥ ch2|qh|H1(B).

for all q ∈Mh.

Proof. (We follow the proof in [4] section 4.2.5., see also [15])

Define the set of vertices

~X := {~x ∈ int(Ω) : ~x is a vertex of an element T ∈ Th such that T ∩B 6= ∅}
Then, we define the set

Bh :=
⋃
~x∈ ~X

σ(~x),

Note that, the assumption that every mesh element has at least d edges in int(Ω) implies
that B ⊂ Bh, and dist(B,Bh) ≤ 2h. We claim that every element of Bh has at most one face
on ∂Bh. In fact, let T ∈ Bh, by definition T belongs to the patch of an interior vertex. Then,
the claim follows from the observation that all the elements of an interior patch has at most one
face on the boundary of the patch.

Let N i,h
ed be the number of interior edges in Bh. For the edge i, with 1 ≤ i ≤ N i,h

ed , denote by

~di and ~fi its two extremities and by ~mi its midpoint. Set li = ‖~fi − ~di‖3 and ~τ =
~fi−~di
‖~fi−~di‖3

, the

length and the unit vector.

Then, for q ∈Mh we define ~v ∈ ~Vh for all T ∈ Th as follows ~v = 0, if T ∈ Th \ int(Bh)
~v = 0, at the vertices of T , if T ∈ Bh
~v(~mi) = −l2i ~τisgn(∂~τiq)|∂~τiq|, for all the interior edges i of T , if T ∈ Bh
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Then, it is clear that supp(~v) = Bh and ~v ∈ ~Vh.

Using the following quadrature formula,∫
T
φ(x)dx =

(∑
~m

φ(~m)

5
−
∑
~n

φ(~n)

20

)
|T | ,∀φ ∈ P2(T )

where ~m spans the set of the edge midpoint of T and ~n the set of nodes of T , we infer∫
Ω
qh∇ · ~vdx = −

∫
Ω
~v · ∇qdx

= −
∑
T∈Bh

∫
T
~v · ∇qdx

= −
∑
T∈Bh

(∑
~m∈T

~v(~m) · ∇~q(~m)

5
−
∑
~n∈T

~v(~n) · ∇q(~n)

20

)
|T |

= −
∑
T∈Bh

∑
~mi∈T

~v(~mi) · ∇q(~mi)

5
|T |

=
∑
T∈Bh

∑
i:~mi∈T

l2i |∇q · ~τi|2
|T |
5

≥ c
∑
T∈Bh

h2
T |q|2H1(T ).

We observe that the last step (
∑

i:~mi∈T
|∇q · ~τi|2 ≥ |∇q|2) is only possible if every element of Bh

has at least 3 edges on int(Bh), which is satisfied by our construction of Bh and hypothesis on
the mesh ( every element has at least 3 edges in Ω). Furthermore, for T ∈ Bh we have that

‖~v‖2H1(T ) ≤ ch
2
T |q|2H1(T )

then,

‖~v‖H1(Bh) =

∑
T∈Bh

‖~v‖2H1(T )

1/2

≤

∑
T∈Bh

ch2
T |q|2H1(T )

1/2

Therefore

sup
~v∈~Vh

supp(~v)⊆Bh

∫
Ω q∇ · ~v
‖~v‖H1(Bh)

≥ C
∑
T∈Bh

h2
T |q|2H1(T )

∑
T∈Bh

h2
T |q|2H1(T )

−1/2

= C

∑
T∈Bh

h2
T |q|2H1(T )

1/2

≥ Ch2|q|H1(B).

�
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Finally, using the same arguments we prove the assumption A6.

Lemma 5.2. Assume that every mesh element has at least 3 edges in int(Ω). There exists a
constant c > 0 independent of h such that

sup
~v∈~Vh\{~0}

(q,∇ · ~v)

‖~v‖W 1
∞(Ω)

≥ ch‖∇q‖L1(Ω), ∀q ∈Mh.

Proof. Similarly to the previous proof we define the number of internal edges N i
ed. For edge i,

with 1 ≤ i ≤ N i
ed denote by di, fi and ~mi as before. Define ~v ∈ ~Vh for q ∈Mh and for all T ∈ Th

as follows {
~v = 0, at the vertices of T
~v(~mi) = −li~τisgn(∂~τiq), for all the interior edges i of T

Then, it is clear that ~v ∈ ~Vh and∫
Ω
q∇ · ~vdx = −

∫
Ω
~v · ∇qdx

= −
∑
T∈Th

∫
T
~v · ∇qdx

= −
∑
T∈Th

(∑
~m∈T

~v(~m) · ∇q(~m)

5
−
∑
~n∈T

~v(~n) · ∇q(~n)

20

)
|T |

= −
∑
T∈Th

∑
~mi∈T

~v(~mi) · ∇~q(~mi)

5
|T |

=
∑
T∈Th

∑
mi∈T

|∂τiq|li
|T |
5

≥ c
∑
T∈Th

hT ‖∇q‖L1(T ).

Recalling again that the inequality |∇q · τi| ≤ |∇q| is possible thanks to that every element has
at least 3 internal edges. Furthermore, using the definition of ~v and its local shape function
representation we have

‖~v‖W∞1 (Ω) ≤ Ch−1 max
T∈Th

max
~mi∈T

|~v(~mi)| ≤ C.

This completes the proof. �
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