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Abstract.
We define piecewise linear finite element methods for a class of interface problems in two

dimensions. Corrections terms are added to the right-hand side of the natural method to
render it second-order accurate. We prove that the method is second-order accurate on general
quasi-uniform meshes at the nodal points. Finally, we show that the natural method, although

non-optimal near the interface, is optimal for points O(
q

h log( 1
h
)) away from the interface.
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1. Introduction

In this paper we consider finite element approximations to the following problem. Let Ω ⊂ R
2

be a polygonal domain with an immersed smooth, closed interface Γ such that Ω = Ω− ∪ Ω+

and Γ encloses Ω−. Consider the problem

−∆u = f in Ω(1.1a)

u = 0 on ∂Ω(1.1b)

[u] = α on Γ(1.1c)

[∇u · n] = β on Γ.(1.1d)

The jump is defined as

[∇u · n] = ∇u− · n− + ∇u+ ·n+

where u± = u|Ω± and n± is the unit outward pointing normal to Ω± (see figure 1). Also, we
denote [u] = u+ − u−.

Many numerical methods have been developed for problem (1.1). Perhaps the most notable
ones are the finite difference method of Peskin [18] (i.e., immersed boundary method) and the
method of LeVeque and Li [11] (i.e., the immersed interface method ; see also the method of
Mayo [14, 15, 16]) .The method of LeVeque and Li [11] was developed for the more general
problem with discontinuous diffusion coefficients, while the method of Peskin [18] was developed
for fluid flow problems with an immersed boundary. Although the method of Peskin [18] is
formulated with a force function F that incorporates the elastic force of the immersed boundary
Γ, it was shown in [19] that it can be re-formulated as an interface problem (with α = 0) where
β encodes the elastic force.

Since the two important papers [18, 11] there have been many articles extending or improving
these methods. In particular, finite element versions of these methods have appeared; see for
example [3, 9, 6, 2]. For the above problem (α = 0), it is well known that the method of Peskin
[18] is only first-order accurate whereas the method of LeVeque and Li [11] is second-order
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accurate. In fact, Beale and Layton [1] give a rigorous analysis of the LeVeque and Li [11]
method and the method of Mayo [14] on rectangular grids.

One of the attractive features of the methods [18, 11, 3, 9, 6, 14, 15] is that the stiffness matrix
for the problem (1.1) is the same as the standard piecewise linear stiffness matrix. Instead, only
the load vector needs to be modified which is important for time dependent problems where the
interface is moving.

We provide a pointwise error analysis of finite element methods approximating (1.1). We
give sufficient conditions on the finite element method that guarantee optimal estimates for the
gradient error. We prove the error estimates for general quasi-uniform meshes and assuming Ω is
convex. We assume that Ω is convex to avoid unnecessary boundary complications and to single
out the interface analysis issues. Our error analysis rely on standard estimates for approximate
Green’s functions and their finite element approximations; see [22, 20].

The main idea in the analysis will be to compare uh − Ihu where Ihu is an interpolant of u
and uh is the finite element approximation. More specifically, the numerical method that we
analyze satisfy

∫

Ω

∇(Ih − uh) · ∇vdx = Fu(∇v) ∀v ∈ Vh,

where Vh is the space of piecewise linear functions vanishing on ∂Ω. Of course, different methods
lead to different Fu. Roughly speaking, we will prove that uh −Ihu will be optimally convergent
if Fu(∇v) ≤ C h‖∇v‖L1(Ω) for all v ∈ Vh.

Guided by the analysis we develop a simple finite element method that satisfies these condi-
tions. We call the method the edge-based correction finite element interface (EBC-FEI) method.
We then show that the EBC-FEI method is very similar to the method of He, Lin and Lin [9],
and this allows us to also analyze their method.

Moreover, we give an error analysis of the method considered by Boffi and Gastaldi [3]. This
finite element method is in some sense the natural method for (1.1) and it can be thought of as
the finite element version of the method by Peskin [18] for problem (1.1). Although this method
is first-order accurate near the interface Γ, we show how far one has to be from the interface in
order to recover optimal estimates for the gradient of the error. More specifically, we show that

optimal estimates hold for points that are O(
√

log( 1
h)h) away from the interface Γ. Mori [17]

proves that the immersed boundary method of Peskin is optimal if one is sufficiently away from
the interface, but does not quantify how far away one has to be.

The rest of the paper is organized as follows. In the next section we present our simple finite
element method and give a derivation. In Section 3, we give an abstract error analysis which
includes the analysis of our method. In Section 4, we present other methods in the literature.
In particular, we show that the our method is very similar to the method of He et al. [9] and
hence can easily analyze their method. Also, in Section 4, we analyze the method of Boffi and
Gastaldi [3].

2. The EBC-FEI method

In this section we present a simple finite element method for problem (1.1) that is second-
order accurate. To do so, we assume that the data f , β and α are smooth. Furthermore, we

assume that u± ∈ C2(Ω
±
).

We next develop notation. Let Th, 0 < h < 1 be a sequence of triangulations of Ω, Ω =
∪T∈Th

T , with the elements T mutually disjoint. Let hT denote the diameter of the element T
and h = maxT hT . Let Vh be the space of piecewise linear functions, i.e.,

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P

1(T ) ∀T ∈ Th}.
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We assume the mesh is shape regular; see [4]. For our pointwise estimates, we will assume
the mesh is also quasi-uniform; [4].

Let Eh denote the set of all the edges of Th where as E i
h denotes the interior edges. Suppose

that e ∈ E i
h with e = T 1 ∩ T 2 and T1, T2 ∈ Th then we define

[∇v · n]|e = ∇v|T1 · n1 + ∇v|T2 · n2,

where ni is the unit normal pointing out of Ti for i = 1, 2.
We assume here that the interface Γ intersects the boundary of each triangle T ∈ Th at most

at two points unless it coincides completely with an edge of T . If Γ intersects the boundary of
a triangle T in exactly two points, then these two points must be on different edges of T .

We define the set of edges that intersect and do not intersect the immersed interface Γ as
follows

EΓ,a
h = {e ∈ Eh : e ∩ Γ 6= ∅} ,
EΓ⊥

h = E i
h \ EΓ,a

h .

We further separate the edges EΓ,a
h depending if the intersection of the edge and Γ is the entire

edge, an endpoint of the edge or an interior point of the edge (not an endpoint):

EΓ,0
h = {e ∈ EΓ,a

h : e ⊂ Γ},
EΓ

h = {e ∈ EΓ,a
h : e ∩ Γ 6= ∅},

EΓ,±
h = {e ∈ EΓ,a

h : e ⊂ Ω±},

so that EΓ,a
h = EΓ

h ∪ EΓ,+
h ∪ EΓ,−

h ∪ EΓ,0
h .

Now, for every e ∈ EΓ
h we define (see figure 1):

• y±e ∈ Ω± : the nodes of the edge e.

• xe : the intersection of e and Γ.

• e± : defined by e± = xey
±
e .

• te± : is the tangential unit vector for the edge e pointing out of Ω±.

• ne± : is the normal unit vector for the edge e, defined as a clockwise rotation
of the tangential vector te± .

• he± : define the length of e±.

• ae± : defined as ae± = n± · te± .

• be± : defined as be± = t± · te± .

Note that a−e = a+
e (b−e = b+e ) and so we denote them by ae (be). For e ∈ EΓ,+

h we let xe to be
the endpoint of e that is contained in Γ.
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Figure 1: Illustration of the definitions of xe, te− , ne− , e
±, n−.

The EBC-FEI method reads as; find uh ∈ Vh such that

(2.1)

∫

Ω
∇uh · ∇v dx = Eh(v) ∀v ∈ Vh,

where Eh is given by

Eh(v) =

∫

Ω
f vdx+

∫

Γ
(βv − α∇v+ ·n+) ds

−
∑

e∈EΓ
h

he−he+

2

(

aeβ(xe) + be
d

ds
α(xe) +

1

2
(he+ − he−)α(xe)

)

[∇v · n]|e(2.2)

− 1

2

∑

e∈E
Γ,+
h

heα(xe)[∇v · n]|e.

If we let X : [0, A) → Γ denote the arc-length parametrization of Γ then we denote d
dsα(x) =

d
dsα(X(s)) for x = X(s). Here A is the arc-length of Γ.

It is important to note the natural finite element method to consider for (1.1) will satisfy
(2.1) with

Eh(v) =

∫

Ω
f vdx+

∫

Γ
(βv − α∇v+ · n+) ds.(2.3)

This turns out to be the method of Boffi and Gastaldi [3] for (1.1) (in the case α = 0) . It is
well-known that this method is only first-order accurate and hence the terms we add in (2.2) are
correction terms that make the method second-order accurate at the nodes. This of course, in
the spirit of the correction LeVeque and Li [11] gives for their immersed interface finite difference
method.



FEM FOR INTERFACE PROBLEMS 5

2.1. Derivation of the EBC-FEI method. As mentioned in the introduction, the derivation
of our method is guided by trying to see the weak formulation that the interpolant of u satisfies
(mod a higher order term). In order to do so, let us be precise about the interpolant.

Definition 2.1. Given u± ∈ C2(Ω±) define Ihu ∈ Vh such that Ihu(x) = u−(x) for all vertices

x of Th with x ∈ Ω− and Ihu(x) = u+(x) for all vertices x ∈ Ω+.

Note that if u is continuous (i.e. α = 0) Ihu is simply the Lagrange interpolant of u however
if α 6= 0 then Ihu interpolates values of u on vertices not intersecting Γ and for vertices lying on
Γ it takes the values of u coming from Ω− (this is without loss of generality).

The next lemmas show the weak form Ihu solves.

Lemma 1. It holds,
∫

Ω
∇(Ihu) · ∇vdx =

∫

Ω
f vdx+

∫

Γ
(βv − α∇v+ ·n+) ds

+
∑

e∈EΓ
h
∪EΓ,+

h

∫

e
(Ihu − u)[∇v · n] ds

+
∑

e∈EΓ,0
h

∫

e
(Ihu− u−)[∇v ·n] ds

+
∑

e∈EΓ⊥

h
∪EΓ,−

h

∫

e
(Ihu− u)[∇v ·n] ds.

The last term is of high-order since u is smooth on edges e ∈ EΓ⊥

h ∪EΓ,−
h and Ihu interpolates

the values of u on those edges; see definition of Ih. For edges in e ∈ EΓ,0
h , Ihu − u− is of high-

order from the definition of Ih. We next write the third term on the right by something that is
computable plus a higher-order term.

Lemma 2. It holds,

∑

e∈EΓ
h

∫

e

(Ihu− u)[∇v · n] ds

= −
∑

e∈EΓ
h

(

he−he+

2
(aeβ(xe) + be

d

ds
α(xe)) +

1

2
(he+ − he−)α(xe)

)

[∇v · n]|e

+
∑

e∈EΓ
h

he−he+

2

(

∇(u+ − ũ+
e )(xe) · te+ + ∇(u− − ũ−e )(xe) · te−

)

[∇v · n]|e,

and
∑

e∈EΓ,+
h

∫

e

(Ihu− u)[∇v · n] ds = −1

2

∑

e∈EΓ,+
h

heα(xe)[∇v · n]|e +
∑

e∈EΓ,+
h

∫

e

(u− ũe)[∇v · n] ds,

where for each e ∈ EΓ
h we define ũe so that it is linear on e+ and on e− and such that ũe(y

±
e ) =

u(y±e ) and such that ũ±e (xe) = u±(xe). For e ∈ EΓ,+
h we define ũe to be the unique linear function

that agrees with u+ on the endpoints of e.

We now turn to the proof of these lemmas.
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Proof. (Lemma 1)
Let v ∈ Vh, then we have

∫

Ω
∇(Ihu) · ∇v dx =

∫

Ω−

∇(Ihu) · ∇v dx+

∫

Ω+
∇(Ihu) · ∇v dx

=

∫

Ω−

∇(Ihu− u) · ∇v dx+

∫

Ω+

∇(Ihu− u) · ∇v dx

+

∫

Ω−

∇u · ∇v dx+

∫

Ω+

∇u · ∇v dx.

Integration by parts gives
∫

Ω−

∇u · ∇v dx+

∫

Ω+
∇u · ∇v dx =

∫

Ω
f v dx+

∫

Γ
(∇u− ·n− + ∇u+ · n+)v ds

=

∫

Ω

f v dx+

∫

Γ

βv ds.

Hence, we have
∫

Ω
∇(Ihu) · ∇v dx =

∫

Ω
f v dx+

∫

Γ
βv ds+

∫

Ω−

∇(Ihu− u) · ∇v dx+

∫

Ω+

∇(Ihu− u) · ∇v dx.

For every T ∈ Th we define T± = T ∩ ∂Ω±. Using integration by parts on each triangle and
using that ∆v = 0 on each triangle one has:

∫

Ω−

∇(Ihu− u) · ∇v dx+

∫

Ω+
∇(Ihu− u) · ∇v dx

=
∑

T∈Th

(
∫

T−

∇(Ihu− u) · ∇v dx+

∫

T +

∇(Ihu− u) · ∇v dx
)

=
∑

T∈Th

(
∫

∂T−

(Ihu− u)∇v · n dx+

∫

∂T +
(Ihu− u)∇v ·n dx

)

=
∑

e∈E i
h\E

Γ,0
h

∫

e
(Ihu− u)[∇v · n] ds

+

∫

Γ

(Ihu)[∇v · n] ds−
∫

Γ

u−∇v− ·n− ds−
∫

Γ

u+∇v+ · n+ ds.

Hence, we have
∫

Ω
∇(Ihu) · ∇vdx =

∫

Ω
f vdx+

∫

Γ
βv ds−

∫

Γ
α∇v+ ·n+ ds

+

∫

Γ
(Ihu − u−)[∇v · n] ds

+
∑

e∈E i
h
\EΓ,0

h

∫

e

(Ihu− u)[∇v · n] ds.

The result now follows after re-arranging terms and using that
∫

Γ
(Ihu− u−)[∇v ·n] ds =

∑

e∈EΓ,0
h

∫

e
(Ihu− u−)[∇v · n] ds.
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�

Proof. (Lemma 2)
Here we only prove the first identity. The second identity is in fact easier to prove.

∫

e
(Ihu− u)[∇v · n] ds = [∇v ·n]|e

∫

e
we ds+ [∇v ·n]|e

∫

e
(ũe − u) ds

where we set we = Ihu − ũe. Note that we(y
±
e ) = 0. Since we is piecewise linear we can easily

show that
∫

e
we ds =

1

2
(he−w

−
e (xe) + he+w+

e (xe))

=
1

2
(he−w

+
e (xe) + he+w−

e (xe))

+
1

2
(he−(w−

e (xe) −w+
e (xe)) + he+((w+

e (xe) −w−
e (xe))

=
1

2
(he−w

+
e (xe) + he+w−

e (xe))

+
1

2
(he+ − he−)[we(xe)]

=
he−he+

2
(∇w+

e · te+ + ∇w−
e · te−)

+
1

2
(he+ − he−)[we(xe)].

In the last step we used w±
e (xe) = he±∇we · te± since we(y

±
e ) = 0. Since Ihu is continuous on e

we have

∫

e
we ds = −he−he+

2
(∇ũ+

e · te+ + ∇ũ−e · te−)

− 1

2
(he+ − he−)[ũe(xe)]

= −he−he+

2
(∇u+(xe) · te+ + ∇u−(xe) · te−)

− 1

2
(he+ − he−)[u(xe)]

+
he−he+

2
(∇(u+ − ũ+

e )(xe) · te+ + ∇(u− − ũ−e )(xe) · te−)

= −he−he+

2
(aeβ(xe) + be

d

ds
α(xe))−

1

2
(he+ − he−)α(xe)

+
he−he+

2
(∇(u+ − ũ+

e ) · te+ + ∇(u− − ũ−e ) · te−).

�

Of course, we defined our method (2.1)-(2.2) precisely using Lemmas 1 and 2.
We have the following lemma:

Lemma 3. Let uh ∈ Vh solve (2.1) with Eh given by (2.2), then it holds,
∫

Ω
∇(Ihu − uh) · ∇v dx = Fu(∇v) for all v ∈ Vh,
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where

Fu(φ) =
∑

e∈EΓ⊥

h
∪EΓ,−

h

∫

e

(Ihu− u)[φ ·n] ds+
∑

e∈EΓ,+
h

∫

e

(u− ũe)[φ · n] ds

+
∑

e∈EΓ
h

[φ · n]|e
he−he+

2
(∇(u+ − ũ+

e )(xe) · te+ + ∇(u− − ũ−e )(xe) · te−)

+
∑

e∈EΓ,0
h

∫

e
(Ihu− u−)[φ · n] ds, for all φ ∈ Φh.

Here Φh is the space of non-conforming Raviart-Thomas elements

Φh = {φ ∈ [L2(Ω)]2 : φ|T ∈ RT0(T ) for all T ∈ Th},
where RT0(T ) = [P0(T )]2⊕xP0(T ). Moreover, it is not difficult to show (using the trace-inverse
estimate)

|Fu(φ)| ≤ hCF ‖φ‖L1(Ω) for all φ ∈ Φh

where

CF ≤ C(‖u‖C2(Ω−) + ‖u‖C2(Ω+)),

where C depends only on α and β. Moreover, clearly we have

Fu(φ) = 0 for all φ ∈ ΦD
h

where

ΦD
h = Φh ∩H(div; Ω)

is the conforming Raviart-Thomas space; see Raviart-Thomas [21].
These two last properties will be important to prove optimal estimates which we do in the

next section.

3. Abstract error analysis

In this section we give an abstract error analysis of finite element method. Estimates for the
method we have defined in the previous section follow from these abstract estimates.

The finite element methods we consider in this paper read as follows: find uh ∈ Vh such
∫

Ω

∇uh · ∇v dx = Eh(v) ∀v ∈ Vh,

where Eh is a linear functional.
Now we can state a positive result. The proof turns out to be a simple consequence of

approximate Green’s functions estimates derived by Rannacher and Scott [20].

Theorem 1. Suppose that Ω is a convex polygon and suppose the family of meshes {Th}h>0 are

shape regular and quasi-uniform. Suppose that u± ∈ C2(Ω±) and uh ∈ Vh are the solutions of
(1.1) and (2.1), respectively. Suppose that

∫

Ω
∇(Ihu − uh) · ∇v dx = Fu(∇v) for all v ∈ Vh.

and Fu satisfies the following

Fu(φ) = 0 for any φ ∈ ΦD
h(3.1)

|Fu(φ)| ≤ CFh‖φ‖L1(Ω) for all φ ∈ Φh.(3.2)
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for the constant CF given in (2.1). Then, there exists a constant C such that

(3.3) ‖∇(Ihu− uh)‖L∞(Ω) ≤ CCF h

where C is independent of h, the quasi-uniformity and shape regularity of the mesh.

Proof. Let z ∈ Ω ⊂ R
2 and z ∈ Tz for some Tz ∈ Th. In order to prove estimate (3.10), we

need to bound |∇(Ihu − uh)(z)| for any z. Consider now the regularized Dirac delta function
δz
h = δh ∈ C1

0 (Tz) (see [4]), which satisfies

(3.4) r(z) = (r, δh)Tz , ∀r ∈ P 1(Tz),

and has the following property

(3.5) ‖δh‖Wk,q(Tz) ≤ Ch−k−2(1−1/q), 1 ≤ q ≤ ∞, k = 0, 1.

For each i = 1, 2, define the approximate Green’s function g ∈ H1
0 (Ω), which solves the

following equation:

−∆g = ∂xi
δh in Ω(3.6a)

g = 0 on ∂Ω.(3.6b)

We also consider its finite element approximation gh ∈ Vh that satisfies

(3.7)

∫

Ω
∇gh · ∇v dx =

∫

Ω
v∂xi

δh dx for all v ∈ Vh.

Then, using definition of δh, problem (3.7), we have

∂xi
(Ihu− uh)(z) =

∫

Ω
δh∂xi

(Ihu − uh)dx

= −
∫

Ω
(∂xi

δh)(Ihu− uh)dx

= −
∫

Ω
∇gh · ∇(Ihu− uh)dx

= −Fu(∇gh).

We will use the Raviart-Thomas projection [21] Π : H1(Ω) → ΦD
h . It is defined locally. Let

T ∈ Th. Define Π|T : H1(T ) → RT0(T ) by
∫

e
(q − Π|Tq) · neds = 0 for each edge e ⊂ ∂T.

By (3.1) we have Fu(Π(∇g)) = 0 and so

∂xi
(Ihu− uh)(z) = Fu(Π(∇g)−∇gh)

Hence , by (3.2) we have

|∂xi
(Ihu− uh)(z)| = |Fu(Π(∇g)−∇gh)| ≤ CF ‖Π(∇g)−∇gh‖L1(Ω).

Since z ∈ Ω was arbitrary, the proof will be complete once we prove that

‖∇g −∇gh‖L1(Ω) ≤ C(3.8)

‖Π(∇g)−∇g‖L1(Ω) ≤ C.(3.9)
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Estimate (3.8) is a known result (see [20]) where the constant C depends on the quasi-uniformity
and shape regularity of the mesh and it is assumed that Ω is convex. The proof of estimate (3.9)
is much easier and we give a sketch of the proof in the Appendix. �

It turns out that we can remove (3.1) from the above theorem and still a good result as the
next Theorem states.

Theorem 2. Suppose the all the hypotheses of the previous theorem except (3.1). Then, there
exists a constant C such that

(3.10) ‖∇(Ihu− uh)‖L∞(Ω) ≤ CCF h log(1/h),

where C is independent of h, the quasi-uniformity and shape regularity of the mesh.

Proof. Following the proof of the previous theorem we have

|∂xi
(Ihu− uh)(z)| = |Fu(∇gh)| ≤ CFh‖∇gh‖L1(Ω).

where we used (3.2). Using the triangle inequality and since we have (3.8), it is enough to prove

‖∇g‖L1(Ω) ≤ C log(1/h).

This is a well-known result and the proof is very similar to the proof of (3.9). We leave the
details to the reader. �

Now we turn our attention to an estimate for ‖Ihu − uh‖L∞(Ω). First we prove an estimate
in Lp norm for any 2 ≤ p <∞ by a standard duality argument [4].

Theorem 3. Assume the hypothesis of Theorem 1. Then for any 2 ≤ p < ∞ there exists a
constant C such that

‖Ihu− uh‖Lp(Ω) ≤ Chp(‖∇(Ihu− uh)‖Lp(Ω) + hCF ).

and in particular

‖Ihu− uh‖Lp(Ω) ≤ CCF h
2p.

Proof. Let q be such that 1
p + 1

q = 1. Then, we know that

‖Ihu− uh‖Lp(Ω) = sup
φ∈Cc(Ω)

∫

Ω(Ihu− uh)φ

‖φ‖Lq(Ω)
.

Given φ as above define ψ as the solution to the problem

−∆ψ = φ in Ω

ψ = 0 on ∂Ω

We know that the following regularity holds for 2 ≥ q > 1 for smooth domain Ω (see for example
[5])

(3.11) ‖ψ‖W 2,q(Ω) ≤ C p ‖φ‖Lq(Ω),

where 1
p + 1

q = 1. Note that the constant C p blows up as q approaches 1. The estimate (3.11)

for convex domains also holds although an explicit formula for the constant does not seem to be
in the literature (see for example [4]).
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Then, we see that
∫

Ω

(Ihu− uh)φ dx =

∫

Ω

∇(Ihu− uh) · ∇ψ dx

=

∫

Ω
∇(Ihu− uh) · ∇(ψ − Ihψ) dx+

∫

Ω
∇(Ihu− uh) · ∇Ihψ dx

=

∫

Ω
∇(Ihu− uh) · ∇(ψ − Ihψ) dx+ Fu(∇(Ihψ))

=

∫

Ω
∇(Ihu− uh) · ∇(ψ − Ihψ) dx+ Fu(∇(Ihψ)− Π∇ψ),

where we used (3.1) in the last step.
Hence, using (3.2) we have

(3.12)

∫

Ω
(Ihu− uh)φ ≤ ‖∇(Ihu − uh)‖Lp(Ω)‖∇(ψ − Ihψ)‖Lq(Ω) + CFh‖∇(Ihψ)− Π∇ψ‖L1(Ω)

Using the properties of Ih and Π we can easily show

‖∇(ψ − Ihψ)‖Lq(Ω) ≤ C h‖ψ‖W 2,q(Ω)

and

‖∇(Ihψ)− Π∇ψ‖L1(Ω) ≤ Ch‖ψ‖W 2,1(Ω).

The proof will be complete if we use (3.11) and take the supremum over φ. �

Corollary 1. Assume the hypothesis of Theorem 1. Then, we have

‖Ihu− uh‖L∞(Ω) ≤ CCFh
2 log(1/h)

Proof. Using the inverse inequality we have

‖Ihu− uh‖L∞(Ω) ≤ Ch−2/p‖Ihu− uh‖Lp(Ω).

The result follows after applying the previous theorem and setting p
2 = log(1/h). �

We conclude this section by stating the estimates for the method we derived in the previous
section. Of course, the estimates are simple consequences of Theorem 1, Corollary 1 and (2.1).

Corollary 2. Suppose that Ω is convex. Let uh ∈ Vh be the solution to (2.1) with Eh given by
(2.2) then we have the following estimates

‖∇(Ihu− uh)‖L∞(Ω) ≤ Ch(‖u‖C2(Ω−) + ‖u‖C2(Ω+)),

and

‖Ihu− uh‖L∞(Ω) ≤ Ch2 log(1/h)(‖u‖C2(Ω−) + ‖u‖C2(Ω+)).

4. Other methods

4.1. The method of He et al. [9]. It turns out that our method is very similar to a method
introduced by He et al. [9]. It should be mentioned that the methodology used to derive the
method in [9] is quite different from the methodology that we used to derive the method in the
previous section. Although for their method Fu does not satisfy (3.1) and so we cannot prove
the h2 log(1/h) estimate for the pointwise error as in Corollary 1, we develop a more complicated
analysis to prove a positive result.
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The finite element method of [9] for (1.1) (with α = 0) solves (2.1) with

Eh(v) =

∫

Ω
f vdx+

∫

Γ
βvds−

∑

T∈T Γ
h

qT

∫

T
∇ub · ∇v dx,(4.1)

where T Γ
h are all the triangle in Th that intersect Γ. In order to define qT and ub we need to

first introduce some notation. Suppose that T ∈ T Γ
h and and let Γ intersect at two points: xe

and xr where e and r are edges of T . Consider the line LT = xexr that passes through xe and
xr (i.e the line that interpolates Γ) and let n±

T be the unit normal vector of that line pointing

out of Ω±. Then, qT = 1
|LT |

∫

Γ∩T β(s)ds. Moreover the function ub on T is piecewise linear such

that it vanishes on all the three nodes of T and such that the jump of the normal derivative of
ub along LT is 1:

∇u−b ·n−
T + ∇u+

b · n+
T = 1.

In order to make the method of He et al. look more like our method (2.2) we integrate by parts
and get

−qT
∫

T

∇ub · ∇v dx = −qT
∫

∂T

ub∇v · n ds = −qT (

∫

e

ub∇v · n ds+

∫

f

ub∇v ·n ds).

Not difficult to see that

−qT
∫

e
ub∇v · n ds = −he−he+

2
qT ã

T
e ∇v · n

where ãT
e = te− · n−

T . Note that ãT
e 6= ae, in general and more crucially that ãT

e is also different

from ãK
e when K is the other triangle that has e as an edge. Of course, they do coincide when

Γ is a line, and in fact our method will coincide with the method of He et al.
To be more precise, let e ∈ EΓ

h with ē = T ∩K and T,K ∈ T Γ
h then set

ce =
qT ã

T
e + qK ã

K
e

2
me =

qT ã
T
e − qK ã

K
e

2
.

Then we see that

−
∑

T∈T Γ
h

qT

∫

T

∇ub · ∇v dx(4.2)

= −
∑

e∈EΓ
h

(

he−he+

2
ce[∇v · n]|e +

he−he+

2
me{∇v ·n}|e

)

where {∇v ·n}|e = 1
2(∇v|T +∇v|K) ·nT where again ē = T ∩K and nT is unit normal pointing

out of T .
As we can see our method and the method of He et al. are very similar. In fact, let uh

denote the solution of our method and uh be the solution of the method of He et al. and let
wh = uh − uh then we see that

∫

Ω
∇wh · ∇v dx = Ru(∇v) for all v ∈ Vh

where

Ru(φ) =
∑

e∈EΓ
h

(

he−he+

2
(ce − aeβ(xe))[φ · n]|e +

he−he+

2
me{φ · n}|e

)
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It is easy to see that

|ce − aeβ(xe)|+ |me| ≤ C hmax
s

(|β(X(s))|+ |∂β(X(s))

∂s
|) ≤ C h(‖u‖C2(Ω−) + ‖u‖C2(Ω+))

Hence, we can show that

(4.3) Ru(φ) ≤ CRh‖φ‖L1(SΓ) for all φ ∈ Φh,

where SΓ =
⋃

T∈Th,T∩Γ6=∅ T and

CR ≤ C (‖u‖C2(Ω−) + ‖u‖C2(Ω+)).

However, it does not necessarily hold that Rh(φ) = 0 for all for all φ ∈ ΦD
h .

Using the Theorem 2 we do have, however,

‖∇(Ihu− uh)‖L∞(Ω) ≤ C (CR +CL) log(1/h)h

for the He et al. [9] method. We can remove the logarithmic by using a more delicate analysis.

Theorem 4. Let Ω be convex then and let uh be the solution of (2.1) with (4.1) then we have

‖∇(Ihu− uh)‖L∞(Ω) ≤ C h(‖u‖C2(Ω−) + ‖u‖C2(Ω+))

Proof. Following the proof of Theorem 2 we can show for each i = 1, 2 that

|∂xi
wh(z)| = |Ru(∇gh)| ≤ CRh‖∇gh‖L1(SΓ),

by using (4.3). Using the triangle inequality we have

|∂xi
wh(z)| ≤ CRh(‖∇(gh − g)‖L1(SΓ) + ‖∇g‖L1(SΓ)).

Using (3.8) we have ‖∇(gh − g)‖L1(SΓ) ≤ ‖∇(gh − g)‖L1(Ω) ≤ C. Although, it holds that

‖∇g‖L1(Ω) ≤ C log(1/h).

one has the better estimate

‖∇g‖L1(SΓ) ≤ C.

The proof of this inequality follows the ideas of the proof (3.9). We leave the details to the
reader.

This will show that

‖∇wh‖L∞(Ω) ≤ C CR h.

The proof is complete if we apply Corollary 2. �

Now let us turn to the analysis of the pointwise error which is more delicate.

Theorem 5. Let Ω be a convex set and let uh be the solution of (2.1) with Eh defined by (4.1).
Then we have

‖Ihu− uh‖L∞(Ω) ≤ C h2 log(1/h)(‖u‖C2(Ω−) + ‖u‖C2(Ω+))

Proof. Let z ∈ Ω be arbitrary and let δh = δz
h satisfy (3.4) and (3.5).

−∆g̃ = δh in Ω(4.4)

g̃ = 0 on ∂Ω.(4.5)
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Let Ph : H1
0 (Ω) → Vh be the Scott-Zhang interpolant ( see [23] ), then we have

wh(z) =

∫

Ω
whδh dx =

∫

Ω
∇wh · ∇g̃ dx

=

∫

Ω
∇wh · ∇Phg̃ dx+

∫

Ω
∇wh · ∇(g̃ − Phg̃) dx

=Ru(∇(Phg̃)) +

∫

Ω

∇wh · ∇(g̃ − Phg̃) dx

Hence

(4.6) |wh(z)| ≤ CRh ‖∇(Phg̃)‖L1(SΓ) + ‖∇wh‖L∞(Ω)‖∇(g̃− Phg̃)‖L1(Ω)

Since,
‖∇(g̃− Phg̃)‖L1(Ω) ≤ C h‖g̃‖W 2,1(Ω) ≤ C p‖δh‖Lq(Ω).

where we used elliptic regularity (3.11) (for any 2 ≥ q > 1) and used the notation 1
p + 1

q = 1.

Using (3.5) we get

(4.7) ‖∇(g̃ − Phg̃)‖L1(Ω) ≤ Cph−2/ph = Ch log(1/h),

where we choose p
2 = log(1/h).

Next, we estimate ‖∇(Phg̃)‖L1(SΓ). Using the stability of the Scott-Zhang interpolant we have

‖∇(Phg̃)‖L1(SΓ) ≤ C ‖∇g̃‖L1(S̃Γ), where S̃Γ = {x : dist(x, SΓ) ≤ h}.
So far, we have the estimate

(4.8) |wh(z)| ≤ C CRh
2 log(1/h) +CCRh‖∇g̃‖L1(S̃Γ).

where we used (4.1).
In order to estimate ‖∇g̃‖L1(S̃Γ) we write

Si = {x ∈ S̃Γ : ih ≤ |x− z| ≤ (i+ 1)h}
Using natural assumption on the shape of Γ, one can see |Si| ≤ Ch2 for all i.

Hence,

h‖∇g̃‖L1(S̃Γ) = h‖∇g̃‖L1(S0∪S1) + h

M
∑

i=2

‖∇g̃‖L1(Si)

where M = O(1/h). We bound the first term.

‖∇g̃‖L1(S0∪S1) ≤ h2−2/p‖∇g̃‖Lp(S0∪S1).

Using Sobolev embedding inequality we have

‖∇g̃‖Lp(S0∪S1) ≤ p‖g̃‖H2(S0∪S1) ≤ p‖g̃‖H2(Ω) ≤ p‖δh‖L2(Ω)

where we used elliptic regularity (3.11). Hence, using (3.5) we have

h‖∇g̃‖L1(S0∪S1) ≤ p h2h−1/p.

Again choosing p = log(1/h) we get

h‖∇g̃‖L1(S0∪S1) ≤ C h2 log(1/h).

For the remaining terms we get

M
∑

i=2

‖∇g̃‖L1(Si) ≤ h2
M
∑

i=2

‖∇g̃‖L∞(Si).
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then we obtain

(4.9) h‖∇g̃‖L1(S̃Γ) = h2 log(1/h) + h3
M
∑

i=2

‖∇g̃‖L∞(Si)

Using the Green’s function representation

g̃(x) =

∫

Gx(y)δh(y)dy

where Gx is the Green’s function centered at x we have

∂xi
g̃(x) =

∫

∂xi
Gx(y)δh(y)dy

It is well known that

|∂xi
Gx(y)| ≤ C

|x− y| .

If x ∈ Si then we know that ‖x− y‖ ≥ (i− 1)h for any y ∈ Tz. Hence, we have

‖∇g̃‖L∞(Si) ≤
C

(i− 1)h
‖δh‖L1(Tz) =

C

(i− 1)h
.

Therefore,

h3
M
∑

i=2

‖∇g̃‖L∞(Si) ≤ C h2
M−1
∑

i=1

1

i
≤ C h2 log(1/h).

Combining the last inequality and (4.9) we get

(4.10) h‖∇g̃‖L1(S̃Γ) ≤ Ch2 log(1/h).

Taking supremum over z ∈ Ω in (4.6) and using estimates (4.7) and (4.10) we get

‖wh‖L∞(Ω) ≤ C h log(1/h)
(

‖∇wh‖L∞(Ω)

)

.

The proof is complete if we apply the triangle inequality, Corollary 2 and the previous theorem.
�

4.2. The natural method. As mentioned earlier the natural method (for α = 0) is given by
(2.1) with

(4.11) Eh(v) =

∫

Ω
fv dx+

∫

Γ
βv ds.

It is well known that this method is sub-optimal near the interface Γ. For completeness we prove
error estimates for this method.

To this end, let uh be the solution using our method (2.2) (with α = 0) and let uh be the
method using (4.11) and call wh = uh − uh then we see that wh satisfies

(4.12)

∫

Ω

∇wh · ∇v dx = Lu(∇v) for all v ∈ Vh,

where

Lu(φ) =
∑

e∈EΓ
h

he−he+

2
aeβ(xe) [φ · n]|e.

We can easily show the following lemma.
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Lemma 4. It holds

Lu(φ) = 0 for any φ ∈ ΦD
h ,(4.13)

|Lu(φ)| ≤ CL‖φ‖L1(SΓ) for all φ ∈ Φh.(4.14)

where the SΓ =
⋃

T∈Th,T∩Γ6=∅ T and

CL ≤ C(‖u‖C2(Ω−) + ‖u‖C2(Ω+)).

Theorem 6. Let Ω be a convex set and let uh solve (2.1) with (4.11) then we have that

‖uh − Ihu‖L∞(Ω) ≤ C h log(1/h)(‖u‖C2(Ω−) + ‖u‖C2(Ω+)).

Proof. Following the argument as in the proof of Theorem 1 we can easily show that ‖∇wh‖L∞(Ω) ≤
C where we use (4.13) and (4.14) and also the estimates (3.8) and (3.9).

Then using a duality argument as in the proof of Theorem 3 we can easily show for 2 ≤ p <∞
‖wh‖Lp(Ω) ≤ Chp(‖∇wh‖Lp(Ω) +CL) ≤ Chp(1 +CL).

Then, as we did before, we use an inverse estimate ‖wh‖L∞(Ω) ≤ C h−2/p‖wh‖Lp(Ω) and set
p
2 = log(1/h) we get

‖wh‖L∞(Ω) ≤ Ch log(1/h)(1 +CL).

We obtain the result if we apply Corollary 2. �

The above result is far from optimal and this is in fact observed in numerical experiments
near the interface Γ. In particular, the gradient of the error will be O(1) near the interface.
However, numerical experiments also show that if one is far enough away from the interface then
one obtains optimal estimates. In fact, Mori [17] showed that this was the case for the immersed
boundary method [17] (see also [13]). We note, however, he did not quantify exactly how far
away from the interface one has to be.

We will quantify how far from the interface one has to be to obtain optimal estimates for the
gradient error. In order to this we will need Green’s function estimates of the third derivatives.
This holds on smooth domains Ω however not any convex polygonal domain. Therefore, we
assume that Ω is a rectangle and we replace the Dirichlet boundary conditions with periodic
boundary conditions. In this case, we will have the following estimate for the corresponding
Green’s function Gx(y) centered at x

(4.15) |∂2
xixj

∂yj
Gx(y)| ≤ C

|x− y|3 ,

for any 1 ≤ i, j ≤ 2.

Theorem 7. Suppose that Ω is a rectangle and assume that u solves (1.1) with the Dirichlet
boundary conditions replaced with periodic boundary conditions . Let uh be the approximation of
(2.1) using (4.11). Let z ∈ Ω and let d = dist(z,Γ) ≥ κh for a sufficiently large fixed constant
κ. Furthermore, suppose dist(Γ, ∂Ω) > d. Then, we have

|∇(Ihu − uh)(z)| ≤ Ch(log(1/h)
h

d2
+ 1)(‖u‖C2(Ω−) + ‖u‖C2(Ω+)).

Proof. Let δh = δz
h satisfy (3.4) and (3.5). Furthermore, for each i = 1, 2, let g satisfy (3.6) with

Dirichlet boundary conditions replaced with periodic boundary conditions and let gh its finite
element approximation. Then, we have

|∂xi
wh(z)| = |Lu(∇gh)| = |Lu(∇gh − Π∇g)|.
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where we used (4.13). Using (4.14) and the triangle inequality we have

(4.16) |∂xi
wh(z)| ≤ CCL(‖∇gh −∇g‖L1(SΓ) + ‖∇g − Π∇g‖L1(SΓ)).

We proceed to bound ‖∇gh −∇g‖L1(SΓ). The second term is easier to bound.
Define the sets

Si = {x ∈ SΓ : di ≤ |x− z| ≤ di+1}.
where di =

√

d2 + (ih)2. As one can see by using natural assumption on the shape of Γ, that
the measure of Si is less than O(h2). Also define

Br(Si) = {x : dist(x, Si) ≤ r}
We can then write

‖∇gh −∇g‖L1(SΓ) =

M
∑

i=0

‖∇gh −∇g‖L1(Si),

where M = O(1/h).
We have

‖∇gh −∇g‖L1(Si) ≤ Ch2‖∇gh −∇g‖L∞(Si).

We will show the following bound

(4.17) ‖∇gh −∇g‖L∞(Si) ≤
h

d3
i

log(1/h),

and hence

‖∇gh −∇g‖L1(SΓ) ≤ C h3 log(1/h)
M
∑

i=0

1

d3
i

= Ch3 log(1/h)

M
∑

i=0

(
1

(d2 + (ih)2
)3/2

≤ Ch2

d2
log(1/h).

In the last step we bound the sum by

h3

∫ M+1

1

(

1

d2 + h2x2

)3/2

dx =
h3

d2

[

(

x2

d2 + h2x2

)1/2
]M+1

1

≤ h3

d2

(

(M + 1)2

d2 + h2(M + 1)2

)1/2

,

and we used the fact that M = O(1/h).

Of course, we can also prove ‖∇g−Π∇g‖L1(SΓ) ≤ Ch2

d2 log(1/h) and therefore in view of (4.16)
we have

|∂xi
wh(z)| ≤ CCLh

2

d2
log(1/h).

Hence, the proof is complete if we combine this result with Corollary 2. What remains is the
proof (4.17). To do this we will use a result by Schatz and Wahlbin. Note that g − gh solves
the following

∫

Ω
∇(g − gh) · ∇vdx = 0 for all v ∈ Vh ∩H1

0 (Bdi
2

(Si)).
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Therefore a result of Schatz and Wahlbin [22] we have

‖∇(g − gh)‖L∞(Si) ≤C(‖∇(g − Phg)‖L∞(B di
2

(Si)) +
1

di
‖g − Phg‖L∞(B di

2

(Si)))

+
1

d3
‖g − gh‖L1(B di

2

(Si)).

We bound the first two terms

‖∇(g− Phg)‖L∞(B di
2

(Si)) +
1

di
‖g − Phg‖L∞(B di

2

(Si)) ≤ Ch‖g‖W 2,∞(B 3di
4

(Si)).

Let x ∈ B3di
4

(Si) then |x− y| ≥ di for any y ∈ Tz and hence

∂2
xixj

g(x) =

∫

Ω

∂2
xixj

Gx(y)∂yi
δh(y)dy

= −
∫

Ω
∂2

xixj
∂yi
Gx(y)δh(y)dy

≤C

d3
i

‖δh‖L1(Tz) =
C

d3
i

,(4.18)

where we used (4.15).
Finally, using a duality argument ( see Appendix B) we can show

(4.19) ‖g − gh‖L1(Ω) ≤ C hp h−(2−2/q),

where 1 < q < 2 and 1
p + 1

q = 1. Combining the last inequality with p
2 = log(1/h) and (4.18)

proves (4.17). This completes the proof. �

5. Numerical examples.

In this section we illustrate our results with two examples. We consider the square domain
Ω = [−1, 1]2 with non-uniform triangular meshes and we tabulate the L2 error, H1 semi-norm
error, L∞ error and W 1,∞ semi-norm error with their respective order of convergence for our
examples. Plots of approximate solutions by our method are also provided. The interpolant Ih
used is introduced in Definition 2.1.

Let u be the exact solution of problem (1.1), uh be the solution of our method (2.2) and uN
h

the solution of the first-order method (4.11). Define the errors with respect to the interpolant
Ih as follows

eh := uh − Ihu, eNh := uN
h − Ihu,

and we define the respective order of convergence (associated to the error and the norm) as

r(e, ‖ · ‖) :=
log(‖ehl+1

‖/‖ehl
‖)

log(hl+1/hl)
.

These examples are taken from [12].

1. Consider a exact solution of problem (1.1)

u(x) =

{

1, if r ≤ R
1 − log( r

R ), if r > R
x ∈ [−1, 1]2,

where r = ‖x‖2 and R = 1/3. Then, the data is given by f± = 0, α = 0 and β = 1
R . We

summarize the errors and order of convergence in the following tables
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h ‖eh‖L2 r ‖∇eh‖L2 r ‖eh‖L∞ r ‖∇eh‖L∞ r
1.8e-1 1.39e-1 4.44e-1 2.53e-1 5.20e-1
8.8e-2 3.09e-2 2.17 1.72e-1 1.37 6.40e-2 1.98 3.84e-1 0.44
4.4e-2 7.32e-3 2.08 5.75e-2 1.58 1.58e-2 2.02 1.79e-1 1.10
2.2e-2 1.81e-3 2.02 2.18e-2 1.40 4.19e-3 1.91 1.20e-1 0.58
1.1e-2 4.50e-4 2.01 8.57e-3 1.35 8.92e-4 2.23 6.45e-2 0.89
5.5e-3 1.12e-4 2.01 3.57e-3 1.26 2.37e-4 1.91 3.17e-2 1.02
2.8e-3 2.68e-5 2.06 1.55e-3 1.21 6.23e-5 1.93 1.71e-2 0.90
1.4e-3 6.89e-6 1.96 7.68e-4 1.01 1.68e-5 1.90 8.33e-3 1.03

Table 1: L2 and L∞ errors of the approximate solution of our method (EBC-FEI), on a
non-uniform grid.

Figure 2: Plot of the approximate solution by our method (EBC-FEI), on a
non-uniform grid.

h ‖eNh ‖L2 r ‖∇eNh ‖L2 r ‖eNh ‖L∞ r ‖∇eNh ‖L∞ r
1.8e-1 1.02e-1 4.71e-1 1.63e-1 7.01e-1
8.8e-2 1.57e-2 2.70 1.38e-1 1.78 4.09e-2 2.00 3.26e-1 1.10
4.4e-2 6.72e-3 1.22 1.30e-1 0.09 2.85e-2 0.52 5.48e-1 -0.75
2.2e-2 2.02e-3 1.74 7.88e-2 0.72 1.07e-2 1.42 5.87e-1 -0.10
1.1e-2 7.65e-4 1.40 6.16e-2 0.36 7.24e-3 0.56 6.24e-1 -0.09
5.5e-3 2.71e-4 1.50 4.27e-2 0.53 4.39e-3 0.72 6.24e-1 0.00
2.8e-3 9.09e-5 1.58 2.83e-2 0.59 2.04e-3 1.11 7.80e-1 -0.32
1.4e-3 3.53e-5 1.36 2.24e-2 0.34 1.38e-3 0.57 8.78e-1 -0.17

Table 2: L2 and L∞ errors of the approximate solution of the natural method, on a
non-uniform grid.

The results presented in Table 1 confirm the estimates obtained in Theorem 2 and
Corollary 1. In the same way, Table 2 exemplified the estimate obtained in Theorem 6.

It is difficult to check the sharpness of Theorem 7. In an attempt to do this, we plot
for each triangle T the error |∇eNh (dT )| where dT is the distance between its centroid
and the interface Γ. We compare this to the graph of the bound of the error given by
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Theorem 7, namely, C(h + h2 log(1/h)
d2 ). We observe that the curve roughly describes the

behavior of the error when the distance d is less than
√
h.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
10

−3

10
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10
−1

10
0

d

√

h

Figure 3: Semi-log plot of gradient error for the natural method with h = .0028.
|∇eNh (dT )| (red) for every triangle T and curve 2h+ log(1/h)(h/d)2 (blue).

2. Consider the exact solution

u(x1, x2) =

{

x2
1 − x2

2, if r ≤ R
0, if r > R

Therefore, the data for the problem is given by fp = fm = 0, α(θ) = −R2(cos2(θ/R) −
sin2(θ/R)) and β(θ) = 2R cos2(θ/R) − 2R sin2(θ/R)), for θ ∈ [0, 2πR], and R = 2/3.

h ‖eh‖L2 r ‖∇eh‖L2 r ‖eh‖L∞ r ‖∇eh‖L∞ r
1.8e-1 9.28e-3 3.27e-2 1.42e-2 4.23e-2
8.8e-2 5.41e-3 0.78 3.50e-2 -0.10 8.23e-3 0.79 6.61e-2 -0.64
4.4e-2 1.19e-3 2.18 1.18e-2 1.56 2.19e-3 1.91 3.18e-2 1.06
2.2e-2 2.89e-4 2.05 5.06e-3 1.23 7.41e-4 1.56 2.25e-2 0.50
1.1e-2 7.51e-5 1.94 2.42e-3 1.06 1.64e-4 2.17 1.15e-2 0.97
5.5e-3 1.89e-5 1.99 1.18e-3 1.04 4.45e-5 1.88 5.57e-3 1.04
2.8e-3 4.71e-6 2.00 5.74e-4 1.03 1.20e-5 1.89 2.68e-3 1.06
1.4e-3 1.18e-6 2.00 2.86e-4 1.01 3.03e-6 1.98 1.35e-3 0.98

Table 3: L2 and L∞ errors of the approximate solution of our method (EBC-FEI).



FEM FOR INTERFACE PROBLEMS 21

Figure 3: .

6. Future Work

As one can imagine several extensions are possible. In a future work, we first plan to extend
our method and analyze it for fluid flow problems. Three-dimensional problems will also be
considered. Finally, in the future we will consider discontinuous diffusion coefficients.
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Appendix A. Proof of estimate (3.9).

Here we shall prove that there exists a constant C > 0, independent of h, such that

‖Π(∇g)−∇g‖L1(Ω) ≤ C,(A.1)

where Π is the lowest order Raviart-Thomas interpolant.
We proceed by a dyadic decomposition argument (see [7]). We assume without loss of gener-

ality that |Ω| ≤ 1. Define dj = 2−j and J be the integer such that 2−(J+1) ≤ Kh ≤ 2−J , where
K is a fixed constant that is large enough. Then, consider the following decomposition of Ω

(A.2) Ω = Ω∗ ∪
J
⋃

j=0

Ωj,

where Ω∗ = {x ∈ Ω : |x− z| ≤ Kh}, Ωj = {x ∈ Ω : dj+1 ≤ |x− z| ≤ dj}.
Henceforth, we will denote by C the generic constants not depending on K or h.
We break (A.1) using the dyadic decomposition (A.2)

‖Π(∇g)−∇g‖L1(Ω) = ‖Π(∇g)−∇g‖L1(Ω∗) +

J
∑

j=0

‖Π(∇g)−∇g‖L1(Ωj).

Firstly, we estimate the term involving the set Ω∗

‖Π(∇g)−∇g‖L1(Ω∗) ≤ Kh‖Π(∇g)−∇g‖L2(Ω∗)

≤ Kh2‖∇g‖H1(Ω)

≤ Kh2‖∂xi
δh‖L2(Ω)

≤ CK.

In the inequality we used estimate (3.5) with q = 2 and k = 0. For the second term we have

J
∑

j=0

‖Π(∇g)−∇g‖L1(Ωj) = C

J
∑

j=0

d2
j‖Π(∇g)−∇g‖L∞(Ωj )

≤ C
J

∑

j=0

d2
jh

σ‖∇g‖Cσ(Ω′
j)
,

where Ω′
j = {x ∈ Ω : dj+2 ≤ |x− z| ≤ dj−1}. The bound for ‖∇g‖Cσ(Ω′

j)
is proved, for example,

in [7] in the three-dimensional case. In the two-dimensional case one will have the bound

‖∇g‖Cσ(Ω′
j ) ≤ Cd−2−σ

j .

Then,

J
∑

j=0

‖Π(∇g)−∇g‖L1(Ωj) ≤ C
J

∑

j=0

d2
jh

σd−2−σ
j ≤ Chσdσ

J ≤ CK−σ .

This completes the proof. �
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Appendix B. Proof of estimate (4.19).

We will prove the following estimate

‖g − gh‖L1(Ω) ≤ Chh−(2−2/q).

Let Ph be the Scott-Zhang interpolant, then for 1 < q < 2 we have

‖g − gh‖L1(Ω) ≤ ‖g − gh‖Lq(Ω) ≤ ‖g − Phg‖Lq(Ω) + ‖Phg − gh‖Lq(Ω).

Consider the dual problem

−∆ψ = φ in Ω

φ = 0 on ∂Ω

with the regularity result for p > 2

‖ψ‖W 2,p(Ω) ≤ Cp‖φ‖Lp(Ω).

Using this we have

‖Phg − gh‖Lq(Ω) = sup
φ∈C∞

c (Ω)
‖φ‖Lp(Ω)≤1

(Phg − gh, φ)

≤ (Phg − gh,−∆ψ)

= (∇(Phg − gh),∇ψ)

= (∇(Phg − gh),∇(ψ− Phψ)) + (∇(Phg − gh),∇Phψ)

= (∇(Phg − gh),∇(ψ− Phψ)) + (∇(Phg − g),∇Phψ).

For the first term we have, with 1/p = 1 − 1/q, and applying inverse estimate

(∇(Phg − gh),∇(ψ− Phψ)) ≤ ‖∇(Phg − gh)‖Lq(Ω)‖∇(ψ − Phψ)‖Lp(Ω)

≤ Chp‖∇(Phg − gh)‖Lq(Ω)‖φ‖Lp(Ω)

≤ Chph−(2−2/q)‖∇(Phg − gh)‖L1(Ω),

and for the second term we have

(∇(Phg − g),∇Phψ) = (∇(Phg − g),∇(Phψ − ψ)) + (∇(Phg − g),∇ψ)

= (∇(Phg − g),∇(Phψ − ψ)) + (Phg − g, φ).

We estimate them

(∇(Phg − g),∇(Phψ − ψ)) ≤ ‖∇(Phg − g)‖Lq(Ω)‖∇(Phψ − ψ)‖Lp(Ω)

≤ Ch‖∇(Phg − g)‖Lq(Ω)‖ψ‖W 2,p(Ω)

≤ Chp‖∇(Phg − g)‖Lq(Ω),

(Phg − g, φ) ≤ ‖Phg − g‖Lq(Ω)‖φ‖Lp(Ω) ≤ ‖Phg − g‖Lq(Ω).

Assuming the following inequalities, for 1 ≤ q < 2,

‖Phg − g‖Lq(Ω) ≤ Chh−(2−2/q),(B.1)

‖∇(Phg − g)‖Lq(Ω) ≤ Ch−(2−2/q),(B.2)
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we have

‖Phg − gh‖Lq(Ω) ≤ Chph−(2−2/q) + Chph−(2−2/q) + Chh−(2−2/q),

and therefore

‖g − gh‖Lq(Ω) ≤ Chph−(2−2/q) +Chh−(2−2/q).

Proof. Proof of (B.1)
We proceed by a dyadic decomposition argument as before. We break (B.1) using the dyadic

decomposition (A.2)

‖Phg − g‖Lq(Ω) = ‖Phg − g‖Lq(Ω∗) +

J
∑

j=0

‖Phg − g‖Lq(Ωj ).

Firstly, we estimate the term involving the set Ω∗

‖Phg − g‖Lq(Ω∗) ≤ C(Kh)2(1/q−1/2)‖Phg − g‖L2(Ω∗)

≤ C(Kh)2(1/q−1/2)h2‖∂xi
δh‖L2(Ω)

≤ C(Kh)2(1/q−1/2)

= Ch(K)2(1/q−1/2)h−(2−2/q).

In the inequality we used ‖∂xi
δh‖L2(Ω) ≤ Ch−2. For the second term we have

J
∑

j=0

‖Phg − g‖Lq(Ωj) = C

J
∑

j=0

d
2/q
j ‖Phg − g‖L∞(Ωj )

≤ C

J
∑

j=0

d
2/q
j h1+σ‖g‖C1+σ(Ω′

j)
,

where Ω′
j = {x ∈ Ω : dj+2 ≤ |x−z| ≤ dj−1}. The bound for ‖∇g‖C1+σ(Ω′

j)
is proved, for example,

in [7] in the three-dimensional case. In the two-dimensional case one will have the bound

‖∇g‖Cσ(Ω′
j ) ≤ Cd−2−σ

j .

Then,

J
∑

j=0

‖Phg − g‖Lq(Ωj ) ≤ C

J
∑

j=0

d
2/q
j h1+σd−2−σ

j ≤ Ch1+σCdσ
Jd

2/q−2
J

≤ ChK−σ(Kh−(2−2/q)).

This completes the proof. �

Proof of (B.2) follows by the same arguments.
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