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Abstract. We present a family of mixed methods for linear elasticity, that yield exactly
symmetric, but only weakly conforming, stress approximations. The method is presented
in both two and three dimensions (on triangular and tetrahedral meshes). The method
is efficiently implementable by hybridization. The degrees of freedom of the Lagrange
multipliers, which approximate the displacements at the faces, solve a symmetric positive-
definite system. The design and analysis of this method is motivated by a new set of
unisolvent degrees of freedom for symmetric polynomial matrices.

1. Introduction

Mixed methods are popular finite elements in solid mechanics since they avoid locking
and provide direct approximations to stresses. However, stress elements are difficult to
design due to two requirements. First, due to conservation of angular momentum, the
stress tensor is required to be symmetric. Second, the forces on a mesh face shared by two
mesh elements must be in equilibrium, i.e., the stress approximation must lie in H(div).

Stress finite elements satisfying both these requirements have been designed in [1, 8,
4, 3]. But the main drawback of these methods are that they cannot be implemented
as efficiently as other mixed methods. Their stress elements have too many degrees of
freedom and techniques like hybridization usually available for mixed methods are not
available for these methods. A related family of methods use composite elements and
yield symmetric approximations to the stresses [6, 26]. However, they use piecewise
discontinuous polynomials within each element.

Recognizing the difficulties caused by imposing both the above mentioned require-
ments, researchers have pursued design of methods that relax one of the two requirements.
The first category of such methods weakly impose stress symmetry, while maintaing ex-
act H(div)-conformity. These methods introduce a Lagrange multiplier approximating
the non-symmetric part of the displacement gradient while enforcing stress symmetry
weakly [2, 7, 5, 13, 17, 21, 22, 23, 27, 29].

One can equally well consider methods that relax the other requirement, namely the
H(div)-conformity of stress, yielding a second category of methods. The contributions
of [9, 10, 24, 25, 30, 31] fit into this category, and so does the contribution of this paper.
These methods yield non-conforming, but symmetric, stress approximations. These meth-
ods, both in the first and second category, can be more efficiently implemented compared
to the above mentioned strongly symmetric conforming methods.
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To describe our contribution, let us introduce the linear elasticity problem

div σ = f in Ω, (1.1a)

Aσ − ε(u) = 0 in Ω, (1.1b)

u = 0 on ∂Ω, (1.1c)

where Ω ⊂ Rd (for d = 2, 3). Here, displacement is represented by the function u : Ω 7→
Rd. The stress is denoted by σ : Ω 7→ S, where S denotes the set of real symmetric
d × d matrices. The compliance tensor is denoted by A(x), and is assumed to be a
bounded, symmetric, positive definite tensor over S. The given load is denoted by the
vector function f : Ω 7→ Rd. The linearized strain tensor is ε(u) = (gradu+ (gradu)′)/2.
Here and throughout, transposes are denoted by ′, and differential operators are applied
row-wise.

Our finite element spaces for the stresses and displacements are very simple. Let Ωh

be a simplicial mesh of Ω (satisfying the standard finite element conformity assumptions).
Our spaces, for k ≥ 1, are given by

V h := {τ : τ |K ∈ Pk+1(K, S), for all K ∈ Ωh, and the moments of τn

up to degree k are continuous across element interfaces }, (1.2a)

W h := {w : w|K ∈ Pk(K,Rd), for all K ∈ Ωh}. (1.2b)

Here Pk(D,Rd) (or Pk(D, S)) denotes the space of functions from D 7→ Rd (or D 7→ S,
resp.) whose scalar components are polynomials of degree at most k. Above, n denotes
a normal vector on the interelement boundaries. If τn were continuous across element
interfaces, then τ would be in H(div,Ω,S) := {η ∈ L2(Ω,S) : div η ∈ L2(Ω,Rd)}, the
space where the exact stresses lie. Clearly, functions τ in V h are, in general, not in
H(div,Ω,S), so our method is non-conforming.

Our method finds (σh, uh) ∈ V h ×W h by satisfying

(Aσh, τ)Ω + (uh, div τ)Ω =0 (1.3a)

(div σh, ω)Ω =(f, ω)Ω (1.3b)

for all (τ, ω) ∈ V h×W h. Note that above σh /∈ H(div,Ω,S) in general, and div (·) denotes
the element-wise divergence. Here and throughout, for vector functions ζ, θ : D 7→ Rd,
the notation (ζ, θ)D denotes the integral over D of their dot product, while for matrix
functions ζ and θ : D 7→ S, the same notation (ζ, θ)D denotes the integral over D of
their Frobenius inner product ζ : θ ≡ tr(ζ ′θ). Our new mixed nonconforming method is
recommended by the simplicity of its elements, and the possibility of hybridization for
efficient implementations. The main drawback is that we are only able to prove suboptimal
convergence rates.

The key to our analysis is a new set of unisolvent degrees of freedom for the local
space Pk+1(K, S) for any k ≥ 1 and space dimensions d = 2, 3. The degrees of freedom
of the space Pk+1(K, S) use edge moments in three dimensions and vertex values in two-
dimensions. However, let us emphasize at the outset that these edge or vertex degrees of
freedom, unlike the strongly symmetric conforming methods, will not make our method
inefficient. In fact, we will present the hybrid form of the method in Section 4, where we
introduce Lagrange multipliers of degree k that approximate the displacements on mesh
faces. We will show that the other variables can be eliminated locally to obtain a final
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symmetric-positive definite system for only the degrees of freedom associated with the
Lagrange multipliers.

Nevertheless, we also investigate if one can construct a reduced space V h which does
not contain edge moments in three dimensions (or vertex values in two-dimensions) as
degrees of freedom. This is indeed possible as shown in Section 5. The reduced space re-
places Pk+1(K, S) in (1.2a) with a space V (K) satisfying Pk(K, S) ⊂ V (K) ⊂ Pk+1(K, S).
The method using the reduced space has the same convergence rates as the corresponding
full space. Although the dimension of V (K) is smaller than the dimension of Pk+1(K, S),
the simplicity of the full polynomial space Pk+1(K, S) might be more attractive.

As far as we know, all the other non-conforming mixed elements to date [9, 10, 24,
25, 30, 31] are low-order elements. In contrast, we develop a family of simplicial elements
(one for each k ≥ 1) in both two and three dimensions. All but the elements in [9] are
rectangular elements. Arnold and Winther in [9], define two simplicial elements in two
dimensions only. Their first element uses the displacement space W h above with k = 1
and their stress space has exactly the same dimension as our reduced stress space for
k = 1. In fact, the degrees of freedom of our reduced space corresponding to k = 1 is the
same as their first stress space. Their second element [9] uses piecewise rigid displacements
as the space of displacements and hence the displacement error can be at most first-order
accurate.

The new degrees of freedom for Pk+1(K, S), while playing a key role in the design and
analysis of our non-conforming mixed method, also find other applications. As an inter-
esting application unrelated to our method, we give an alternative proof of the dimension
count of the space

Mk := {τ ∈ Pk(K, S) : div τ = 0 and τn|∂K = 0}. (1.4)

This space is essential in the development of conforming mixed methods [4, 8]. Its dimen-
sion count in particular is important in proving the unisolvency of the degrees of freedom.
The proof of the dimension count of the space Mk in three dimensions given in [4] is
substantially more involved than the two-dimensional proof [8]. The alternative proof we
give here is much simpler.

The paper is organized as follows. In the next section we give the new unisolvent
degrees of freedom for the space Pk+1(K, S). As corollaries, we prove the dimension count
of Mk and the well-posedness of the mixed method (1.3) with spaces (1.2b), (1.2a). In
Section 3 we provide the error analysis of the mixed method. In Section 4 we present the
hybrid form of the mixed method. Finally, in Section (5) we present the reduced element.

2. A set of degrees of freedom for symmetric polynomial matrices

In this section we give a unisolvent set of degrees of freedom (d.o.f) for Pk+1(K, S).
Here K is a tetrahedra in three dimensions (d = 3), or a triangle in two dimensions
(d = 2).

The unisolvent set of d.o.f, in the three-dimensional (3D) case, is the following set of
linear functionals:

`ρ(σ) = (σ, ρ)K , for all ρ ∈ Pk−1(K, S), (2.5a)

`µ(σ) = 〈σn, µ〉F , for all µ ∈ Pk(F,Rd), for all faces F of K, (2.5b)

`s(σ) = 〈σn− · n+, s〉e, for all s ∈ Pk+1(e,R), for all edges e of K. (2.5c)
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Here, for each edge e, n+ and n− are the normal vectors of the two faces that intersect
at the edge e. Note that σn− · n+ = σn+ · n− since σ is symmetric. The notation 〈a, b〉S
denotes integration of the (scalar) product of a and b over (lower dimensional) S. In the
case of two dimensions (d = 2), the degrees of freedom are given by

`ρ(σ) = (σ, ρ)K , for all ρ ∈ Pk−1(K, S), (2.5a′)

`µ(σ) = 〈σn, µ〉F , for all µ ∈ Pk(F,Rd), for all edges F of K, (2.5b′)

`x(σ) = σ(x)n− · n+, for all vertices x of K. (2.5c′)

For each vertex x of K the vectors n+ and n− are the normal vectors of the two edges
that intersect at x. The main result of this section is the following theorem. In the k = 0
case, we omit (2.5a) and (2.5a′) from the set of d.o.f.

Theorem 2.1 (Unisolvency). Assume k ≥ 0. Let K be a triangle (d = 2) or a tetrahedra
(d = 3). Any σ in Pk+1(K, S) is uniquely determined by the degrees of freedom given by
(2.5) for d = 3 or (2.5′) for d = 2.

Proof. We prove the result in two steps. First, we show that the number of d.o.f equal

dim(Pk+1(K, S)) =
d (d+ 1)

2

(k + 1 + d)!

(k + 1)!d!
.

Consider d = 3 case. The number of linearly independent functionals in (2.5a), (2.5b),
and (2.5c) are

6
k(k + 1)(k + 2)

6
, 4

3(k + 1)(k + 2)

2
, and 6(k + 2),

respectively. These add up to 6(k + 2)(k + 3)(k + 4) = dim(Pk+1(K, S)). The d = 2 case
is similar.

The second step is to show that if all the d.o.f applied to σ ∈ Pk+1(K, S) vanish, then
σ vanishes. We only consider the d = 3 case as the d = 2 case is similar. Accordingly, let
Fi and Fj be any two distinct faces of a tetrahedron K. We denote by λi the barycentric
coordinate of K that vanishes on Fi, and by ni a normal on Fi.

We first claim that σni · nj vanishes on Fi and Fj. Clearly, by (2.5c), it vanishes on
the edge shared by Fi and Fj. Hence, on Fi, σni · nj|Fi

= λj|Fi
v for some v in Pk(Fi,R).

But by (2.5a), 〈σni, njv〉Fi
= 〈λjv, v〉Fi

= 0, so v ≡ 0. Thus σni · nj vanishes on Fi. A
similar argument on Fj shows that it vanishes there as well. Consequently,

σni · nj = λiλjw (2.6)

for some w in Pk−1(K,R). But, by (2.5a), we have (σ, nin
′
jw)K = (λiλjw,w)K = 0, which

implies w ≡ 0. Thus σni · nj ≡ 0 on K.
Any vector in R3 can be expressed in terms of any three of the normals {ni}. Since

σni · nj vanishes for any distinct i and j, we find that σ(x) is a symmetric matrix whose
quadratic form vanishes (at every point x in K). Hence σ vanishes on K.

Note that in the k = 0 case, the argument leading to (2.6) already shows that σ
vanishes and there is no need to use (2.5a). �

We conclude this section with two corollaries. The first provides a considerable sim-
plification of the proof of a previously known result [4, Theorem 7.2] concerning Mk, a
space fundamental in the analysis of known stress elements for conforming mixed methods
in linear elasticity [4, 8] (see (1.4) for its definition).
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Corollary 2.2. For any non-negative integer k,

dim(Mk) =


0 if k ≤ 3

(k − 2)(k − 3)/2 if d = 2 and k ≥ 4,

(k + 2)(k − 2)(k − 3)/2 if d = 3 and k ≥ 4.

Proof. We only prove the 3D case, as the 2D case is similar. Let R1 denote the space of
rigid displacements of the form a+b×x for some a, b ∈ R3. Let Rk

⊥ denote the orthogonal
complement of R1 in Pk(K,Rd). Let k ≥ 1. Then we have the decomposition

Pk−1(K, S) = ε(Rk
⊥)⊕ Sk−1

where Sk−1 is the orthogonal complement of ε(Rk
⊥) in Pk−1(K, S). Decomposing ρ in (2.5a)

as ρ = ε(r) + η, we find that we may split all the interior d.o.f in (2.5a) into two subcat-
egories:

`ε(r)(σ) = (σ, ε(r))K , for all r ∈ Rk
⊥, and (2.5aε)

`η = (σ, η)K , for all η ∈ Sk−1. (2.5aη)

Now, we claim that

Mk+1 = {σ ∈ Pk+1(K, S): the d.o.f in (2.5aε), (2.5b), and (2.5c),

applied to σ vanish}. (2.7)

Since the ⊆–containment is easy, we only show the reverse. Let Fi be an arbitrary face.
Then, the zero face and edge d.o.f ((2.5b) and (2.5c)) imply, by the same argument that
led to (2.6), that σni · nm|Fi

= 0 for all three indices m 6= i. Thus σni|Fi
= 0, so σn

vanishes on ∂K. That div σ also vanishes follows from (2.5aε) and integration by parts.
Hence σ is in Mk+1.

Next, the d.o.f in (2.7) are linearly independent functionals as they form a subset of
a unisolvent set of d.o.f (by Theorem 2.1). Hence dim(Mk+1) can be obtained by simply
subtracting their number from dim(Pk+1(K, S))

dim(Mk+1) = dim(Pk+1(K, S))− dim(Rk
⊥)− 4

3(k + 1)(k + 2)

2
− 6(k + 2). (2.8)

Since dim(Rk
⊥) = 3 dim(Pk(K,R) − 6, upon simplifying, we find this equals (k + 3)(k −

1)(k− 2)/2 for k+ 1 ≥ 4. The right hand side of (2.8) is zero for k+ 1 = 3, showing that
M3 is trivial. Since Mk ⊆M3 for k < 3, the spaces M0, M1, and M2 are also trivial. �

In the next corollary, we prove that the mixed method (1.3) is well defined.

Corollary 2.3. The mixed method (1.3) using the spaces V h and W h from (1.2) has a
unique solution.

Proof. Since (1.3) is a square linear system it is enough to prove uniqueness. To this
end, we set f = 0. Then, by (1.3b), div σh = 0. So, putting τ = σh in (1.3a) we find
(Aσh, σh)Ω = 0. Thus σh = 0.

In order to show that uh also vanishes, we use integration by parts in (1.3a) to get∑
K∈Ωh

−(ε(uh), τ)K + 〈uh, τn〉∂K = 0 for all τ ∈ V h. (2.9)
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On each K we define τ |K ∈ Pk+1(K, S) by setting the d.o.f (in (2.5) or (2.5′)) as follows:
Set `ρ(τ) ≡ (τ, ρ)K = −(ε(uh), ρ)K , for all ρ ∈ Pk−1(K, S), and let all other degrees of
freedom vanish. It is easy to see that this τ is in V h. Using it in (2.9),∑

K∈Ωh

(ε(uh), ε(uh))K = 0.

Thus, ε(uh|K) = 0 on each K ∈ Ωh.
Next, we show that uh is continuous and vanishes on ∂Ω. For this, on any interior

face F shared by two mesh elements K+ and K−, we let uh± denote the trace of uh on
F from K±. Also denote the unit outward normals on K± by n±. Then the jump of
uh is denoted by [[uhn′]] = uh+n

′
+ + uh−n

′
−. On faces F ⊆ ∂Ω, [[uhn′]] = uhn′. Now, for

any K ∈ Ωh, define τ |K ∈ Pk+1(K, S) by setting `µ(τ) ≡ 〈τn, µ〉F = 〈[[uhn′]]n, µ〉F for all
F ⊆ ∂K and letting all the remaining degrees of freedom vanish. The composite function
τ is then clearly in V h. Using this τ in (2.9), and recalling that that ε(uh|K) = 0, we find
that 〈[[uhn′]], [[uhn′]]〉F = 0 for all mesh faces F (or all mesh edges in the d = 2 case). Thus
uh is continuous and vanishes on the boundary. Combined with the fact that ε(uh) = 0,
this implies that uh vanishes on Ω. �

3. Error Estimates

In this section we prove the following error estimates for the mixed method (1.3). We
assume throughout that the mesh is shape regular and use h to denote the maximum of
the diameters of all mesh elements.

Theorem 3.1. Suppose k ≥ 1 and σ ∈ H1(Ω,S). Then, for any 1 ≤ r ≤ k,

‖σ − σh‖L2(Ω) + ‖u− uh‖L2(Ω) ≤ Chr‖u‖Hr+1(Ω), (3.10)

Moreover, if full elliptic regularity holds (see (3.27)), then

‖u− uh‖L2(Ω) ≤ Chr+1‖u‖Hr+1(Ω). (3.11)

In the remainder of this section, we prove Theorem 3.1 in several steps. Above and
throughout, we have adopted the usual convention of denoting by C a positive constant
independent of h, whose specific value at different occurrences may vary.

3.1. Error estimate for the stress variable. Error estimation of the stress begins with
the error equations, obtained by subtracting the discrete equations from the exact ones:

(A(σ − σh), τ)Ω + (u− uh, div τ)Ω = 〈u, τn〉∂Ωh
(3.12a)

(div (σ − σh), ω)Ω = 0 (3.12b)

for all (τ, ω) ∈ V h ×W h, where

〈u, τn〉∂Ωh
=
∑
K∈Ωh

〈u, τn〉∂K . (3.13)

This last term in (3.12a) term measures the inconsistency error. It is in general non-zero
because V h is not H(div)-conforming.

We need a projector into the finite element space with a commutativity property. To
reveal the main idea, we proceed by assuming the existence of such a projector and verify
the assumption later (in § 3.2).
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Assumption 3.2. There is a subspace DΠ ⊆ H(div,Ω,S) and a continuous projector
Π : DΠ 7→ V h such that

div (Πσ) = Pdiv σ for all σ ∈ DΠ , (3.14)

where P : L2(Ω,Rd) 7→ W h is the L2-orthogonal projection.

Theorem 3.3. If Π is as in Assumption 3.2 and k ≥ 1, then whenever σ ∈ DΠ ,

C‖σ − σh‖L2(Ω) ≤ ‖σ −Πσ‖L2(Ω) + inf
wh∈Wh

‖ε(u− wh)‖L2(Ω), (3.15)

where Wh is the set of all continuous functions in W h that vanish on ∂Ω.

Proof. We first note that using (3.14) and using (3.12b) we have that

div (Πσ − σh) = 0. (3.16)

Hence, setting τ = Πσ − σh in (3.12a) and rearranging, we find that

(A(Πσ − σh), Πσ − σh)Ω =(A(Πσ − σ), Πσ − σh)Ω + 〈u, (Πσ − σh)n〉∂Ωh
.

Now, since Πσ − σh is in V h, we can replace u by u − wh in the last term, for any wh

in Wh. Furthermore, integrating by parts on each element K, and using (3.16), we find
〈u− wh, (Πσ − σh)n〉∂K = (ε(u− wh), Πσ − σh)K . Thus, by Cauchy-Schwarz inequality,

C‖Πσ − σh‖L2(Ω) ≤ ‖Πσ − σ‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)

where we have also used that A is positive definite. The theorem now follows from triangle
inequality. �

3.2. The projector. The natural interpolant of σ into our finite element, denoted by
ΠKσ is defined by `(ΠKσ) = `(σ) for all the degrees of freedom ` ∈ {`ρ, `µ, `s} in (2.5)
or (2.5′). It is easy to see that this projector satisfies Assumption 3.2. The only difficulty
is that the domain DΠ for this projector consists of functions with high smoothness
requirements (to make the functionals `s continuous). Then requiring that the exact
stress lies in DΠ (e.g., as in Theorem 3.3), is rather restrictive. Therefore we now define
a different Π with an enlarged domain DΠ , closely following a construction in [4, 8].

We will first need to define an auxiliary projection following [4, 8] by zeroing out the
edge degrees of freedom in three dimensions (and the vertex ones in the two dimensions).
I.e., in the d = 3 case, define the function Π0σ|K ∈ Pk+1(K, S) for each K by

`ρ(Π
0σ) = `ρ(σ), for all ρ ∈ Pk−1(K, S), (3.17a)

`µ(Π0σ) = `µ(σ), for all µ ∈ Pk(F,Rd), for all faces F of K, (3.17b)

`s(Π
0σ) = 0 for all s ∈ Pk+1(e,R), for all edges e of K. (3.17c)

In the d = 2 case the definition is similar except that (3.17c) is replaced by

(Π0σ(x))n− · n+ = 0 for all vertices x of K, (3.17c′)

and F in (3.17b) denotes edges of the triangular element.

Lemma 3.4. The projection Π0 satisfies Assumption 3.2 with DΠ = H(div,Ω,S) ∩
Lp(Ω; S) for any p > 2. Moreover, if σ is in H1(K, S), then

‖Π0σ‖L2(K) ≤ C(‖σ‖L2(K) + hK |σ|H1(K)), (3.18)

for all K ∈ Ωh. Here C only depends on the shape regularity of Ωh.
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Proof. By Theorem 2.1 we know that Π0σ is well-defined for smooth σ. The fact that Π0

is continuous on H(div,Ω,S) ∩ Lp(Ω; S) for any p > 2 follows from the fact that we only
use interior and face degrees of freedom (see e.g., [12]).

To prove the commutativity (3.14), let w ∈ Pk(K,Rd). Then, integrating by parts,

(divΠ0σ,w)K =− (Π0σ, ε(w))K + 〈(Π0σ)n,w〉∂K
=− (σ, ε(w))K + 〈σn,w〉∂K
=(div σ,w)K = (Pdiv σ,w)K .

In the second equality we used (3.17b) with µ = w and (3.17a) with ρ = ε(w).
It only remains to prove (3.18). We only consider the d = 3 case as the other is

similar. Because of Theorem 2.1, it is easy to see by a scaling argument, using the same
mappings as in [17, § 2.2], that

C‖τ‖L2(K) ≤ sup
ρ∈Pk−1(K,S)

`ρ(τ)

‖ρ‖L2(K)

+ sup
F,µ∈Pk(F,Rd)

h
1/2
K `µ(τ)

‖µ‖L2(F )

+ sup
e, s∈Pk+1(e,R)

hK`s(τ)

‖s‖L2(e)

holds for all τ in Pk+1(K, S). We apply this with τ = Π0σ. The last term then vanishes
due (3.17c). The first term on the right hand side is bounded by ‖σ‖L2(Ω) due to (3.17a).
Using a trace inequality for the remaining term, `µ(Π0σ) = `µ(σ) ≤ ‖µ‖F (‖σ‖L2(K) +
hK |σ|H1(K)). This proves the lemma. �

The operator Π0, although continuous on H(div,Ω,S) ∩ Lp(Ω; S) for p > 2, does
not have good approximation properties. Therefore, following [8] we modify it further.
Consider the Clement interpolant [14, 18] of order k. Let Rk denote its matrix version
in which the Clement interpolant acts component wise. For any 0 ≤ r ≤ k, we have the
following local approximation result for the Clement interpolant (see [18])

‖Rkσ − σ‖L2(K) + hK |Rkσ − σ|H1(K) ≤ C hr+1
K ‖σ‖Hr+1(4K) (3.19)

where 4K is the union of simplices that share a vertex with K. The global interpolant is
then defined by

Π = Π0(I −Rk+1) +Rk+1. (3.20)

Theorem 3.5. The projector Π defined above satisfies Assumption 3.2 with H(div,Ω,S)∩
Lp(Ω,S) ⊂ DΠ for any p > 2. Moreover, for 0 ≤ r ≤ k + 1 we have

‖Πσ − σ‖L2(K) ≤ Chr+1
K ‖σ‖Hr+1(4K) (3.21)

for all K ∈ Ωh where C only depends on the shape regularity of Ωh.

Proof. To prove the commutativity property (3.14) of Assumption 3.2, we first integrate
by parts on each K ∈ Ωh and observe that

(div (Πσ −Π0σ), w)K = −(Rk+1σ −Π0Rk+1σ, ε(w))K + 〈(Rk+1σ −Π0Rk+1σ)n,w〉∂K

Using (3.17), this implies

(div (Πσ −Π0σ), w)K = 0, for all w ∈ Pk(K,Rd).

Hence, divΠσ = divΠ0σ = Pdiv σ where we used Lemma 3.4. This proves (3.14).
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In order to prove (3.21),

‖Πσ − σ‖L2(K) = ‖Π0(Rk+1 − I)σ‖L2(K)

≤ C(‖Rk+1σ − σ‖L2(K) + hK |Rk+1σ − σ|H1(K)).

where we used (3.18) of Lemma 3.4. The result now follows from (3.19). �

3.3. Displacement Error. In this section we prove an error estimate for ‖Pu−uh‖L2(Ω).

Theorem 3.6. If Π be given in (3.20) for k ≥ 1, then whenever σ ∈ DΠ ,

C‖Pu− uh‖L2(Ω) ≤ ‖σ −Πσ‖L2(Ω) + inf
wh∈Wh

(‖u− wh‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)). (3.22)

Proof. There exists ψ ∈ H1(Ω, S) satifying

divψ = Pu− uh in Ω (3.23)

with

‖ψ‖H1(Ω) ≤ C‖Pu− uh‖L2(Ω). (3.24)

‖Pu− uh‖2
L2(Ω) =(Pu− uh, divψ)Ω by (3.23)

=(Pu− uh, divΠψ)Ω by (3.14)

=(u− uh, divΠψ)Ω by definition of P

=− (A(σ − σh), Πψ)Ω + 〈u,Πψn〉∂Ωh
by (3.12a).

The first term can easily be estimated as follows

−(A(σ − σh), Πψ)Ω ≤C ‖σ − σh‖L2(Ω) ‖Πψ‖L2(Ω)

≤C ‖σ − σh‖L2(Ω) ‖ψ‖H1(Ω)

≤C ‖σ − σh‖L2(Ω) ‖Pu− uh‖L2(Ω),

where we used (3.21) and (3.24).
To bound the second term we note that 〈wh, Πψn〉∂Ωh

= 0 for any wh ∈ Wh since
Πψ ∈ V h. Hence,

〈u,Πψn〉∂Ωh
=〈u− wh, Πψn〉∂Ωh

=(ε(u− wh), Πψ)Ω + (u− wh, div (Πψ))Ω

=(ε(u− wh), Πψ)Ω + (u− wh, Pu− uh)Ω,

where we used integration by parts, (3.14) and (3.23).
Therefore, we see that

〈u,Πψn〉∂Ωh
≤ C (‖u− wh‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)) ‖Pu− uh‖L2(Ω),

where we used (3.21) and (3.24).
Hence, we obtain

C‖Pu− uh‖L2(Ω) ≤ ‖σ − σh‖L2(Ω) + inf
wh∈Wh

(‖u− wh‖L2(Ω) + ‖ε(u− wh)‖L2(Ω)). (3.25)

To complete the proof we use Theorem 3.3. �
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3.4. Duality argument. In this section we prove an inequality that leads to the second
part, namely (3.11), of Theorem 3.1. But first, let us clarify what we meant by full
regularity there. Consider the dual problem of finding ψ inH(div,Ω, S) and φ inH1(Ω,Rd)
satisfying

divψ =θ in Ω, (3.26a)

Aψ − ε(φ) =0 in Ω, (3.26b)

φ =0 on ∂Ω, (3.26c)

for any given θ in L2(Ω,Rd). We have “full elliptic regularity” if the solution of the dual
problem satisfies

‖ψ‖H1(Ω) + ‖φ‖H2(Ω) ≤ C‖θ‖L2(Ω). (3.27)

for all θ ∈ L2(Ω,Rd). This is known to hold in many instances, e.g., see [11] for convex
polygons.

Theorem 3.7. Assuming full elliptic regularity (3.27) we have for any k ≥ 1,

C‖Pu− uh‖L2(Ω) ≤ h‖σ − σh‖L2(Ω) + h inf
wh∈Wh

‖ε(u− wh)‖L2(Ω).

Proof. Let θ = Pu− uh in (3.26). Then,

‖Pu− uh‖2
L2(Ω) =(Pu− uh, divψ)Ω by (3.26a)

=(Pu− uh, divΠψ)Ω by (3.14)

=(u− uh, divΠψ)Ω by definition of P

=− (A(σ − σh), Πψ)Ω + 〈u,Πψn〉∂Ωh
by (3.12a)

=− (A(σ − σh), Πψ − ψ)Ω + 〈u,Πψn〉∂Ωh

− (A(σ − σh), ψ)Ω.

We rewrite the last term as follows.

(A(σ − σh), ψ)Ω = (σ − σh, ε(φ))Ω by (3.26b)

= (σ − σh, ε(φ− φh))Ω

for any φh in Wh. The last equality holds because by integration by parts

(σ − σh, ε(φh))Ω = 〈(σ − σh)n, φh〉∂Ωh
− (div (σ − σh), φh)Ω,

and both terms on the right hand side are zero. We see that the first is zero by the
continuity and weak continuity of σn and σhn, resp., across mesh faces (and noting that
φh is single-valued there). The second vanishes by (3.12b). Hence,

‖Pu− uh‖2
L2(Ω) =− (A(σ − σh), Πψ − ψ)Ω + 〈u,Πψn〉∂Ωh

− (σ − σh, ε(φ− φh))Ω

Let us name the terms on the right hand side consecutively as T1, T2, and T3.
We now estimate these three terms individually. Using the Cauchy-Schwarz inequality,

(3.21), and (3.27) we obtain

T1 ≤ C h ‖σ − σh‖L2(Ω)‖ψ‖H1(Ω) ≤ C h ‖σ − σh‖L2(Ω) ‖Pu− uh‖L2(Ω).

For T2, we note that for any wh in Wh 〈wh, Πψn〉∂Ωh
= 0 since Πψ ∈ V h. Hence,

T2 = 〈u− wh, Πψn〉∂Ωh
.
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Furthermore,
T2 = 〈u− wh, Πψn− ψn〉∂Ωh

,

which follows since both u−wh and ψn are single-valued on mesh faces and u−wh vanishes
on ∂Ω. Integrating by parts and using (3.14), together with the observation that (3.26a)
holds with our discrete θ, we have

T2 = (ε(u− wh), Πψ − ψ)Ω ≤ ‖ε(u− wh)‖L2(Ω)‖Πψ − ψ‖L2(Ω).

Combining (3.21) with (3.27) we get

T2 ≤ C h‖ε(u− wh)‖L2(Ω)‖Pu− uh‖L2(Ω).

For T3, we select a φh in Wh with good approximation properties, e.g., the one provided
by the Scott-Zhang interpolation operator [28]. Let Zk : H1(Ω,Rd) → Wh denote this
interpolation of degree k, applied component by component to vector functions. Then by
the results in [28],

‖φ− Zkφ‖2
L2(K) + hK‖grad (φ− Zkφ)‖2

L2(K) ≤ C hr+1‖φ‖Hr+1(4K), (3.28)

where 4K is the union of simplices that share a vertex with K. Set φh = Zkφ in T3.
Using (3.28) and (3.27), we then have

T3 ≤ C h ‖σ − σh‖L2(Ω)‖Pu− uh‖L2(Ω).

Combining the bounds for T1, T2, T3, the proof is finished. �

We conclude with the proof of the previously stated main result of this section.

Proof of Theorem 3.1. To prove the first estimate (3.10), we apply Theorem 3.3 and The-
orem 3.6 and use the triangle inequality. The assumption in Theorem 3.3 on the projector
has been verified by Theorem 3.5. The infimum in (3.25) and (3.22) can be bounded by
setting wh = Zku and using (3.28).

The second estimate (3.11) of the theorem follows from Theorem 3.7, the triangle
inequality and using the same choice of wh. �

4. Hybrid Form

We give an alternative formulation of the method (1.3) which results in a symmetric
positive definite system for a single new variable. All the original variables can be locally
recovered after solving for this new variable. The alternative formulation is obtained by
hybridization, which removes the interelement continuity requirements from the space V h,
and places them as an additional equation of the method. Accordingly, we need the space

Ṽ h = {τ : τ |K ∈ Pk+1(K, S) for all mesh elements K ∈ Ωh}
without any interelement continuity constraints, as well as a space of Lagrange multipliers

Λh = {µ : µ|F ∈ Pk(F,Rd) for all mesh faces F of Ωh, and µ|∂Ω = 0}.
The approximate solution given by the hybridized method is (σh, uh, λh) ∈ Ṽ h×W h×Λh,
satisfying

(Aσh, τ)Ω + (uh, div τ)Ω + 〈λh, τn〉∂Ωh
= 0, (4.29a)

(div σh, ω)Ω = (f, ω)Ω, (4.29b)

〈σhn, µ〉∂Ωh
= 0, (4.29c)
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for all (τ, ω, µ) ∈ Ṽ h ×W h × Λh. Here, the notation 〈·, ·〉∂Ωh
is as in (3.22).

Proposition 4.1. There is a unique (σh, uh, λh) ∈ Ṽ h×W h×Λh satisfying (4.29). More-
over, the first two components of the solution coincide with that of the mixed method (1.3).

Proof. If (σh, uh, λh) satisfies (4.29), then (4.29c) give us that σh ∈ V h. Moreover, since
V h ⊂ Ṽ h, choosing test functions τ ∈ V h, we see that the equations (4.29a)–(4.29b) are
identical to the equations of the mixed method (1.3). Therefore, (σh, uh) solves (1.3).

Next we prove that (4.29) has a unique solution. Since the system (4.29) is square,
it is enough to prove uniqueness. If f is identically zero, the argument of the previous
paragraph and Corollary 2.3 shows that (σh, uh) vanishes. The equation (4.29a) then
becomes

〈λh, τn〉∂Ωh
= 0 for all τ ∈ Ṽ h.

We then use the face degrees of freedom in (2.5b) (or the edge degrees in the two-
dimensional case (2.5b′)) to show that λh also vanishes. �

We next show that it is possible to eliminate the variables σh and uh, and obtain a
global linear system solely for λh. Let A : Ṽ h 7→ Ṽ h and B : Ṽ h 7→ W h and C : Ṽ h 7→ Λh

be defined by

(Aσ, τ)Ωh
= (Aσ, τ)Ωh

, (Bσ,w)Ωh
= (w, div σ)Ωh

, 〈Cσ, µ〉∂Ωh
= 〈µ, σn〉∂Ωh

,

for all σ, τ ∈ Ṽ h, w ∈ W h, and µ ∈ Λh. Denoting their adjoints by superscript ′, the
hybridized system (4.29) can be rewritten asA B′ C ′

B 0 0
C 0 0

σhuh
λh

 =

 0
F h

0

 (4.30)

where F h is the L2-orthogonal projection of f into W h. Such systems were considered for
hybridization abstractly in [16, Appendix A] (see also [15]) under the assumption that B
is surjective. To see that this assumption holds for our B, given any wh in W h, we put
f = wh and solve the mixed method (1.3). There is a unique solution by Corollary 2.3.
The resulting σh satisfies Bσh = wh, so B is surjective.

A consequence of this surjectivity is that there is a unique (σF,G, uF,G) ∈ Ṽ h ×W h

solving (
A B′

B 0

)(
σF,G
uF,G

)
=

(
G
F

)
. (4.31)

Note that (σF,G, uF,G) can be computed locally, element by element, as Ṽ h has no interele-
ment continuity. Let (σµ, uµ) denote the (σF,G, uF,G) obtained by setting G = −C ′µ and
F = 0, and let (σf , uf ) denote the (σF,G, uF,G) obtained when G = 0 and F = F h.

Theorem 4.2. The function (σh, uh, λh) ∈ Ṽ h ×W h × Λh satisfies (4.29) if and only if
λh is the unique solution of

ah(λ
h, µ) = bh(µ), for all µ ∈ Λh, (4.32)

where the forms are defined by ah(µ, γ) := (Aσµ, σγ)Ωh
, bh(µ) := (f, uµ)Ωh

. Furthermore,

σh =σλh + σf , (4.33a)

uh =uλh + uf . (4.33b)
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Proof. Since B is surjective, we can apply [16, Theorem A.1]. �

Equation (4.32) gives a symmetric positive definite system for λh. In practical imple-
mentations, this may be preferable over a direct assembly of (1.3). The latter will result
in a larger indefinite system. Moreover, due to the (already mentioned) local nature
of (4.31), the right hand sides of (4.33) are locally computable from λh and f , so once the
(global) positive definite system for λh is solved, the approximate stress and displacement
can be recovered locally.

5. A reduced element

This section provides an answer to the following natural question: Is it possible to
reduce the stress space Pk+1(K, S) and yet maintain the same order of convergence?

We first consider the three dimensional case. For any edge e of a tetrahedron K, let e∗

denote the “opposite” edge, i.e., none of the two faces that share e∗ have e as one of their
edges. Let F (e∗) denote any one of the two faces that share e∗. Define the reduced space
of stresses by

V (K) =

{
σ ≡

∑
e

pe tet
′
e

∣∣∣∣ pe ∈ Pe

}
(5.34)

where the sum runs over all six edges e of K, te denotes a tangent vector along an edge
e, and Pe = {p ∈ Pk+1(K,R) : p|F (e∗) ∈ Pk(F (e∗),R)}. A unisolvent set of degrees of
freedom for this space is furnished by (2.5) after we omit the edge degrees of freedom
there, as the next theorem states.

Theorem 5.1. The set of linear functionals consisting of

`ρ defined in (2.5a), for all ρ ∈ Pk−1(K, S),

`µ defined in (2.5b), for all µ ∈ Pk(F,Rd), for all faces F of K,

form a set of unisolvent degrees of freedom for V (K).

We prove this theorem using two lemmas. Let Pk⊥ = {p ∈ Pk(K,R) : (p, qk−1)K = 0 for
all qk−1 in Pk−1(K,R)} and Qk+1

e,⊥ = {λe∗rk : rk ∈ Pk⊥}, where λe∗ denotes the barycentric
coordinate which vanishes on F (e∗).

Lemma 5.2. Pe = Pk(K,R) ⊕ Qk+1
e,⊥ .

Proof. Clearly, Pk(K,R) ⊕ Qk+1
e,⊥ ⊆ Pe, so we only need to prove the reverse inclusion.

Since, any p ∈ Pe when restricted to F (e∗), is of degree at most k, there exists a qk in
Pk(K,R) such that

p− qk = 0, on F (e∗).

Thus, p − qk = λe∗wk for some wk in Pk(K,R). Decomposing wk = wk−1 + w⊥ with
wk−1 ∈ Pk−1(K,R) and w⊥ ∈ Pk⊥, we find that

p = q̃k + λe∗w⊥,

with q̃k = qk + λe∗wk−1 ∈ Pk(K,R). Thus Pe = Pk(K,R) + Qk+1
e,⊥ .

The decomposition is direct, because if λe∗q⊥ = pk for some q⊥ in Pk⊥ and pk ∈
Pk(K,R), then pk vanishes on F (e∗), so pk = λe∗rk−1 for some rk−1 in Pk−1(K,R). Thus,

(q⊥, q⊥)K = (λ−1
e∗ λe∗q⊥, q⊥)K = (λ−1

e∗ pk, q⊥)K = (rk−1, q⊥)K = 0,

so q⊥ and pk vanish. �
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The next observation is a simple identity. We use the same notations introduced in
the proof of Theorem 2.1 such as λi, ni, Fi, etc., for i = 1, 2, 3, 4. Additionally, now we let
eij denote the edge connecting the vertices where λi and λj equal one. We assume that
the index set {i, j, l,m} is a permutation of {1, 2, 3, 4}.

Lemma 5.3. For any σ ∈ V (K) as in (5.34), and i 6= j, the following identity holds on
all points in K.

σni · nj = peij
(teij
· ni)(teij

· nj)

Proof. Clearly, ni is orthogonal to the three tangent vectors telm
, temj

, tejl
on Fi. Similarly

nj is orthogonal to telm
, temi

, teil
. Hence in the sum

σni · nj =
∑
e

pe(te · ni)(te · nj)

only one summand is nonzero, and this is precisely the term stated in the lemma. �

Proof of Theorem 5.1. First we must count dim(V (K)). To this end we first note that (5.34)
can rewritten as

V (K) = ⊕
e

(tet
′
e) Pe (5.35)

To see that the above sum is direct, suppose σ =
∑

e petet
′
e ≡ 0. Then using Lemma 5.3

with all combinations of distinct i and j, we find that pe ≡ 0 for all edges e. Hence

dim(V (K)) = 6 dim(Pe).

By Lemma 5.2, dim(Pe) = dim(Pk(K,R)) + dim(Pk⊥). Simplifying, we obtain

dim(V (K)) = (k + 2)(k + 3)(k + 4)− 6(k + 2),

which matches the number of degrees of freedom given in the theorem.
Next, suppose σ ∈ V (K) satisfies `µ(σ) = `ρ(σ) = 0. We will show that σ vanishes.

Pick any two faces Fi and Fj. They share the edge elm. Obviously, elm = e∗ij. Hence
the restriction of peij

to one of the faces Fi or Fj is of degree at most k. Without loss of

generality, let that face be Fi. Then, µ = njpeij
|Fi
∈ Pk(Fi,R3). Applying Lemma 5.3,

0 = 〈σni, µ〉Fi
= (teij

· ni)(teij
· nj)

∫
Fi

p2
eij
.

Hence peij
vanishes on Fi. Consequently, there exists a qk ∈ Pk(K,R) such that peij

= λiqk.
Now, considering the remaining face Fj, setting µ = niqk|Fj

, and applying Lemma 5.3, we
find that

0 = 〈σnj, µ〉Fj
= (teij

· ni)(teij
· nj)

∫
Fj

λiq
2
k.

Hence qk must vanish on Fj and consequently there exists a w in Pk−1(K,R) such that

peij
= λiλjw.

Now, using the interior degrees of freedom (cf. (2.6)) we find that peij
≡ 0. Since i and j

were two arbitrary distinct indices, σ vanishes. �

We would like to note that using Lemma 5.2 the space V (K) given in (5.34) can be
written as

V (K) = Pk(K, S) +

{
σ ≡

∑
e

qe tet
′
e

∣∣∣∣ qe ∈ Qk+1
e,⊥

}
. (5.36)
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The two dimensional case is similar to the three dimensional case. For each edge e
of the triangle K we let te denote the tangent vector to e. We let e∗ be any one of the
two edges of K that is not equal to e. Similarly, Qk+1

e,⊥ = {λe∗rk : rk ∈ Pk⊥}, where
λe∗ denotes the barycentric coordinate which vanishes on e∗. We define V (K) in two
dimensions by (5.36) where the sum is taken over the three edges of the triangle K. The
degrees of freedom (2.5a′) and (2.5b′) form a unisolvent set of degrees of freedom for the
space V (K). The proof is similar to the three dimensional case, so we leave the details to
the reader.

Finally, consider the mixed method (1.3) with the new stress space, i.e., now V h is
as in (1.2a), except Pk+1(K, S) is now replaced with V (K). The displacement space W h

remains the same. This method can be analyzed as in § 3. Since Pk(K, S) ⊆ V (K),
the stress space has the required approximation properties for the analysis. So as not to
repeat the details of previous sections, we simply summarize the results:

(1) The statements of Theorem 3.1 hold for the solution of the mixed nonconforming
method using the above reduced space.

(2) The new method can also be hybridized as in § 4.
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