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Abstract. Local energy error estimates for the finite element method for el-

liptic problems were originally proved in 1974 by Nitsche and Schatz. These
estimates show that the local energy error may be bounded by a local ap-

proximation term, plus a global “pollution” term that measures the influence

of solution quality from outside the domain of interest and is heuristically of
higher order. However, the original analysis of Nitsche and Schatz is restricted

to quasi-uniform grids. We present local a priori energy estimates that are

valid on shape regular grids, an assumption which allows for highly graded
meshes and which much more closely matches the typical practical situation.

Our chief technical innovation is an improved superapproximation result.

1. Introduction

In this note we prove local energy error estimates for the finite element method
for second-order linear elliptic problems on highly refined triangulations. Most a
priori error analyses for the finite element method in norms other than the global
energy norm place severe restrictions on the mesh. In particular, such error analyses
are most often carried out under the assumption that the grid is quasi uniform, that
is, all simplices in the mesh are required to have diameter equivalent to some fixed
parameter h. The typical practical situation is rather different. Many (especially
adaptive) finite element codes enforce only shape regularity of elements, meaning
that all elements in the mesh must have bounded aspect ratio. Though it places a
weak restriction upon the rate with which the diameters of elements in the mesh
may change, shape regularity allows for the locally refined meshes that are needed
to resolve the singularities and other sharp local variations of the solution that
occur in the majority of practical applications.

In the work [NS74] of Nitsche and Schatz, local energy error estimates were
established for interior subdomains under the assumption that the finite element
grid is quasi-uniform. Such local energy estimates are helpful in understanding
basic error behavior, especially “pollution effects” of global solution properties on
local approximation quality, and they also provide an important technical tool in
many proofs of pointwise bounds for the finite element method (cf. [SW95]). In
addition, the most relevant error notion in applications is often related to some
local norm or functional instead of to the global energy error, as evidenced by the
recent surge of interest in ensuring control of the error in calculating “quantities
of interest” in adaptive finite element calculations instead of merely controlling the
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default global energy error (cf. [BR01]). As a final example of the applicability
of local energy estimates, we mention that the estimates of [NS74] have been used
to justify certain approaches to parallelization and adaptive meshing (cf. [BH00]).
Thus local energy estimates are of broad and fundamental importance in finite
element theory.

Here we prove local energy error estimates under the assumption that the fi-
nite element triangulation is shape regular instead of under the more restrictive
assumption of quasi uniformity required in [NS74]. In other words, we essentially
prove that the results of Nitsche and Schatz hold under the restrictions typically
placed upon meshes in practical codes, which in particular allow for highly graded
grids. Our main innovation is a novel “superapproximation” result which we state
and prove in §2. In §3 we then prove a local energy bound that is valid on grids
that are only assumed to be shape-regular. As in [NS74], our results are valid for
operators that are only locally elliptic, so that the PDE under consideration may be
degenerate or change type outside of the domain of interest. In contrast to [NS74],
the results we present here are valid up to the domain boundary, allow for nonho-
mogeneous Neumann, Dirichlet, and mixed boundary conditions, and also require
only L∞ regularity of the coefficients of the differential operator.

2. An improved superapproximation result

An essential feature of the proofs of local error estimates given in [NS74], and
also of essentially all published proofs of local and maximum-norm a priori error
estimates for finite element methods, is the use of superapproximation properties.
In essence, superapproximation bounds establish that a function in the finite ele-
ment space multiplied by any smooth function can be approximated exceptionally
well by the finite element space.

In order to fix thoughts, we shall in this section assume for simplicity that Ω ⊂ Rn

is a polyhedral domain; a more general situation is considered in §3 below. Let Th

be a simplicial decomposition of Ω. Denote by hT the diameter of the element
T ∈ Th. We assume throughout that the elements in Th are shape-regular, that is,
each simplex T ∈ Th contains a ball of diameter c1hT and is contained in a ball
of radius C1hT , where c1 and C1 are fixed. Let also Sr

h be a standard Lagrange
finite element space consisting of continuous piecewise polynomials of degree r− 1.
We shall use standard notation for Sobolev spaces, norms, and seminorms, e.g.,
‖u‖H1(Ω) = (

∫
Ω
(u2 + |∇u|2) dx)1/2, |u|W k

p (Ω) = (
∑

|α|=k ‖Dαu‖p
Lp(Ω))

1/p, etc.
A standard superapproximation result is as follows. Let ω ∈ C∞(Ω) with

|ω|W j
∞(Ω) ≤ Cd−j , 0 ≤ j ≤ r. Then for each χ ∈ Sr

h, there exists η ∈ Sr
h such

that for each T ∈ Th satisfying d ≥ hT ,

(2.1) ‖ωχ− η‖H1(T ) ≤ C(
hT

d
‖∇χ‖L2(T ) +

hT

d2
‖χ‖L2(T )).

Our modified result follows (cf. [Guz06]).

Theorem 2.1. Let ω ∈ C∞(Ω) with |ω|W j
∞(Ω) ≤ Cd−j for 0 ≤ j ≤ r. Then for

each χ ∈ Sr
h, there exists η ∈ Sr

h such that for each T ∈ Th satisfying d ≥ hT ,

(2.2) ‖ω2χ− η‖H1(T ) ≤ C(
hT

d
‖∇(ωχ)‖L2(T ) +

hT

d2
‖χ‖L2(T )).

Remark 2.2. There are two differences between (2.1) and (2.2). First, in (2.1) we
consider approximation of ωχ, whereas in (2.2) we consider approximation of ω2χ.
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Secondly, in (2.1) the norms on the right hand side involve only χ, whereas in (2.2)
the H1 seminorm involves ωχ. If we think of ω as a cutoff function, this distinction
becomes vitally important: ωχ has the same support as ω2χ, whereas the support
of χ is generally larger than that of ωχ. This seemingly minor difference will allow
us to establish local energy estimates on grids that are only assumed to be shape
regular.

Proof. Let Ih : C0(Ω) → Sr
h be the standard Lagrange interpolant. We shall choose

η = Ih(ω2χ) in (2.2). For T ∈ Th, we may use standard approximation theory (cf.
[BS02]) to calculate

‖ω2χ− Ih(ω2χ)‖H1(T ) ≤Ch
n/2
T ‖ω2χ− Ih(ω2χ)‖W 1

∞(T )

≤Ch
n/2+r−1
T |ω2χ|W r

∞(T ).
(2.3)

Noting that Dαχ = 0 for all multiindices α with |α| = r, recalling that hT

d ≤ 1,
and employing inverse estimates, we compute

Ch
n/2+r−1
T |ω2χ|W r

∞(T ) ≤ C(
r∑

i=2

hi−1
T |ω2|W i

∞(T ))‖χ‖L2(T )

+ Ch
n/2+r−1
T

∑
|α|=1,|β|=r−1

‖Dαω2Dβχ‖L∞(T )

≤C
hT

d2
‖χ‖L2(T ) + Ch

n/2+r−1
T

∑
|α|=1,|β|=r−1

‖Dαω2Dβχ‖L∞(T ).

(2.4)

We next consider the terms ‖Dαω2Dβχ‖L∞(T ) above. Since |α| = 1, we have
Dαω2 = 2ωDαω. Let ω̂ = 1

|T |
∫

T
ω dx so that ‖ω − ω̂‖L∞(T ) ≤ ChT |ω|W 1

∞(T ) ≤
C hT

d . Employing inverse estimates, we thus have

Ch
n/2+r−1
T

∑
|α|=1,|β|=r−1

‖Dαω2Dβχ‖L∞(T )

≤Cd−1h
n/2+r−1
T

∑
|β|=r−1

‖ωDβχ‖L∞(T )

≤Cd−1h
n/2+r−1
T

∑
|β|=r−1

(‖(ω − ω̂)Dβχ‖L∞(T ) + ‖ω̂Dβχ‖L∞(T ))

≤C(
hT

d2
‖χ‖L2(T ) +

hT

d
|ω̂χ|H1(T ))

≤C(
hT

d2
‖χ‖L2(T ) +

hT

d
|(ω̂ − ω)χ|H1(T ) +

hT

d
|ωχ|H1(T )).

(2.5)

Using an inverse inequality, we find that
hT

d
|(ω̂ − ω)χ|H1(T ) ≤

hT

d
(|ω|W 1

∞(T )‖χ‖L2(T ) + ‖ω̂ − ω‖L∞(T )|χ|H1(T ))

≤C
hT

d
(
1
d
‖χ‖L2(T ) +

hT

d
|χ|H1(T ))

≤C
hT

d2
‖χ‖L2(T ).

(2.6)

Inserting (2.6) into (2.5) and the result into (2.4) and (2.3) completes the proof of
(2.2). �
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3. Local H1 estimates

In this section we state and prove a local H1 estimate that is valid on highly
graded grids. We now let Ω be a domain in Rn, and let Ω0 be a bounded subdomain
of Ω. We decompose ∂Ω∩∂Ω0 (if it is nonempty) into a Dirichlet portion ΓD and a
Neumann portion ΓN . For the sake of simplicity, we assume that ΓD is polyhedral
and that ΓN is either polyhedral or Lipschitz. Let u satisfy

−div(A∇u) + b · ∇u + cu =f in Ω0,

u =gD on ΓD,

∂u

∂nA
=gN on ΓN .

(3.1)

Here A is an n×n coefficient matrix that is uniformly bounded and positive definite
in Ω, b ∈ L∞(Ω0)n, c ∈ L∞(Ω0), and ∂

∂nA
is the conormal derivative with respect

to A. We also assume that Ω ⊂ Rn. Note that we make no assumptions about the
differential equation solved by u outside of Ω0.

Let H1
D,0(Ω0) = {u ∈ H1(Ω0) : u|ΓD

= 0}, and let H1
D(Ω0) = u ∈ H1(Ω0) :

u|ΓD
= gD}. Also let H1

<(B) = {u ∈ H1(Ω0) : u|Ω\B = 0} for subsets B of Ω0.
Thus functions in H1

<(B) are zero on ∂B \ ∂Ω, but may be nonzero on portions of
∂B coinciding with ∂Ω, or put in other terms, functions in H1

<(B) are compactly
supported in B modulo ∂Ω. Rewriting (3.1) in its weak form, we find that u ∈
H1

D(Ω0) satisfies

L(u, v) :=
∫

Ω

(A∇u∇v + b · ∇uv + cuv) dx

=
∫

Ω

fv dx−
∫

ΓN

gNv dσ, v ∈ H1
D,0(Ω) ∩H1

<(Ω0).
(3.2)

Following [NS74], we do not assume that L is coercive over H1(Ω0), but rather
we make a local coercivity assumption:
R1: Local coercivity. There exists a constant d0 > 0 such that if B is the intersection
of any open sphere of diameter d ≤ d0 with Ω0, then L is coercive over H1

<(B),
that is, for some constant C1 > 0,

(3.3) (C1)−1‖u‖2
H1(B) ≤ L(u, u) ≤ C1‖u‖2

H1(B), u ∈ H1
<(B).

Remark 3.1. R1 may be satisfied in one of two ways. It may happen that L is
coercive over H1(Ω0), in which case no further argument is needed. R1 so long as
a Poincaré inequality

(3.4) ‖u‖L2(B) ≤ Cd‖u‖H1(B)

holds for balls B as in R1 having small enough diameter (cf. Remark 1.2 of [NS74]).
Such Poincaré inequalities always hold for interior balls. If B is the nontrivial
intersection of an open ball with Ω, then (3.4) holds for d ≤ d1 small enough under
the restrictions we have placed on ∂Ω ∩ ∂Ω0; here d1 depends on the properties of
∂Ω ∩ ∂Ω0.

Next we make assumptions concerning the finite element approximation uh of u.
Let T0 be a triangulation such that Ω0 ⊂ ∪T∈T0T and T ∩ Ω0 6= ∅ for all T ∈ T0.
Let hT = diam(T ) for T ∈ T0. We denote our trial finite element space by SD.
We do not assume that SD ⊂ H1

D(Ω). In addition, we let SD,0 = SD ∩ H1
D,0(Ω0)
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be our trial finite element space. We assume that uh is the local finite element
approximation to u on Ω0, that is, uh ∈ SD and

(3.5) L(u− uh, vh) = 0 for all vh ∈ SD,0 ∩H1
<(Ω0).

We do not explicitly fix uh on the Dirichlet portion of the boundary, but rather im-
plicitly assume that uh|ΓD

is set equal to some appropriate interpolant or projection
of gD.

Next we state properties that SD and SD,0 must possess in order to prove the
desired local energy error estimate. Let d̃ ≤ d0 be a fixed parameter, and let G1

and G be arbitrary subsets of Ω0 with G1 ⊂ G and dist(G1, ∂G \ ∂Ω) = d̃ > 0.
Then the following are assumed to hold:
A1: Local interpolant. There exists a local interpolant I such that for each u ∈
H1

<(G1), Iu ∈ SD ∩H1
<(G), and for each u ∈ H1

D,0(Ω0), Iu ∈ SD,0.
A2: Inverse properties. For each χ ∈ SD, T ∈ Th, 1 ≤ p ≤ q ≤ ∞, and 0 ≤ ν ≤
s ≤ r with r sufficiently small,

(3.6) ‖χ‖W s
q (T ) ≤ Ch

ν−s+ n
p−

n
q

T ‖χ‖W ν
p (T ).

A3: Superapproximation. Let ω ∈ C∞(Ω0) ∩H1
<(G1) with |ω|W j

∞(Ω0)
≤ Cd−j for

integers 0 ≤ j ≤ r with r sufficiently large. For each χ ∈ SD,0 and for each T ∈ Th

satisfying d ≤ hT ,

(3.7) ‖ω2χ− I(ω2χ)‖H1(T ) ≤ C(
hT

d
‖∇(ωχ)‖L2(T ) +

hT

d2
‖χ‖L2(T )),

where the interpolant I is as in A1 above.

Remark 3.2. A1, A2, and A3 are satisfied by standard finite element spaces defined
on shape-regular triangular grids. A1 also essentially requires that the finite element
mesh resolve G \G1, i.e., that d̃ ≥ K maxT∩G 6=∅ hT with K large enough.

We begin by proving a Caccioppoli-type estimate for “discrete harmonic” func-
tions. Such a statement was also proved in [NS74] as a preliminary to local energy
estimates, though the proof we give below more closely follows [SW77].

Lemma 3.3. Let G0 ⊂ G ⊂ Ω0 be given, and let dist(G0, ∂G \ ∂Ω) = d with
d ≤ 2d0 where d0 is the parameter defined in the assumption R1. Let also A1, A2,
and A3 hold with d̃ = d

4 , and assume that uh ∈ SD,0 satisfies

(3.8) L(uh, vh) = 0 for all vh ∈ SD,0 ∩H1
<(Ω0).

In addition let maxT∩G 6=∅
hT

d ≤ 1
4 . Then

(3.9) ‖uh‖H1(G0) ≤ C
1
d
‖uh‖L2(G).

Here C depends only on the constants in (3.6) and (3.7) and the coefficients of L.

Proof. We assume that G0 is the intersection of a ball B d
4

of radius d
4 with Ω0; the

general case may be proved using a covering argument. Let then G1 and G2 be the
intersections with Ω0 of balls having the same center as G0 and having radii d

2 and
3d
4 , respectively, and without loss of generality let G be the corresponding ball of
radius d. Let then ω ∈ C∞

0 (G1) be a cutoff function which is 1 on G0 and which
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satisfies ‖ω‖W j
∞(G1)

≤ Cd−j , 0 ≤ j ≤ r. We may then apply the assumptions A1
through A3 to the pairs G1 and G2, and G2 and G.

Using (3.3), we first compute that

(3.10) ‖uh‖2
H1(G0)

≤ ‖ωuh‖2
H1(G) ≤ CL(ωuh, ωuh).

Using the fact that ‖∇ω‖L∞(Ω) ≤ C
d , we compute that for any ε > 0,

L(ωuh, ωuh) = L(uh, ω2uh)

−
∫

Ω

uh[A∇(ωuh)∇ω + uhA∇ω∇ω + A∇ω∇(ωuh) + ωuhb∇ω] dx

≤|L(uh, ω2uh)|+ C
1

d2ε
‖uh‖2

L2(G) + ε‖ωuh‖2
H1(G).

(3.11)

Next we use (3.8), (3.7), and the fact that ‖ω2uh‖H1(G) ≤ ‖ωuh‖H1(G)+C
d ‖uh‖L2(G)

to compute

L(uh, ω2uh) =L(uh, ω2uh − I(ω2uh))

≤C
∑

T∩G2 6=∅

hT ‖uh‖H1(T )(
1
d
|ωuh|H1(T ) +

1
d2
‖uh‖L2(T )).

(3.12)

Using (3.6) and the fact that hT

d ≤ 1, we have for ε as above that

ChT ‖uh‖H1(T )(
1
d
|ωuh|H1(T ) +

1
d2
‖uh‖L2(T ))

≤ C

εd2
‖uh‖2

L2(T ) + ε|ωuh|2H1(T ).

(3.13)

Inserting (3.13) into (3.12), noting that T ∩ G2 6= ∅ implies that T ⊂ G (since
maxT∩G 6=∅ hT ≤ d

4 ) and carrying out further elementary manipulations then yields
that for ε > 0,

(3.14) L(uh, ω2uh) ≤ C

εd2
‖uh‖2

L2(G) + ε‖ωuh‖2
H1(G).

Inserting (3.14 into (3.11) and the result into (3.10) yields

(3.15) ‖ωuh‖2
H1(G) ≤

C

εd2
‖uh‖2

L2(G) + 2ε‖ωuh‖2
H1(G).

Taking ε = 1
4 so that we may kick back the last term above, employing the triangle

inequality, and inserting the result into (3.10) then completes the proof of (3.9). �

We now prove a local energy error estimate. In our proof below we shall follow
[NS74] by using a local finite element projection in order to split the finite element
error into an approximation error and a “discrete harmonic” term which may be
bounded using Lemma 3.3. We note, however, that the use of a local finite element
projection is not necessary, and our final local error estimate may in fact be proved
with some simple modifications to the proof of Lemma 3.3 above. These two styles
of proof are essentially equivalent. Local finite element projections have been used
for example in [NS74], [SW77], [SW95], and [AL95] in order to prove local a priori
error estimates. The methodology of Lemma 3.3 in which no local projections are
used has been employed in for example [Dem04] and [Guz06] in order to prove
local a priori error estimates and in [LN03] and [Dem07] in order to prove local a
posteriori error estimates.
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Theorem 3.4. Let G0 ⊂ G ⊂ Ω0 be given, and let dist(G0, ∂G \ ∂Ω) = d with
d ≤ min{2d0, d1} where d0 is the parameter defined in the assumption R1 and d1

is defined in Remark 3.1. Let also A1, A2, and A3 hold with d̃ = d
16 . In addition

let maxT∩G 6=∅
hT

d ≤ 1
16 . Then

‖u− uh‖H1(G0) ≤C min
uh−χ∈SD,0

(‖u− χ‖H1(G) +
1
d
‖u− χ‖L2(G))

+ C
1
d
‖u− uh‖L2(G).

(3.16)

Here C depends only on the constant C in (2.2) and the coefficients of L.

Proof. We assume that G0 is the intersection of a ball B d
2

of radius d
2 with Ω0; the

general case may be proved using a covering argument. Let G1 be the intersection
with Ω0 of a ball having the same center as G0 and having radius 3d

4 , and without
loss of generality let G be the corresponding ball of radius d. Let then ω ∈ C∞

0 (G)
be a cutoff function which is 1 on G1 and which satisfies ‖ω‖W j

∞(G) ≤ Cd−j ,
0 ≤ j ≤ r. Note that we may apply Lemma 3.3 with G0 on the left hand side of
the estimate (3.9) and G1 on the right hand side.

Next we let P (ωu) be a local finite element projection of ωu. In particular, we
let P (ωu) ∈ SD ∩H1

<(G) with uh − P (ωu) = 0 on ΓD ∩ ∂G1 satisfy

(3.17) L(ωu− P (ωu), vh) = 0, vh ∈ SD,0 ∩H1
<(G).

The local coercivity condition (3.3) then implies the stability estimate

(3.18) ‖P (ωu)‖H1(G) ≤ C‖ωu‖H1(G).

Recalling that uh − P (ωu) = 0 on ΓD ∩ ∂G1 while employing (3.9) and using
(3.4) while recalling that ω ≡ 1 on G1, we compute that

‖u− uh‖H1(G0) ≤ ‖ωu− P (ωu)‖H1(G0) + ‖P (ωu)− uh‖H1(G0)

≤‖ωu− P (ωu)‖H1(G) +
C

d
‖P (ωu)− uh‖L2(G1)

≤‖ωu− P (ωu)‖H1(G) +
C

d
(‖P (ωu)− ωu‖L2(G1) + ‖u− uh‖L2(G1))

≤C‖ωu− P (ωu)‖H1(G) +
C

d
‖u− uh‖L2(G1).

(3.19)

Next we employing the triangle inequality along with (3.18) while recalling that
‖ω‖W j

∞(G2)
≤ Cd−j in order to find that

‖ωu− P (ωu)‖H1(G) ≤C‖ωu‖H1(G)

≤C(‖u‖H1(G) +
1
d
‖u‖L2(G)).

(3.20)

In order to complete the proof of (3.16), we first insert (3.20) into (3.19) and
finally write u− uh = (u− χ) + (χ− uh) with uh − χ ∈ SD,0.

�
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