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Abstract — We analyze existing discontinuous Galerkin methods on quasi-uniform meshes for sin-
gularly perturbed problems. We prove weighted L2 error estimates. We use the weighted estimates to
prove L2 error estimates in regions where the solution is smooth. We also prove pointwise estimates
in these regions.
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1. INTRODUCTION

We consider the problem

−εΔu+ ux + cu = f in Ω
u = 0 on ∂Ω.

(1.1)

Here Ω ⊂ R2 is a domain with smooth boundary, f is smooth, ε > 0 is a small
constant and c(x) � 0 with c ∈ L∞(Ω).

As we know the solution to this problem might develop layers. The standard
continuous Galerkin discretization of this problem propagates error through out the
domain. The streamline diffusion (SD) method developed by Brooks and Hughes [3]
does much better in resolving layers. In fact, the numerical outflow boundary layers
for the streamline diffusion method are contained an O(log(1/h)h) neighborhood
of the outflow boundary.

In this paper we show that some discontinuous Galerkin (DG) methods will per-
form as well as the SD method in resolving layers. The DG method for the pure hy-
perbolic problem proposed by Reed et al. [10] which was further analyzed in [5,7],
showed good results for the pure hyperbolic problem. The error in L2 was shown
to be O(hk+1/2) assuming the solution is smooth and polynomials of degree k are
used. In fact, Peterson [9] argued that this result is sharp. A strategy that has been
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used for singularly perturbed problems is to use [10] to discretize the convection–
reaction part and use different discontinuous discretizations for the diffusion part
(see [2,11]). The authors of the above papers proved global error estimates assum-
ing the solution is smooth. If uh denotes the DG approximation to (1.1), then their
estimates take on the following form:

‖u−uh‖Ω � Chk+1/2‖u‖Hk+1(Ω).

However, in general ‖u‖Hk+1(Ω) is large and depends on ε . Therefore, in this paper
we prove error estimates in subdomains where the solution is smooth. That is, we
consider a subdomain Ω0 ⊂ Ω where u is smooth and prove that

‖u−uh‖Ω0 � C log(1/h)hk+1/2

where now C does not depend on ε . Moreover, we show that Ω0 can be any domain
as long as ∂Ω0 is C log(1/h)h distance away from the outflow boundary of Ω for
a sufficiently large constant C. These estimates are exactly the estimates that were
obtained in [4,6] for the SD method. However, the estimates in [4,6] assumed that
infx∈Ω c(x) > 0. Here we show that we can remove this assumption. We also prove
suboptimal max-norm error estimates.

The paper is organized as follows. In Section 2 we present the numerical meth-
ods. Then, in Section 3 we present some preliminary results. In Section 4 we give
the L2 error analysis. Finally, in Section 5 we prove max-norm estimates.

2. DG METHODS

Suppose we have a family of edge to edge triangulations {Th} of Ω, h = supT∈Th
hT

with hT = diam(T ); Vh will denote the finite dimensional space of functions that are
polynomials of degree at most k on each element. We define E ∂

h as the collection
of boundary edge, E 0

h as the collection of interior edges corresponding to Th, and
Eh = E 0

h ∪E ∂
h . We further decompose our boundary edges as E ∂

h = E −
h ∪E +

h where

E −
h = {e ∈ E ∂

h : (n · [1,0])|e � 0}
and

E +
h {e ∈ E ∂

h : (n · [1,0])|e > 0}
where n is the outward unit normal to ∂Ω. Notice that we have made the following
assumption on the mesh: if n · [1,0] > 0 for one point (x,y) ∈ e for some e ∈ E ∂

h ,
then n · [1,0] > 0 on all of e. We denote by Se the union of elements that have e as an
edge. On each edge, as in [1] we define the average and jump operators as follows:
For e ∈ E 0

h , q vector valued and ϕ scalar valued

〈q〉 = 1
2 (q1 + q2), [q] = q1 ·n1 + q2 ·n2

〈ϕ〉 = 1
2 (ϕ1 + ϕ2), [ϕ ] = ϕ1n1 + ϕ2n2
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where Se = T1 ∪T2, qi = q|T1 , ϕi = ϕ |Ti and ni is the outward normal to Ti, i = 1,2,
for e ∈ E ∂

h 〈q〉 = q, [ϕ ] = ϕn.

The quantities [q] and 〈ϕ〉 on boundary edges are not required so they are left
undefined. Note that [q] is a scalar and [ϕ ] a vector. If e ∈ E 0

h , then, as in [5],
u±(x,y) = limδ→0 u(x±δ ,y) for (x,y) ∈ e.

Now we are ready to define our bilinear forms. First we write the bilinear form
corresponding to the classical convection–reaction discretization:

B1(u,v) = ∑
T∈Th

∫
T
(ux + cu)vdx+ ∑

e∈E 0
h

∫
e
(u+ −u−)v+|nx|ds

+ ∑
e∈E −

h

∫
e
uv|nx|ds.

Using integration by parts we have the following

B1(u,v) = ∑
T∈Th

∫
T

u(−vx + cv)dx+ ∑
e∈E 0

h

∫
e
u−(v−− v+)|nx|ds

+ ∑
e∈E +

h

∫
e
uv|nx|ds.

The bilinear form corresponding to the diffusion discretization is

B2(u,v) = ∑
T∈Th

ε
∫

T
∇u∇vdx− ∑

e∈Eh

∫
e
ε(〈∇hu〉[v]+ γ〈∇hv〉[u])ds

+ ∑
e∈Eh

η
ε
he

∫
e
[u][v]ds.

Here ∇hϕ is the piecewise defined function such that ∇hϕ = ∇ϕ on each T ∈ Th.
With a slight abuse of notation, from now on we let ϕx denote the piecewise defined
function ∇hϕ · [1,0] and ϕy = ∇hϕ · [0,1]. Also, nx is the first coordinate of a unit
normal to each edge (i.e. n = [nx,ny] where n is a unit normal). If γ = −1 and
η > 0, then we have the NIPG method which was considered in [11]. If γ = 1 and
η sufficiently large, gives the IP method which was considered in [2].

The discontinuous approximation uh is defined by

B(uh,v) = ( f ,v) ∀v ∈Vh (2.1)

where B = B1 + B2.

2.1. Approximation results

We first state trace and inverse inequalities. Let T ∈ Th then we have

‖ψ‖∂T � C(h−1/2‖ψ‖T + h1/2‖∇ψ‖T ) (2.2)
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where C is independent of T and ψ .
If ψ ∈Vh, then

‖∇ψ‖T � Ch−1‖ψ‖T (2.3)

‖ψ‖∂T � Ch−1/2‖ψ‖T (2.4)

and
‖ψ‖∂T � C(h1/2‖ψx‖T +‖ψ |nx|1/2‖∂T ). (2.5)

We used the following notation ‖ · ‖D = ‖ · ‖L2(D). The last inequality was used
in [5].

Now we present a preliminary cut-off function. This function will differ from
the one in [6] in order to handle the case that c is not bounded away from zero
from below (e.g. no reaction term). One can construct a function with the following
properties:

There exist positive constants c1 and c2 such that

c1 � ϕ(t) � c2, t � 1

ϕ(t) = e−t , t � 0

ϕ(t) = 3− 1
log(|t|)+ 1

, t � −1

ϕ ′(t) < 0, t ∈ (−∞,∞)

|ϕ l(t)| � c2|ϕ(t)|, 1 � l � k + 1, t ∈ (−∞,∞)

|ϕ l(t)| � c2|ϕ ′(t)|, 2 � l � k + 1, t ∈ (−∞,∞)

and
|ϕ(t)| � c2|t|(log(|t|)+ 1)2|ϕ ′(t)|, t ∈ (−∞,∞).

If we define RO(D,v) = maxx∈D |v(x)|/minx∈D |v(x)|, then for any interval I of
length 1

RO(I,ϕ)+ RO(I,ϕ ′) � c2.

We define our cut-off function

ω(x,y) = ϕ
(x−A

ρ

)
ϕ

(z1 − y
σ

)
ϕ

(y− z2

σ

)
.

Here ρ = Kh log(1/h) and σ = Kh1/2 log(1/h), where K is a sufficiently large con-
stant that will be chosen later.

From the properties above it follows that ωx < 0 and that

|Dα
x Dβ

y ω | � Cρ−ασ−β |ω |, α + β � k + 1 (2.6)

|Dα
x Dβ

y ω | � Cρ−α+1σ−β |ωx|, α � 1, α + β � k + 1 (2.7)
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|ω | � C(log(1/h))2|ωx| (2.8)

RO(T,ω) and RO(T,ωx) are bounded independently of h (2.9)
on any element T.

Property (2.8) makes it possible to handle the case of no reaction term. In fact, we
can use this same cut-off function to prove error estimates for the SD method in the
absence of a reaction term.

Now we can define a weighted norm

Q(v) ≡
{

ε‖ω∇hv‖2
Ω +‖(ω |ωx|)1/2v‖2

Ω +‖ωc1/2v‖2
Ω

+
1
2 ∑

e∈E 0
h

‖ω(v+ − v−)|nx|1/2‖2
e +

1
2 ∑

e∈E ∂
h

‖ωv|nx|1/2‖2
e

+ ∑
e∈Eh

η
ε
he
‖ω [v]‖2

e

}1/2
.

The following super-approximation result is similar to the super-approximation
result found in [6].

Lemma 2.1. There exists a constant C such that for v ∈Vh and T ∈ Th

h‖ω−1∇2(ω2v−P(ω2v))‖T +‖ω−1∇(ω2v−P(ω2v))‖T

+
1
h
‖ω−1(ω2v−P(ω2v))‖T � Ch−1/2K−1/2‖(ω |ωx|)1/2v‖T (2.10)

where P denotes the L2 projection operator into Vh.

Proof. By approximation properties of P we know that

h‖∇2(ω2v−P(ω2v))‖T +‖∇(ω2v−P(ω2v))‖T

+
1
h
‖ω2v−P(ω2v)‖T � Chk ∑

|α |+|β |+|γ |=k+1

‖Dα ωDβ ωDγv‖T .

Note that Dγv = 0 if |γ | = k + 1 since v is in our subspace. Therefore, we assume
that |γ | � k. First suppose that α2 + β2 
= 0, where α = (α1,α2) and β = (β1,β2).
In this case, by using (2.6) and (2.3), we have

‖Dα ωDβ ωDγv‖T � Cρ−α1−β1σ−α2−β2 h−|γ |‖ω2v‖T .

Using the definition of ρ and σ , we have that

ρ−α1−β1σ−α2−β2h|γ | = K−|α |−|β | log(1/h)−|α |−|β |h−k−1+(α2+β2)/2.
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Since |α |+ |β | = k + 1−|γ | � 1, α2 + β2 
= 0 and by using (2.8), we have

hk‖Dα ωDβ ωDγv‖L2(T ) � CK−1h−1/2‖ω |ωωx|1/2v‖T .

On the other hand, suppose α2 + β2 = 0. By (2.6) and (2.7) we have

‖Dα ωDβ ωDγv‖T � Cρ−α1−β1+1/2h−|γ |‖ω |ωωx|1/2v‖T .

Again using the definition of ρ , we have

hk‖Dα ωDβ ωDγv‖T � K−1/2h−1/2‖ω |ωωx|1/2v‖T .

The result now follows by multiplying through by ω−1 and using (2.9). �

3. MAIN RESULT

We can now prove our main result.

Theorem 3.1. Let ψ = P(u)− uh where uh solves (2.1) for either the NIPG or
IP methods. Let K be sufficiently large. If ε � h, then there exists a constant C such
that

Q2(ψ) � C
(
h−1‖ω(u−P(u))‖2

Ω + h‖ω∇h(u−P(u))‖2
Ω

+ h3‖ω∇2
h(u−P(u))‖2

Ω
)
.

Proof. It can easily be shown that

Q2(ψ) = B(ψ ,ω2ψ)−2ε ∑
T∈Th

∫
T

ωψ∇ω∇ψ dx

+ (1+ γ)ε ∑
e

∫
e∈Eh

〈ω∇hψ〉[ωψ ]ds

+ 2γε ∑
e

∫
e∈Eh

〈ψ∇ω〉[ωψ ]ds.

By (2.6) and (2.8), we have∣∣∣∣ε ∑
T∈Th

∫
T

ωψ∇ω∇ψ dx

∣∣∣∣ � CK−1/2(ε‖ω∇hψ‖2
Ω +‖(ω |ωx|)1/2ψ‖2

Ω).

Using (2.9), (2.4), and the arithmetic–geometric mean inequality we obtain

(1+ γ)ε ∑
e∈Eh

∫
e
〈ω∇hψ〉[ωψ ]ds � (1+ γ)

1
8

ε‖ω∇hψ‖2
Ω

+(1+ γ)C∗ ∑
e∈Eh

ε
he
‖ω [ψ ]‖2

e . (3.1)
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Here C∗ depends on the constant arising from inverse estimates.
Again, by (2.6), (2.9), (2.8) and (2.4), we see that∣∣∣∣ε ∑

e∈Eh

∫
e
〈ψ∇ω〉[ωψ ]ds

∣∣∣∣ � CK−1/2
(

∑
e∈Eh

ε
he
‖[ωψ ]‖2

e +‖(ω |ωx|)1/2ψ‖2
Ω

)
.

If we have γ = −1 (NIPG), then both sides of (3.1) will be zero. In this case, by
making K large enough we have that

Q2(ψ) � CB(ψ ,ω2ψ). (3.2)

On the other hand if, γ = 1 (IP) then as long as η > 2C∗ and K large enough we
again have (3.2).

Using the orthogonality property, we see that

B(ψ ,ω2ψ) = B(ψ ,E)+ B(u−P(u),P(ω2ψ)) (3.3)

where E = ω2ψ −P(ω2ψ). We first bound B(ψ ,E) = B1(ψ ,E)+ B2(ψ ,E).
Since ψx ∈Vh,

B1(ψ ,E) = ∑
e∈E 0

h

∫
e
(ψ+−ψ−)E+|nx|ds+ ∑

e∈E −
h

∫
e
ψE|nx|ds

+
∫

Ω
cψE dx.

By using the Cauchy–Schwarz inequality, (2.2), (2.10), and the boundedness of c,
we get

B1(ψ ,E) � C ∑
e∈E 0

h

‖ω(ψ+ −ψ−)|nx|1/2‖eK−1/2‖(ω |ωx|)1/2ψ‖Se

+ Ch1/2K−1/2‖ωc1/2ψ‖L2(Ω)‖(ω |ωx|)1/2ψ‖L2(Ω).

Therefore,
B1(ψ ,E) � CK−1/2Q2(ψ). (3.4)

Using (2.2) and (2.10), we see that

|B2(ψ ,E)| � CK−1/2Q2(ψ). (3.5)

We only bound one of the terms of |B2(ψ ,E)| to illustrate this.

∑
e∈Eh

ε
∫

e
〈∇hE〉[ψ ]ds � Cε ∑

e∈Eh

(h−1/2‖ω−1∇hE‖Se + h1/2‖ω−1∇2
hE‖Se)‖[ωψ ]‖e

� C ∑
e∈Eh

K−1/2‖(ω |ωx|)1/2ψ‖Se

( ε
he

)1/2
‖[ωψ ]‖e

� CK−1/2Q2(ψ).
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Now we bound B(u−P(u),P(ω2ψ)). Since P(ω2ψ) ∈Vh, we have that

B1(u−P(u),P(ω2ψ)) = ∑
e∈E 0

h

∫
e
(u−P(u))−(P(ω2ω)−−P(ω2ψ)+)|nx|ds

+ ∑
e∈E +

h

∫
e
(u−P(u))P(ω2ψ)|nx|ds

+
∫

Ω
c(u−P(u))P(ω2ψ)dx.

Applying (2.4), the triangle inequality, (2.10) and the arithmetic–geometric mean
inequality, we have

∑
e∈E 0

h

∫
e
(u−P(u))−(P(ω2ψ)−−P(ω2ψ)+)|nx|ds

� ∑
e∈E 0

h

{
(h−1/2‖ω(u−P(u))‖Se + h1/2‖ω∇h(u−P(u))‖Se)

×(‖ω−1((ω2ψ)+ − (ω2ψ)−)|nx|1/2‖e +‖ω−1(E+−E−)|nx|1/2‖e)
}

� C(h−1‖ω(u−P(u))‖2
Ω + h‖ω∇h(u−P(u))‖2

Ω)

+δ ∑
e∈E 0

h

‖ω(ψ−−ψ+)|nx|1/2‖2
e + K−1Q2(ψ)

where δ > 0 will be chosen later. After similar arguments for the last terms in B1(u−
P(u),P(ω2ψ)), we conclude that

B1(u−P(u),P(ω2ψ)) � C(h−1‖ω(u−P(u))‖2
Ω + h‖ω∇h(u−P(u))‖2

Ω)

+ δQ2(ψ)+ K−1Q2(ψ). (3.6)

We now bound the terms of B2(u−P(u),P(ω2ψ)). By the Cauchy–Schwarz
inequality, the triangle inequality, (2.6) and (2.10), we see that

∑
T∈Th

ε
∫

T
∇(u−P(u))∇P(ω2ψ)dx

� ∑
T∈Th

ε‖ω∇(u−P(u))‖T (‖ω−1∇E‖T +‖ω−1∇(ω2ψ)‖T )

� Cε‖ω∇h(u−P(u))‖2
Ω + δ (ε‖ω∇hψ‖2

Ω +‖(ω |ωx|)1/2ψ‖L2(T ))

+K−1Q2(ψ).

Again, applying the Cauchy–Schwarz, the triangle inequality, (2.2), (2.10) and
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the arithmetic–geometric mean inequality, we get that

∑
e∈Eh

ε
∫

e
〈∇h(u−P(u))〉[P(ω2ψ)]ds

� ε
h ∑

e∈Eh

(
h1/2‖ω∇h(u−P(u))‖Se + h3/2‖ω∇2

h(u−P(u))‖Se

)

×(‖[ωψ ]‖e +‖ω−1[E]‖e)

� C(h‖ω∇h(u−P(u))‖2
Ω + h3‖ω∇2

h(u−P(u))‖2
Ω)

+ K−1Q2(ψ)+ δ ∑
e∈Eh

ε
he
‖[ωψ ]‖2

e .

By bounding the last two terms of B2(u−P(u),P(ω2ψ)) in a similar fashion,
we arrive at

B2(u−P(u),P(ω2ψ)) � C
(
h−1‖ω(u−P(u))‖2

Ω +‖ω∇(u−P(u))‖2
Ω

+h3‖ω∇2(u−P(u))‖2
Ω
)
+ 4δQ2(ψ)+4K−1Q2(ψ). (3.7)

Finally, taking K large enough in (3.4), (3.5), (3.6), (3.7), and choosing δ sufficiently
small in (3.6) and (3.7) we arrive at our result. �

Remark 3.1. By using Lemma 4.1, we can improve Theorem 3.1 so that Q2(ψ)
also contains the term ∑T∈Th

h‖ωψx‖2
T .

Now we can state a error estimate away from the layers.

Corollary 3.1. Let K, ρ and σ be as in Theorem 3.1. Let

Ω0 = {(x,y) ∈ Ω : x � A, z1 � y � z2}

and

Ω+
s =

{
(x,y) ∈ Ω : x � A+ s log(1/h)ρ , z1 − s log(1/h)σ � y � z2 + s log(1/h)σ

}
.

Let h0 and m be such that hm
0 � ε . If ‖u‖H2(Ω) � Cε−2 and ‖u‖Hk(Ω+

k+1+2m) < C, then

‖u−uh‖Ω0 � C log(1/h)hk+1/2, h � h0.

Proof. By the triangle inequality and the properties of the L2-projection opera-
tor, it is enough to establish

‖P(u)−uh‖Ω0 � C log(1/h)hk+1/2, h � h0.



50 J. Guzmán

It follows form the properties of ω , that

‖P(u)−uh‖Ω0 � C‖ω(P(u)−uh)‖Ω � C log(1/h)‖(ω |ωx|)1/2(P(u)−uh)‖Ω.

Therefore, from Theorem 3.1 and properties of ω , we have

‖P(u)−uh‖Ω0 � C log(1/h)(h−1/2‖u−P(u)‖Ω+
s

+ h1/2‖∇h(u−P(u))‖Ω+
s

+ h3/2‖∇2
h(u−P(u))‖Ω+

s
)

+ C log(1/h)hs(h−1/2‖u−P(u)‖Ω

+ h1/2‖∇h(u−P(u))‖Ω + h3/2‖∇2
h(u−P(u))‖Ω).

From approximation properties, we have
(
h−1/2‖u−P(u)‖Ω+

s
+h1/2‖∇h(u−P(u))‖Ω+

s

+h3/2‖∇2
h(u−P(u))‖Ω+

s

)
� hk+1/2‖u‖Hk(Ω+

s ).

Using the triangle inequality and inverse estimates, we see that
(
h−1/2‖u−P(u)‖Ω + h1/2‖∇h(u−P(u))‖Ω

+ h3/2‖∇2
h(u−P(u))‖Ω

)
� Ch−1/2‖u‖H2(Ω).

The result now follows by letting s = k + 1+ 2m. �

Remark 3.2. In the case that infx∈Ω c(x) > 0, we can show that ‖u− uh‖Ω0 �
Chk+1/2.

In the next section we will need a weighted stability estimate. By following the
ideas of Theorem 3.1 we can prove the following theorem.

Theorem 3.2. Let uh solve (2.1) for either the NIPG or IP methods. Let K be
sufficiently large. If ε � h, then there exists a constant C such that

Q(uh) � C‖ω f‖Ω.

Here C is independent of h,uh and f .

4. APPROXIMATE GREEN’S FUNCTION BOUNDS AND L∞L∞L∞ ESTIMATES

In this section we prove suboptimal L∞ bounds. In order to do so, we need bounds
on the approximate Green’s function. In this direction, for (x0,y0) ∈ Ω define the
rectangle containing (x0,y0)

Ω0 =
{
(x,y) ∈ Ω : x � x0 +C1 log(1/h)ρ , |y− y0| � C1 log(1/h)σ

}
.
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Here C1 is a sufficiently large constant which we specify below. The approximate
Green’s function G ∈Vh with reversed wind direction satisfies

B(v,G) = v(x0,y0) ∀v ∈Vh.

Using Theorem 3.2 (with the wind direction reversed) and applying the tech-
niques used in [6] we can prove the following estimate.

Corollary 4.1. There exists a constant C1 (in the definition of Ω0) independent
of h such that

‖G‖
L∞(˜Ω\Ω0)

+‖∇hG‖
L∞(˜Ω\Ω0)

� Chk+2.

We used the notation

D̃ =
⋃

T∈Th
T∩D 
=∅

T.

In order to prove pointwise estimates, we need a global bound on G. This re-
quires an extra stability estimate. The following result was proving for the IP method
(reversed wind direction and c(x)≡ 0) in Lemma A.1 in [2]. The proof for the NIPG
method is similar.

Lemma 4.1. There exist positive constants C2 and C3 such that for every v ∈Vh

h‖vx‖2
Ω + ε‖vy‖2

Ω +‖c1/2v‖2
Ω

+
1
2 ∑

e∈E 0
h

‖(v+ − v−)|nx|1/2‖2
e +

1
2 ∑

e∈E ∂
h

‖v|nx|1/2‖2
e

+ ∑
e∈Eh

η
ε
he
‖ω [v]‖2

e � C2B(C3v−hvx,v).

We will also need the following lemma.

Lemma 4.2. Suppose v ∈ Vh and suppose that T1,T2 ∈ Th share a common
edge e. Then,

‖v1 − v2‖e � Ch1/2(‖v1
x‖T1 +‖v2

x‖T2)+C‖(v1 − v2)|nx|1/2‖∂T1

where v1 = v|T1 and v2 = v|T2 .

Proof. We extend v1 and v2 to all of R2 in the natural way. By (2.5), we have

‖v1 − v2‖e � Ch1/2‖v1
x − v2

x‖T1 +C‖(v1 − v2)|nx|1/2‖∂T1

� Ch1/2(‖v1
x‖T1 +‖v2

x‖T1)+C‖(v1 − v2)|nx|1/2‖∂T1
.
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Since v2 lies in a finite dimensional space and T1 and T2 belong to a shape regular
mesh and share a common edge we have

‖v2
x‖T1 � C‖v2

x‖T2 .

This completes the proof. �

Our proof of global estimates for G is very similar to the proof given by Niijima
[8] for the streamline diffusion method.

Theorem 4.1. There exists a constant C independent of h such that

‖c1/2G‖2
Ω + h‖Gx‖2

Ω + ε‖Gy‖2
Ω

+ ∑
e∈E 0

h

‖(G+ −G−)|nx|1/2‖2
e + ∑

e∈E ∂
h

‖G|nx|1/2‖2
e

+ ∑
e∈Eh

η
ε
he
‖ω [G]‖2

e � C log(1/h)2h−1.

Proof. By Lemma 4.1 we have

h‖Gx‖2
Ω + ε‖Gy‖2

Ω +‖c1/2G‖2
Ω

+
1
2 ∑

e∈E 0
h

‖(G+−G−)|nx|1/2‖2
e +

1
2 ∑

e∈E ∂
h

‖G|nx|1/2‖2
e

+ ∑
e∈Eh

η
ε
he
‖ω [G]‖2

e � C2B(C3G−hGx,G) = C2(C3G(x0,y0)−hGx(x0,y0)).

First, by an inverse estimate and the arithmetic–geometric mean inequality, we have

hGx(x0,y0) � ‖Gx‖Ω � δh‖Gx‖2
Ω +Ch−1

where δ > 0 will be chosen later.
Let (xm,y0) ∈ Ω\Ω0 such that |xm − x0|� C log(1/h)ρ . If we now draw the line

from (x0,y0) to (xm,y0), then this line will intersect the elements T0,T1, . . . ,Tm at
the points (x1,y0),(x2,y0), . . . ,(xm,y0), respectively. By adding and subtracting the
right and left hand limits of G at the points (xi,y0) and applying the Fundamental
Theorem of calculus, we have

−G(x0,y0) =
m−1

∑
i=0

∫ xi+1

xi

Gx(s,y0)ds+
m−1

∑
i=1

(G+(xi,y0)−G−(xi,y0))+ G−(xm,y0).

(4.1)
By an inverse estimate, we know that

∫ xi+1

xi

Gx(s,y0)ds � (xi+1 − xi)‖Gx‖L∞(Ti) � h−1‖Gx‖L1(Ti).
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Furthermore, since meas(T0 ∪T1 ∪ ·· ·∪Tm) � Ch(log(1/h)ρ), we have that

m−1

∑
i=0

∫ xi+1

xi

Gx(s,y0)ds � C log(1/h)
( m−1

∑
i=1

‖Gx‖2
Ti

)1/2

.

Applying the arithmetic–geometric mean inequality, we have

m−1

∑
i=0

∫ xi+1

xi

Gx(s,y0)ds � δh ∑
T∈Th

‖Gx‖2
T +C log(1/h)2h−1.

Using inverse estimates on the edges, we have

G+(xi,y0)−G−(xi,y0) � Ch−1/2‖(G+ −G−)‖ei

where ei ⊂ ∂Ti is an edge containing (xi,y0). By Lemma 4.2, we have

G+(xi,y0)−G−(xi,y0) � Ch−1/2‖(G+ −G−)|nx|1/2‖∂Ti
+C(‖Gx‖Ti +‖Gx‖Ti+1).

Therefore,

m−1

∑
i=1

(G+(xi,y0)−G−(xi,y0)) � Ch−1/2
m−1

∑
i=1

‖(G+ −G−)|nx|1/2‖∂Ti
+C

m−1

∑
i=1

‖Gx‖Ti .

Applying the arithmetic–geometric mean inequality we have

m−1

∑
i=1

(G+(xi,y0)−G−(xi,y0)) � δ
m−1

∑
i=1

‖(G+ −G−)|nx|1/2‖2
∂Ti

+ δh
m−1

∑
i=1

‖Gx‖2
Ti

+ C log(1/h)2h−1.

Here we used that m � C log(1/h).
By Corollary 4.1, we have

G−(xm,y0) � Chk+2.

By choosing δ sufficiently small we arrive at our result. �

Now we prove pointwise estimates.

Theorem 4.2. Assume that

‖u‖Ck+1(Ω̃0)
+‖∇u‖L1(Ω) + ε‖∇2u‖L1(Ω) +‖u‖Ω � C.

If ε � h, then
|(u−uh)(x0,y0)| � Chk+1/4 log(1/h)2.
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Proof. By the definition of G and the orthogonality property of u−uh, we have

(uh −P(u))(x0,y0) = B(uh −P(u),G) = B(u−P(u),G).

One can show using the Cauchy–Schwarz inequality, inverse estimates, and proper-
ties of the L2-projection, that

BΩ\Ω0
(u−P(u),G) � C

(
‖∇u‖L1(Ω) + ε‖∇2u‖L1(Ω) +

1
h
‖u‖Ω

)

×
(
‖G‖

L∞(˜Ω\Ω0)
+‖∇hG‖

L∞(˜Ω\Ω0)

)
.

Here BD(w,v) are the terms of B(w,v) with integration restricted to D. Therefore,
using our hypothesis and Corollary 4.1, we have

BΩ\Ω0
(u−P(u),G) � Chk+1.

Now we bound BΩ0(u−P(u),G):

BΩ0(u−P(u),G)

= ∑
T∈Th,T∩Ω0 
=∅

∫
T

{
ε∇(u−P(u))∇(G)+ (u−P(u))(−Gx + cG)

}
dx

− ∑
e∈E 0

h ,e∩Ω0 
=∅

∫
e

{
ε(〈∇h(u−P(u))〉[G]+ γ〈∇hG〉[u−P(u)]

+
η
he

[u−P(u)][G]
}

ds

+ ∑
e∈E 0

h ,e∩Ω0 
=∅

∫
e
(u−P(u))−(G−−G+)|nx|ds.

By Hölders inequality, approximation properties of P, and the fact that
meas(Ω0) � C(log(1/h))h1/2 we have

∑
T∈Th,T∩Ω0 
=∅

∫
T

ε∇(u−P(u))∇(G)dx � Cεhk‖u‖Ck+1(Ω̃0)
log(1/h)h1/4‖∇hG‖Ω1 .

If we apply Theorem 4.1 and our hypothesis, we get that

∑
T∈Th,T∩Ω0 
=∅

∫
T

ε∇(u−P(u))∇(G)dx � C(ε/h)1/2 log(1/h)2hk+1/4.

Since Gx ∈Vh we have

∑
T∈Th,T∩Ω0 
=∅

∫
T
(u−P(u))Gx dx = 0.
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It can easily be shown that

∑
T∈Th,T∩Ω0 
=∅

∫
T
(u−P(u))cGdx � Chk+5/4‖u‖Ck+1(Ω̃0)

‖c1/2G‖Ω0

� C log(1/h)hk+3/4 .

By applying Hölder’s inequality, approximation properties of P, the fact that
η > 0, and Theorem 4.1, we obtain

− ∑
e∈E 0

h ,e∩Ω0 
=∅

∫
e
ε(〈∇h(u−P(u))〉[G])ds

� εhk‖u‖Ck+1(Ω1) ∑
e∈E 0

h ,e∩Ω0 
=∅

‖[G]‖L1(e)

� Cε1/2hk+1
(

∑
e∈E 0

h ,e∩Ω0 
=∅

η
h
‖[G]‖2

e

)1/2(
∑

e∈E 0
h ,e∩Ω0 
=∅

1

)1/2

� Cε1/2 log(1/h)2hk+1/4.

In the last inequality we used that
(

∑
e∈E 0

h ,e∩Ω0 
=∅

1

)1/2

� log

(
1
h

)
h−3/4,

since there are at most C(log(1/h))2h−3/2 triangles in Ω0.
Similarly, we obtain

− ∑
e∩Ω0 
=∅

∫
e
(ε/h)[u−P(u)][G]ds � Cε1/2 log(1/h)2hk+1/4.

Using Hölders, approximation properties of P, inverse estimates and Theorem
4.1, we see that

− ∑
e∈E 0

h ,e∩Ω0 
=∅

∫
e
εγ〈∇hG〉[u−P(u)]ds

� Cε log(1/h)hk+1/4‖u‖Ck+1(Ω̃0)
‖∇hG‖Ω0) � log(1/h)2hk+1/4.

By Hölder’s inequality, approximation properties of P and Theorem 4.1, we
have that

∑
e∈E 0

h ,e∩Ω0 
=∅

∫
e
(u−P(u))−(G−−G+)|nx|ds

� C log(1/h)hk+3/4‖u‖Ck+1(Ω̃0)

(
∑

e∈E 0
h ,e∩Ω0 
=∅

‖(G+ −G−)|nx|1/2‖2
e

)1/2

� C log(1/h)2hk+1/4.
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Our result now follows since ε � h. �

Remark 4.1. In the piecewise linear case, if we add artificial crosswind diffu-
sion, then we can improve the pointwise estimates from log(1/h)2h5/4 to log(1/h)2×
h11/8. This modification was done to the streamline diffusion method in [6,8]. How-
ever, this estimate will still be suboptimal. Optimal max-norm estimates (O(h3/2))
for these DG methods and for the streamline diffusion method assuming general
quasi-uniform meshes is still an open problem.
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