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J. GUZMÁN

Abstract. We investigate numerical integration effects on weighted pointwise
estimates. We prove that local weighted pointwise estimates will hold, modulo
a higher order term and a negative-order norm, as long as we use an appro-
priate quadrature rule. To complete the analysis in an application, we also
prove optimal negative-order norm estimates for a corner problem taking into
account quadrature. Finally, we present an example to show that our result is
sharp.

1. Introduction

Weighted pointwise estimates obtained by Schatz, [9], greatly improve previous
local W 1

∞ estimates. They show that the finite element approximation, in some
cases, approximates the solution in a very sharp local sense. That is, the approxi-
mation error at a point x is more heavily influenced by the behavior of the solution
near x rather then far from x. This has proven to be useful for superconvergence
results [10] and pointwise a posteriori estimates [5]. We prove that these estimates
are preserved, modulo a higher order term and a negative-order norm, if we use a
quadrature rule of high enough order.

Let Ω ⊂⊂ RN and consider the equation

(1.1) Lu ≡
∑
i,j

∂

∂xj
(aij(x)

∂u

∂xi
) = f in Ω.

We assume f and aij are smooth and (aij) is uniformly elliptic in Ω.
If Ω1 ⊂⊂ Ω, then u solves the local equation

(1.2) A(u, v) =
∫

Ω1

fvdx, for all v ∈ H̊
1
(Ω1)

where
A(w, v) =

∫
Ω

∑
ij

aij
∂w

∂xi

∂v

∂xj
.

Let Sh
r−1 ⊂ W 1

∞(Ω) be a one parameter family of finite element spaces. From
now on Ω1 ⊂⊂ Ω will denote a fixed domain with the following properties. We
assume that the family of meshes when restricted to Ω1 is quasi-uniform and that
each element intersecting Ω1 is a simplex. If S̊h,r−1(Ω1) denotes those functions in
Sh

r−1 with compact support in the interior of Ω1, then we require that S̊h,r−1(Ω1)
be composed of continuous functions supported in Ω1 such that their restriction to
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each simplex of our decomposition is a polynomial of degree at most r − 1 (i.e. we
consider Lagrange finite elements of degree r − 1 in Ω1).

The finite element solution ūh with exact quadrature will satisfy

(1.3) A(u− ūh, v) = 0, for all v ∈ S̊h,r−1(Ω1).

In Propositions 1.1-1.3 we shall review some known results. First we state the
W∞

1 estimates for the finite element approximation with exact quadrature found
in [12].

Proposition 1.1. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. If t ≥ 0, there exists a constant C
independent of h, u and ūh such that

|u− ūh|W 1
∞(Ω0) ≤ C inf

χ∈Shr−1

||u− χ||W 1
∞(Ω1) + C||u− ūh||H−t(Ω1).

Applying the techniques in [12], one can prove local W∞
1 estimates for the finite

element approximation with numerical quadrature, let us denote it by uh. Quad-
rature rules employed will be precisely defined in Section 2.

Proposition 1.2. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω and t ≥ 0. If a quadrature rule of order
2(r − 1) − 2 + q (q ≥ 0) is used to compute uh, then there exists a constant C
independent of h, u, and uh such that

|u− uh|W 1
∞(Ω0) ≤ C inf

χ∈Shr−1

||u− χ||W 1
∞(Ω1) + C||u− uh||H−t(Ω1)

+ Chr−1+q log(1/h)(||u||W r
∞(Ω1) + ||f ||W r−1+q

∞ (Ω1)
).(1.4)

The case q = 0 is Corollary 5.1 [12]. Following that proof, one can easily gen-
eralize this result to q > 0. The first term of the right hand side of (1.4) can
be bounded using the Bramble-Hilbert lemma, to get infχ∈Sr−1

h
||u − χ||W 1

∞(Ω1) ≤
Chr−1|u|W r

∞(Ω1). Therefore, if q > 0 one, in some sense, preserves the local esti-
mates , modulo a higher order term and a negative-order norm. In the case q = 0,
the last term in the right hand side of (1.4) is of the same order as the typical order
of the first term. Quadrature rules of order 2(r − 1) − 2 (q = 0) are used in [4] to
prove H1 error estimates.

Now we compare these estimates to the sharper weighted pointwise estimates of
Schatz. In the case of exact quadrature we have (Theorem 1.2 [9]):

Proposition 1.3. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω and consider x ∈ Ω0. Let 0 ≤ s ≤ r− 1, u
solve 1.2 and ūh satisfy 1.3. If t ≥ 0, there exists a C independent of h, u, and ūh

such that

|∇(u− ūh)(x)| ≤ C(log
1
h

)¯̄s inf
χ∈Shr−1

||u− χ||W 1
∞(Ω1),x,s

+ C||u− ūh||H−t(Ω1).

Here ¯̄s = 0 if 0 ≤ s < r − 1 and ¯̄s = 1 if s = r − 1.

The weighted norm is defined as ||v||W 1
∞(Ω1),x,s = ||σs

xv||L∞(Ω1) + ||σs
x∇v||L∞(Ω1)

where σx(y) = h/(|x − y| + h). Note that if y = x, then σs
x(y) = 1. On the other

hand, if |y − x| = O(1), then σs
x(y) = O(hs). If s = 0, we get Proposition 1.1. The

improvement comes when s > 0.
We now state the main result of this note which is the corresponding weighted

pointwise estimates with numerical quadrature .
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Theorem 1.4. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω and consider x ∈ Ω0. Let 0 ≤ s ≤ r − 1, u
solve (1.2) and uh satisfy 2.1 where we use a quadrature rule of order 2(r−1)−2+q
with q ≥ s. If t ≥ 0, there exists a C independent of h, x, u, and uh such that

|∇(u− uh)(x)| ≤ C(log
1
h

)¯̄s inf
χ∈Shr−1

||u− χ||W 1
∞(Ω1),x,s + C||u− uh||H−t(Ω1)

+ C(log
1
h

)hr−1+q(||u||W r
∞(Ω1) + ||f ||W r−1+q

∞ (Ω1)
).(1.5)

Here ¯̄s = 0 if 0 ≤ s < r − 1 and ¯̄s = 1 if s = r − 1.

If q > s, we preserve the weighted pointwise estimates, modulo a higher order
term and a negative-order norm. In the case q = s, the third term in the right hand
side of 1.5 is of the same order, modulo a logarithmic factor, as σs

x(y)∇(u− χ)(y)
for |y − x| = O(1); however, closer to x the local structure of Schatz’s results are
preserved.

In the next section we describe the quadrature rules that we consider. In Section
3 we prove Theorem 1.4. In Section 4 we complete the picture for an application by
estimating ||u− uh||H−t(Ω) in a polygonal domain with refinements at the corners.
Finally, in Section 5 we show that Theorem 1.4 is sharp.

2. Quadrature

Let the simplex T̂ denote a reference element, and assume we are using a quad-
rature rule that approximates

∫
T̂
gdx:

QT̂ (g) =
∑

i

ŵlg(b̂l),

where the ŵl > 0 and b̂l ∈ T̂ . Q is of order k if QT̂ (p) =
∫

T̂
pdx for all polynomials

p of degree less then or equal to k, but fails to integrate a polynomial of degree
k + 1 exactly. We know that QT̂ induces a quadrature rule for any simplex T,

QT (g) =
∑

i

wlg(bl).

Here wl = J(RT )ŵl and bl = RT (b̂l) where RT : T̂ → T is our standard affine map.
We define the error of our quadrature in T̂ and T as

ET̂ (ĝ) = QT̂ (ĝ)−
∫

T̂

ĝdx̂,

ET (g) = QT (g)−
∫

T

gdx.

Here ĝ(x̂) = g(RT (x̂)). Notice that ET (g) = J(RT )ET̂ (ĝ). Let us suppose that we
use this type of quadrature in Ω1. Then, our finite element approximation uh will
satisfy

(2.1) A(u− uh, v) = F (v), ∀v ∈ S̊h,r−1(Ω1)

where F = F1 + F2,

F1 =
∑
T

FT
1 (v), FT

1 (v) = ET (
∑
ij

aij
∂uh

∂xi

∂v

∂xj
),
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and

F2(v) =
∑
T

FT
2 (v), FT

2 (v) = ET (fv).

3. Main Result

Now we prove Theorem 1.4.

Proof. From now on set e = u−uh. Let us consider y ∈ Ω0. Let Ω0 ⊂⊂ Ω2 ⊂⊂ Ω1.
By Theorem 1.2 in [9], there exists a C independent of y such that

|e(y)|+ |∇e(y)|(3.1)

≤ C(log
1
h

)¯̄s inf
χ
||u− χ||W 1

∞(Ω2),y,s

+C||e||H−t(Ω2) + C(log
1
h

)|||F |||−1,Ω2

where ¯̄s = 0 if 0 ≤ s < r − 1 and ¯̄s = 1 if s = r − 1. Here

|||F |||−1,G = sup
ψ∈W̊1

1(G)
||ψ||

W1
1 (G)

=1

F (ψ).

First we multiply (3.1) by σs
x(y), and take the supremum over y ∈ Ω0. Then, by

noting that σx(y)σy(z) ≤ 2σx(z) and σx(y) ≤ 1, we obatin

||e||W 1
∞(Ω0),x,s(3.2)

≤ C(log
1
h

)¯̄s inf
χ
||u− χ||W 1

∞(Ω2),x,s

+C||e||H−t(Ω2) + C(log
1
h

)|||F |||−1,Ω2 .

By using the Bramble-Hilbert lemma (see Corollary 5.1 in [12]), we see that

|||F1|||−1,Ω2 ≤ Chr−1+q||uh||W r−1,h
∞ (Ω2)

.

The broken norm is defined as ||v||W r−1,h
∞ (G) = supT ||v||W r−1

∞ (T∩G) for G ⊂ Ω.
A slight modification of Theorem 4.1.5 in [4] (which uses the Bramble-Hilbert

lemma) shows that

|||F2|||−1,Ω2 ≤ Chr−1+q||f ||W r−1+q
∞ (Ω2)

.

Therefore, we have that

(3.3) |||F |||−1,Ω2 ≤ hr−1+q(||uh||W r−1,h
∞ (Ω2)

+ ||f ||W r−1+q
∞ (Ω2)

).

By the triangle inequality and inverse estimates, we get

(3.4) ||uh||W r−1,h
∞ (Ω2)

≤ Ch2−r||e||W 1
∞(Ω2) + C||u||W r

∞(Ω2).
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After observing that hs ≤ Cσs
x(z) for z ∈ Ω2, and combining (3.2), (3.3) and (3.4),

we find that for all M

||e||W 1
∞(Ω0),x,s(3.5)

≤ C(log
1
h

)¯̄s inf
χ
||u− χ||W 1

∞(Ω2),x,s + C||e||H−t(Ω2)

+C(log
1
h

)hr−1+q(||u||W r
∞(Ω2) + ||f ||W r−1+q

∞ (Ω2)
)

+C(log
1
h

)h1+q−s||e||W 1
∞(Ω2),x,s.

If we apply (3.5) M times on a sequence of nested domains and then apply (3.2)
and (3.3), we get that

||e||W 1
∞(Ω0),x,s

≤ C(log
1
h

)¯̄s inf
χ
||u− χ||W 1

∞(Ω1),x,s + C||e||H−t(Ω1)

+C(log
1
h

)hr−1+q(||u||W 1
∞(Ω1) + ||f ||W r−1+q

∞ (Ω2)
) + C((log

1
h

)h)M ||uh||W r−1,h
∞ (Ω1)

.

Applying an inverse estimate, we observe that

||uh||W r−1,h
∞ (Ω1)

≤ Ch−(r−1)−t−N/2||uh||H−t(Ω1).

By the triangle inequality ||uh||H−t(Ω1) ≤ ||e||H−t(Ω1) + ||u||H−t(Ω1). Choosing M
large enough we arrive at

||u− uh||W 1
∞(Ω0),x,s

≤ C(log
1
h

)¯̄s inf
χ
||u− χ||W 1

∞(Ω1),x,s

+C(log
1
h

)r−1+q(||u||W r
∞(Ω1) + ||f ||W r−1+q

∞ (Ω1)
)h+ C||u− uh||H−t(Ω1).

Our result now follows by noting that |∇(u− uh)(x)| ≤ ||u− uh||W 1
∞(Ω0),x,s. �

For various problems we can use standard duality arguments to find bounds for
||u− ūh||H−t(Ω1) which will be better then hr−1. However, we need to keep in mind
that uh is the FEM solution with numerical quadrature. Therefore, in the next
section we give an application that guarantees the optimal negative-order norm
estimate taking into account numerical quadrature.

4. Negative-Order Norm Estimates with Quadrature

Banerjee and Osborn [3] proved negative-order norm estimates with numerical
quadrature in one dimension. We extend their result to a problem on a polygo-
nal domain in two dimensions assuming we have appropriate refinements near the
corners. This was done for the L2-norm in [8]. Our proof follows the same lines.

Let Ω be a polygonal domain. Let V tx = x1, x2, x3, . . . , xq be the set of vertices.
We introduce some weighted norm spaces that the solution belongs to, as in [2].

Definition 4.1. Let m be a positive integer, a ∈ R and define ρ(x) = dist(x, V tx).
Then for G ∈ Ω define the weighted space

Km
a (G) = {u ∈ Lloc

2 (G), ρ|α|−a−1Dαu ∈ L2(G)}.
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This space is equipped with the norm

||u||2Km
a (G) =

∑
|α|≤m

||ρ|α|−a−1Dαu||2L2(G).

Now we state a result about existence and uniqueness in plane polygonal domains
for (1.1). This is a simple consequence of the results in [7] and [6].

Lemma 4.2. Let m be a non-negative integer. There exists a η > 0 such that
for every 0 < β < η and every f ∈ Km

β−2(Ω) there exists a unique u ∈ Km+2
β (Ω)

satisfying (1.1) and u = 0 on ∂Ω with the bound

||u||Km+2
β (Ω) ≤ C||f ||Km

β−2(Ω)

where C is independent of f and u.

Proof. Following a similar argument as was done for Laplace’s equation in Theorem
2.6.1 in [7], we have that there exists a η > 0 such that for every |β| < η and
f ∈ Km

β−2(Ω) there exists a u ∈ Km+2
β (Ω). By Theorem 1.4.1 in [7] we have that

there exists a C independent of u and f such that

||u||Km+2
β (Ω) ≤ C(||f ||Km

β−2(Ω) + ||u||L2(Ω)).

Using the weak form of the PDE and the uniform ellipticity condition we have

||∇u||2L2(Ω) ≤ C

∫
Ω

|fu|dx ≤ C(
∫

Ω

ρ2f2dx)1/2(
∫

Ω

ρ−2udx)1/2.

Since u ∈ H̊
1
(Ω), we have by Lemma 6.6.1 in [6] that

(
∫

Ω

ρ−2u2dx)1/2 ≤ C||∇u||L2(Ω).

Furthermore, since β > 0, we have that (
∫
Ω
ρ2f2dx)1/2 ≤ C(

∫
Ω
ρ2(1−β)f2)1/2 ≤

C||f ||Km
β−2(Ω). This shows that ||∇u||L2(Ω) ≤ C||f ||Km

β−2(Ω). The result now follows
since ||u||L2(Ω) ≤ C||∇u||L2(Ω) . �

If we are solving Laplace’s equation, then η = π
α where α is the largest interior

angle. More generally, η is a computable number which depends on the local frozen
coefficient problems on each vertex. One can prove a more precise statement. In
that case, one would have to define a norm that is weighted differently near each
vertex. For simplicity we considered the present setting.

For the following we choose β ≤ 1 and, of course, 0 < β < η. Now we use the
mesh refinement condition in [1], [8] and [2]. Let hT be the mesh size of the element
T , set h = maxT hT , and dT = dist(T, V tx). Then we require

hT ≤

{
Chd

((r−1)−β)/(r−1)
T if dT > 0

Ch(r−1)/β if dT = 0.

We let Sh
k denote the Lagrange finite element space of order k on Ω. We can show

as in [8] that the following lemma holds.

Lemma 4.3. Let w ∈ Km
β (Ω). If k ≥ m− 1 we have

(4.1) ||∇(w − wI)||L2(Ω) ≤ Chm−1||w||Km
β (Ω)

where wI ∈ Sh
k is the continuous interpolant of w.
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By the work in [8] we have the following.

Lemma 4.4. Let uh ∈ Sh
r−1 be our FEM approximation with quadrature of order

at least 2(r − 1)− 2. Then

||∇(u− uh)||L2(Ω) ≤ Chr−1||u||Kr
β(Ω).

This next lemma corresponds to Lemma 6.2 in [3]. We give a proof since it is
slightly different.

Lemma 4.5. Suppose that we are using a quadrature rule that is of order r− 2+ q
and l is chosen such that r − 1 + q > 2/l. If v ∈ Pq(T ), then

|FT
2 (v)| ≤ meas(T )1/l−1/2hr−1+q

T ||f ||W r−1+q
l (T )||v||Hq(T ).

Here Pq(T ) denotes the space of polynomials of degree less than or equal to q.

Proof. We have

(4.2) FT
2 (v) = ET (fv) = J(RT )E(f̂ v̂)

where T̂ is the reference element and RT is the affine map from T̂ to T .
For ψ̂ ∈W r−1+q

l (T̂ ), we then have

ET̂ (ψ̂) ≤ C|ψ̂|L∞(T̂ ) ≤ C||ψ̂||W r−1+q
l (T̂ )

where we used imbedding theorems in the last inequality. By the Bramble-Hilbert
lemma, we have

ET̂ (ψ̂) ≤ C|ψ̂|W r−1+q
l (T̂ ).

Setting ψ̂ = f̂ v̂, we get

ET̂ (f̂ v̂) ≤ C(|f̂ |W r−1+q
l (T̂ )|v̂|L∞(T̂ ) + ...+ |f̂ |W r−1

l (T̂ )|v̂|W q
∞(T̂ )).

If we use the equivalence of norms in finite dimensional space, we obtain

ET̂ (f̂ v̂) ≤ C(|f̂ |W r−1+q
l (T̂ )|v̂|L2(T̂ ) + ...+ |f̂ |W r−1

l (T̂ )|v̂|Hq(T̂ )).

Scaling back to the physical element we get that

ET̂ (f̂ v̂) ≤ Chr−1+q
T J(RT )−1/2−1/l(|f |W r−1+q

l (T )|v|L2(T ) + ...+ |f |W r−1
l (T )|v|Hq(T )).

After using (4.2) we arrive at our result. �

Following similar arguments we can bound FT
1 (see Lemma 6.1 in [3]).

Lemma 4.6. Suppose that we are using a quadrature rule of order r − 2 + q. If
v ∈ Pq(T ) then

FT
1 (v) ≤ Chr−1+q

T ||uh||Hr−1(T )||v||Hq(T ).

Now we can state and prove our main result of this section.

Theorem 4.7. Let u solve (1.1) with u = 0 on ∂Ω. Let uh ∈ Sh
r−1 be the FEM

solution with a quadrature rule of order max(2(r−1)−2, r−2+q) with 1 ≤ q ≤ r−1.
Then

(4.3) ||u− uh||H−(q−1)(Ω) ≤ Chr−1+q.
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Proof. We know by a duality argument (see problem 4.1.3 [4])

||u− uh||H−(q−1)(Ω) ≤ C sup
g∈Hq−1(Ω)

||g||
Hq−1(Ω)

=1

(||∇(u− uh)||L2(Ω)||∇(φ− φI)||L2(Ω) + F (φI))

where φ satisfies Lφ = g and vanishes on the boundary and φI ∈ Sh
q is the contin-

uous interpolant of φ. By Lemma 4.3, Lemma 4.2 and the fact that ||g||Kq−1
β−2(Ω) ≤

||g||Hq−1(Ω), we observe that

(4.4) ||∇(φ− φI)||L2(Ω) ≤ Chq.

Therefore, after using this fact and Lemma 4.4, we have that

||u− uh||H−(q−1)(Ω) ≤ Chr−1+q + C sup
g∈Hq−1(Ω)

||g||
Hq−1(Ω)

=1

F (φI).

We first bound F2. By Lemma 4.5 we have

F2(φI) ≤
∑
T

hr−1+q
T ||φI ||Hq(T )||f ||W r−1+q

l (T )meas(T )1/l−1/2.

For dT > 0, using approximation properties of φI and the definition of hT , we
get

hr−1+q
T ||φI ||Hq(T ) ≤ hr−1+qd

(r−1−β)(1+q/(r−1))
T ||φ||Hq+1(T ).

It is clear that q − β ≤ (r − 1− β)(1 + q/(r − 1)). Since dT ≤ ρ(x) ∀x ∈ T , we
have

hr−1+q
T ||φI ||Hq(T ) ≤ hr−1+q||φ||Kq+1

β (T ).

Now assume dT = 0. One can show that ||φ − φI ||H1(T ) ≤ ||φ||W 2
1 (T ) (see [11]).

Also, since dT = 0 we have that ||φ||W 2
1 (T ) ≤ hβ ||φ||K2

β(T ). Therefore, using these
inequalities, an inverse inequality and the triangle inequality, we get

hr−1+q
T ||φI ||Hq(T ) ≤ Chq

T ||φ||K2
β(T ).

Since hT ≤ h(r−1)/β ≤ hr−1(β ≤ 1), we have that

hr−1+q
T ||φI ||Hq(T ) ≤ h(r−1)+q||φ||Kq+1

β (T )

where we have used that 1 ≤ q ≤ r − 1 and r ≥ 2. Finally, using the generalized
Hölder inequality, we get that

(4.5) F2(φI) ≤ hr−1+q||φ||Kq+1
β (Ω)||f ||W r−1+q

l (Ω)meas(Ω)1/2−1/l.

Now we bound F1(φI). Using Lemma 4.6

F1(φI) ≤
∑
T

hr−1+q
T ||uh||Hr−1(T )||φI ||Hq(T ).

We employ the triangle inequality to get

F1(φI) ≤
∑
T

hr−1+q
T ||uI ||Hr−1(T )||φI ||Hq(T )+

∑
T

hr−1+q
T ||uh−uI ||Hr−1(T )||φI ||Hq(T ).
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Using inverse estimates, the triangle inequality and Lemmas 4.3 and 4.4, we get∑
T

hr−1+q
T ||uh − uI ||Hr−1(T )||φI ||Hq(T )

≤ C
∑
T

h1+q
T ||uh − uI ||H1(T )||φI ||Hq(T )

≤ C||uh − uI ||H1(Ω)(
∑
T

(h1+q
T ||φI ||Hq(T ))2)1/2

≤ Chr−1(
∑
T

(h1+q
T ||φI ||Hq(T ))2)1/2.

Now by considering two separate cases (dT > 0 and dT = 0), and using arguments
as above in bounding F2, we get

(
∑
T

(h1+q
T ||φI ||Hq(T ))2)1/2 ≤ Ch1+q||φ||Kq+1

β (Ω).

Therefore, we have∑
T

hr−1+q
T ||uh − uI ||Hr−1(T )||φI ||Hq(T ) ≤ Chr+q||φ||Kq+1

β (Ω).

Next, we bound
∑

T h
r−1+q
T ||uI ||Hr−1(T )||φI ||Hq(T ).

If dT > 0,

hr−1+q
T ||uI ||Hr−1(T )||φI ||Hq(T )

≤ Chr−1+q
T ||u||Hr(T )||φ||Hq+1(T )

≤ hr−1+qdr−1−β
T ||u||Hr(T )d

q(r−1−β)/(r−1)
T ||φ||Hq+1(T )

≤ hr−1+q||u||Kr
β(T )||φ||Kq+1

β (T ).

In the first inequality we used approximation properties of uI and φI . In the second
inequality we used the definition of hT . Finally, in the third inequality we used that
q(r − 1− β)/(r − 1) ≥ q − β.

If dT = 0,

hr−1+q
T ||uI ||Hr−1(T )||φ||Hq(T )

≤ h2
T ||uI ||H1(T )||φ||H1(T )

≤ h2
T ||u||K2

β(T )||φ||K2
β(T )

≤ h2(r−1)/β ||u||K2
β(T )||φ||K2

β(T )

≤ hr−1+q||u||Kr
β(T )||φ||Kq+1

β (T ).

In the first inequality we used an inverse estimate. For the second inequality we
used an argument as was done to bound F2. In the third inequality we used the
definition of hT . We used that 1 ≤ q ≤ r−1 , r ≥ 2 and β ≤ 1 in the last inequality.

Therefore, we have that∑
T

hr−1+q
T ||uI ||Hr−1(T )||φI ||Hq(T ) ≤ hr−1+q||u||Kr

β(Ω)||φ||Kq+1
β (Ω).

We conclude that

(4.6) F1(φI) ≤ Chr−1+q||φ||Kq+1
β (Ω).
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Finally, using (4.5), (4.6) and Lemma 4.2 we arrive at our conclusion. �

5. Sharpness of Result

In order to prove the sharpness of Theorem 1.4, we need to state a corollary to
this result with q = s (see [9]).

Corollary 5.1. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω and let x ∈ Ω0. Let u solve (1.2) and let
uh satisfy (2.1) where we use a quadrature rule of order 2(r − 1) − 2 + s. Let
γ ≤ r − 1 + s. Suppose that

∑
r≤|α|≤γ |Dαu(x)| = 0, then

(5.1) |∇(u− uh)(x)| ≤ C log(
1
h

)hγ

provided that

(5.2) ||u− uh||H−t(Ω1) ≤ C1h
γ for some t.

Here C is independent of h, x, u, and uh,.

Let now Ω = (−1, 1) and consider the problem

−((xr−1+s−1 + 2)u′(x))′ = f(x) x ∈ Ω,(5.3)
u(−1) = u′(1) = 0.

Suppose that u is a linear function with slope one in an interval I containing x = 0.
Suppose also that we have a uniform mesh of mesh size h and that x = 0 is always
a mesh point. Suppose further that we are using elements of polynomial order
r − 1 to approximate u. Let us first assume that we use a quadrature rule of
order 2(r − 1) − 2 + s with 1 ≤ s ≤ r − 1. For this problem we can easily show
that ||u − uh||H−(s−1)(Ω) ≤ Chr−1+s. As we have shown in higher dimensions,
Corollary 5.1, we have superconvergence on I. More precisely, ||(u − uh)′||L∞(I) ≤
C log(1/h)hr−1+s.

However, as we shall now show, if we use a quadrature rule of order 2(r − 1) −
2+s−1 then we no longer have a superconvergence result of this order. This would
show that are results are sharp.

For simplicity let us suppose that we integrate the right hand side (
∫
Ω
fvdx)

exactly. Suppose we use a quadrature rule of order 2(r−1)−2+s−1 for the left hand
side. We show that the error in I can not be of order hγ if γ > 2(r− 1)− 2 + s− 1.
To this end, let T = (0, h). We conveniently choose a continuous v in the following
way: v(x) = 0 if x < 0, v(x) = 1 if x > h and v(x) = (x/h)r−1 on T . Since v′ ≡ 0
outside of T ,

QT (au′hv
′) =

∫
Ω

fvdx

where a(x) = xr−1+s−1 + 2. Of course, the exact solution will satisfy∫
T

au′v′dx =
∫

Ω

fvdx.

Therefore, for this v, we have the relationship

(5.4)
∫

T

au′v′dx−QT (au′v′) = QT (a(uh − u)′v′).
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Now we investigate the left hand side of (5.4). Note that
∫

T
2u′v′ = QT (2u′v′)

since 2u′v′ is polynomial of degree r−2 ≤ 2(r−1)−2+s−1 on T . Since u′(x) = 1
and v′(x) = (r − 1)(1/h)(x/h)r−2, we get after a change of variables that∫

T

au′v′dx−QT (au′v′) = (r − 1)hr−1+s−1(
∫ 1

0

x̂2(r−1)−2+sdx̂−Q(x̂2(r−1)−2+s)).

Of course, since we are using a quadrature rule of order 2(r − 1) − 2 + s − 1, we
have that ∫ 1

0

x̂2(r−1)−2+sdx̂−Q(x̂2(r−1)−2+s) = C2 6= 0.

Therefore, for the left hand side in (5.4),∫
T

au′v′dx−QT (au′v′) = C2(r − 1)hr−1+s−1.

On the other hand, if ||(u − uh)′||L∞(T ) ≤ Chγ for γ > r − 1 + s− 1, then for the
right hand side in (5.4),

QT (a(uh − u)′v′) ≤ Chγ ||av′||L∞(T )QT (1) ≤ Chγ

Which leads to a contradiction. Therefore, (u − uh)′ is at most O(hr−1+s−1) on
I. This, of course, shows that Corollary 5.1 is sharp, and in turn, implies that
Theorem 1.4 is sharp.

The author would like to thank Lars Wahlbin and Alfred Schatz for their guid-
ance. The author benefited greatly from the fruitful discussions with Victor Nistor.
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[1] I. Babuška, Finite element method for domains with corners, Computing 6 (1970), pp. 264-
273.

[2] C. Bacuta, V. Nistor and L.T. Zikatanov, Improving the rate of convergence of ’high order
finite elements’ on polygons and domains with cusps, Preprint.

[3] U. Banerjee and J.E. Osborn, Estimation of the effect of numerical integration in finite
element eigenvalue approximation, Numer. Math. 56 (1990), pp. 735-762

[4] P.G. Ciarlet, The Finite Element Methods for Elliptic Problems, North-Holland, Amsterdam,
1978.

[5] W. Hoffmann, A.H. Schatz, L.B. Wahlbin and G. Wittum, Asymptotically exact a posteriori
error estimators for the pointwise gradient error on each element on irregular grids.I. A
smooth problem and globally quasi-uniform meshes. Math. Comp. 70 (2001), pp. 897-909 .

[6] V.A. Kozlov, V.G. Maz’ya and J. Rossman, Elliptic Boundary Value Problems in Domains
with Point Singularities, Mathematical Surveys and Monographs, vol 52, Amer. Math. Soc.,
Providence, Rhode Island, 1997.

[7] V.A. Kozlov, V.G. Maz’ya and J. Rossman. Spectral Problems Associated with Corner Sin-
gularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, vol. 85,
Amer. Math. Soc., Providence, Rhode Island, 2000.
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