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Abstract. We prove local and pointwise error estimates for the local discon-
tinuous Galerkin method applied to Stokes problem in two and three dimen-
sions. By using techniques originally developed by A. Schatz [Math. Comp.,
67 (1998), 877-899] to prove pointwise estimates for the Laplace equation,
we prove optimal weighted pointwise estimates for both the velocity and the
pressure for domains with smooth boundaries.

1. Introduction

In this paper, we study the local and pointwise behavior of the Local Discontin-
uous Galerkin (LDG) method for the following problem

−4~u+∇p = ~f in Ω,

∇ · ~u = g in Ω,

~u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N = 2, 3) is bounded and has a smooth boundary. Here ~u =
(u1, · · · , uN ) represents the velocity of the fluid, p ∈ L2

0(Ω) the pressure, ~f =
(f1, · · · , fN ) is a smooth external force and g ∈ L2

0(Ω) is a smooth function (for
Stokes problem we take g ≡ 0). The space L2

0(Ω) consist of functions in L2(Ω) with
mean zero.

The LDG method for Stokes problem was introduced by Cockburn et al. [10];
see the review [8]. The LDG finite dimensional spaces for the both the velocity and
pressure are discontinuous across interelement boundaries. Therefore, the LDG
method allows meshes with hanging nodes and allows flexibility when choosing
the local finite element spaces. Cockburn et al. [6] generalized this method to
Oseen equations. Finally, in [7] the LDG method was extended to the stationary
incompressible Navier-Stokes equation; see also the follow up note [9]. Although
the LDG method considered in [10] satisfies the incompressibility condition only
weakly, it is shown in [7] that one can enforce exact incompressibility by a simple
element by element post-processing technique.
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Global L2 error analysis was performed in [10] for the LDG method applied to
(1.1). In this paper we prove local L2 error estimates along with pointwise error
estimates. Roughly speaking, the local L2 analysis shows that the error for both
the pressure and the gradient of the velocity measured by the L2(D0) − norm for
a subdomain D0 ⊂ Ω is bounded by the best approximation error in the L2(D1)−
norm for a slightly larger subdomain D1 plus the error in a weaker norm. These
estimates are very similar to the local error estimates obtained by Arnold and
Liu [2] for conforming mixed methods applied to (1.1). However, the results in
[2] are for interior subdomains D0 whereas in this paper we allow D0 to touch
∂Ω. Many of the techniques to prove local error estimates presented in this paper
and in [2] are borrowed from the techniques developed by Nitsche and Schatz [18]
for proving local estimates of conforming finite element methods for the Laplace
equation. However, the pressure term and the incompressibility equation adds extra
difficulties when analyzing the Stokes problem. Moreover, the fact that the LDG
spaces are discontinuous and that the primal formulation of the LDG method does
not satisfy the Galerkin orthogonality property adds even more challenges when
analyzing the LDG method for (1.1). Local error estimates for the LDG method
applied to Laplace’s equation were carried out by Chen [5]. Later Guzmán [17]
proved similar results for three DG methods, including the LDG method, in primal
form.

We use the local L2 error estimates to prove weighted pointwise estimates. These
pointwise estimates are optimal and describe how the error at a point x depends
on the behavior of the exact solution in regions away from x. Recently, Chen [3]
used the local estimates derived in [2] to prove pointwise estimates of conforming
mixed methods for (1.1) on a domain Ω with a smooth boundary. Chen makes use
of techniques originally developed by Schatz [19] to prove pointwise estimates for
the Laplace equation. In this paper we also use the techniques found in [19] and our
results are very similar to the results contained in [3]. However, in order to prove
pointwise estimates Chen assumed local error estimates for subdomains that touch
∂Ω which are not contained in [2]. As mentioned above, in this paper we prove
local estimates for subdomains that touch ∂Ω for the LDG method. Furthermore,
Chen assumed that functions in the finite element subspace for the velocity are zero
on ∂Ω, but such spaces are difficult to construct for curved edges. Since we are
analyzing the LDG method there is no need to choose subspaces that agree with
the boundary data.

To further put our work in perspective, we describe previous work concerning
pointwise error estimates for Stokes problem. Pointwise error estimates for con-
forming mixed methods applied to Stokes problem was first carried out by Durán
et al. [12]. For a stabilized Petrov-Galerkin mixed method the analysis was carried
out in [14]. The drawback of these articles is that the analysis is two dimensional
and the estimates are sub-optimal by a logarithmic factor for higher order ele-
ments. Recently, Girault et al. [16] removed the logarithmic factor and extended
the results to three dimensions. In this paper and in [3] the logarithmic factor is
also not present for higher order elements. The proof in [16] uses techniques for
maximum-norm estimates for finite element approximations of the Laplace equa-
tion [23] whereas in this paper and in [3] techniques from [19] were used. This
allows us to establish a more local dependence of the error on the exact solution
as compared to the results in [16]. However, our results are restricted to domains
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with smooth boundaries whereas the results in [16] hold for polygonal/polyhedral
domains. We use an integral representation of solutions to (1.1) and sharp bounds
for the kernels whereas in [16] an integral representation for the the inverse of the
divergence operator and sharp bounds for that kernel are used; see [15].

Instead of discretizing the viscosity term −4~u with the LDG method one can
discretize this term using methods in [1] to come up with different DG methods for
(1.1); see [21]. If we use the methods in [1] that are consistent, adjoint consistent
and have bilinear forms that our coercive to discretize the viscosity term of (1.1),
then we can easily prove similar results for the resulting methods for (1.1).

The rest of the paper is organized as follows: In the next section we define the
LDG method and present our main results. Section 3 contains the proofs of the
theorems.

2. The Main Results

2.1. The LDG Method. We assume we have a family of triangulations Th which
fit the boundary of Ω exactly, where Ω = ∪T∈Th

T . We allow hanging nodes, but we
assume our family of meshes are quasi-uniform and that the elements are shape-
regular. The collection of edges/faces will be denoted by Eh = EIh ∪EBh where EIh is
the set of interior edges/faces and EBh is the set of boundary edges/faces.

The LDG approximations belong to the following spaces:

~V k
h = {~v ∈ [L2(Ω)]N : ~v|T ∈ [Pk(T )]N , ∀T ∈ Th},

Σk
h = {σ ∈ [L2(Ω)]N×N : σ|T ∈ [Pk(T )]N×N , ∀T ∈ Th},

Qk
h = {q ∈ L2

0(Ω) : q|T ∈ Pk−1(T ) ∀T ∈ Th},

Q̃k
h = {q ∈ L2(Ω) : q|K ∈ Pk−1(T ) ∀T ∈ Th}.

Here Pl(T ) are the set of polynomials of degree less than or equal to l defined on
T . An arrow above a function means that the function is vector-valued and a line
under the function means that the function is matrix-valued.

To write a compact form of the method we will need to define the jump and
average operators. The jump operator is given by

[[(φ� ~n)]] =

{
(φ� ~n) on boundary edges in EBh
(φ+ � ~nK+) + (φ− � ~nK−) on interior edges in EIh ,

where φ± denote traces of φ on the edge e = ∂K+ ∩ ∂K− taken from within the
interior of K±. The vector ~nK is the outward unit vector normal to K. The symbol
� denotes a multiplication operator. The average operator is defined as

{{φ}} =

{
φ on boundary edges in EBh
1
2 (φ+ + φ−) on interior edges in EIh .

We can now define the LDG approximation. To simplify notations we take the
stabilization parameters to be 1 (i.e. c11 = d11 = 1 in (2.21) [10]). Since we are
working with quasi-uniform meshes we use h everywhere instead of the local mesh
size.
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Find (~uh, ph) ∈ ~V k
h ×Qk

h such that

Ah(~uh, ~v) +Bh(~v, ph) =
∫

Ω

~f · ~v dx

−Bh(~uh, q) +Dh(ph, q) =
∫

Ω

gqdx ∀(v, q) ∈ ~V k
h ×Qk

h,(2.1)

where

Ah(~u,~v) =
∫

Ω

(∇h~u− L(~u)) : (∇h~v − L(~v)) dx+ h−1
∑
e∈Eh

∫
e

[[~u⊗ ~n]] : [[~v ⊗ ~n]] ds,

Bh(~v, q) = −
∫

Ω

q∇h · ~v dx+
∑
e∈EIh

∫
e

{{q}}[[~v · ~n]] ds+
∑

e∈EBh

∫
e

q~v · ~nds,

Dh(p, q) = h
∑
e∈EIh

∫
e

[[p~n]] · [[q~n]] ds.

For ~u ∈ [H1
h(Ω)]N the lifting operator L(~u) ∈ Σk

h is defined by∫
Ω

L(~u) : σ dx =
∑
e∈Eh

∫
e

[[~u⊗ ~n]] : {{σ}} ds ∀σ ∈ Σk
h.

We used the standard notation (∇~v)ij = ∂jvi and (∇ · σ)i =
∑N

i=1 ∂jσij . We also
have ~v ·~n =

∑N
i=1 vini, (~v⊗~n)ij = vinj and σ : τ =

∑N
i,j=1 σijτij . Here ∇h~u is the

piecewise defined function such that ∇h~u = ∇u on each element T ∈ Th.
By using the lifting operator L we eliminated the unknown σh appearing the in

the original LDG method [10]. As a result, the Galerkin orthogonality property is
not satisfied. That is, if (~u, p) solves (1.1), then we have

Ah(~u,~v) +Bh(~v, p) =
∫

Ω

~f · ~v dx+R(~u,~v)

−Bh(~u, q) +Dh(p, q) =
∫

Ω

g q dx ∀(v, q) ∈ H1
h(Ω)× L2

0(Ω).(2.2)

The residual term R(~u,~v) is given by

R(~u,~v) =
∑
e∈Eh

∫
e

{{Π(∇~u)−∇~u}} : [[v ⊗ n]]ds.

2.2. Sobolev Norms. In order to describe the main results we need to introduce
some norms. If Ω0 ⊂ Ω, we define our discontinuous Sobolev space as in [3]:

W r,p
h (Ω0) = {v : v ∈W r,p(T ∩ Ω0), ∀ T ∈ Th}.

Let Ω0 ⊂ Ω then we define the broken norm for r = 1 and 1 ≤ p <∞

||~v||p
W 1,p

h (Ω0)
=

∑
T∈Th

||∇~v||pLp(T∩Ω0)
+ h1−p

∑
e∈Eh

||[[~v ⊗ ~n]]||pLp(e∩Ω0)
.

If p = ∞, we define

||~v||W 1,∞
h (Ω0)

= sup
T∈Th

||∇~v||Lp(T∩Ω0) + h−1 sup
e∈Eh

||[[~v ⊗ ~n]]||L∞(e∩Ω0).
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For the pressure we use the following norm for 1 ≤ p <∞

||q||p
Lp

h(Ω0)
= ||q||pLp(Ω0)

+h
∑
e∈EIh

||[[q~n]]||pLp(e∩Ω0)
+ h

∑
e∈Eh

||{{q~n}}||pLp(e∩Ω0)
.

For r > 1 and 1 ≤ p ≤ ∞, we define

||~v||p
W r,p

h (Ω0)
=

∑
T∈Th

||~v||pW r,p(T∩Ω0)

The case p = ∞ can be defined similarly. We write Hr
h = W r,2

h for any r ≥ 1. We
will also need to define negative-order Sobolev norms. Let D ⊂ Ω and q ∈ L2(D)
then we define the H−1(D) norm as follows

||q||H−1(D) = sup
r∈C∞c (D)

||r||
H1(D)=1

∫
D

qrdx.

We present a function space, as in [25], that will let us define a slightly different
negative-order norm. If S ⊂ D ⊂ Ω, let ∂<(S,D) = dist(∂S \ ∂Ω, ∂D \ ∂Ω). The
space is defined as follows:

C∞< (D) = {v ∈ C∞ : ∂<(supp(v), D) > 0}.

The H−1
< (D) norm is defined by

||q||H−1
< (D) = sup

r∈C∞< (D)
||r||

H1(D)=1

∫
D

qrdx.

Notice that H−1
< (D) and H−1(D) norms coincide if D ⊂⊂ Ω.

2.3. Local Estimates. For the rest of this paper Π will denote the L2 projection
into Q̃k

h, ~Π will denote the L2 projection into ~V k
h and Π the L2 projection into Σk

h

Theorem 2.1. Suppose that (~uh, ph) ∈ ~V k
h × Qk

h and (~u, p) ∈ [H1
h(Ω)]N × L2

0(Ω)
satisfy

Ah(~u− ~uh, ~v) +Bh(~v, p− ph) = R(~u,~v)

−Bh(~u− ~uh, q) +Dh(p− ph, q) = 0 ∀(~v, q) ∈ ~V k
h ×Qk

h,(2.3)

then for D0 ⊂ Dd ⊂ Ω with ∂<(D0, Dd) = d ≥ 2h

||~u− ~uh||H1
h(D0) + ||p− ph||L2(D0) + (h

∑
e∈EIh

||[[(p− ph)~n]]||2L2(e∩D0)
)1/2

≤ C(||~u− ~Π~u||H1
h(Dd) + h||~u− ~Π(~u)||H2

h(Dd) + ||p−Πp||L2
h(Dd))

+Cd−1(||~u− ~Π~u||L2(Dd) + ||p−Πp||H−1
< (Dd))

+Cd−1(||~u− ~uh||L2(Dd) + ||p− ph||H−1
< (Dd)).

In these estimates we have the norm H−1
< norm of the pressure appearing in the

right hand side instead of the H−1 norm. The H−1 norm appears in the estimates
found in [2] since in their analysis only interior subdomains were considered.
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2.4. Pointwise Estimates. We need to define weighted norms in order to describe
the results of this section. We will use the weight used in [19], σx(y) = h

h+|x−y| .
The weighted norms for 1 ≤ p <∞ are given by

||~v||p
W 1,p

h (Ω0),x,s
=

∑
T∈Th

||σs
x∇~v||

p
Lp(T∩Ω0)

+ h1−p
∑
e∈Eh

||σs
x[[~v ⊗ ~n]]||pLp(e∩Ω0)

,

and for p = ∞

||~v||W 1,∞
h (Ω0),x,s = sup

T∈Th

||σs
x∇~v||Lp(T∩Ω0) + sup

e∈Eh

h−1
e ||σs

x[[~v ⊗ ~n]]||L∞(e∩Ω0).

Also,

||q||p
Lp

h(Ω0),x,s
= ||σs

xq||
p
Lp(e∩Ω0)

+h
∑
e∈EIh

||σs
x[[q~n]]||pLp(e∩Ω0)

+ h
∑
e∈Eh

||σs
x{{q}}||

p
Lp(e∩Ω0)

,

and for p = ∞

||q||L∞(Ω),x,s = ||σs
xq||L∞(Ω0)

Now we can state the pointwise error estimates for the velocity.

Theorem 2.2. Suppose (~u, p) ∈ [W 1,∞(Ω)]N × L∞(Ω) ∩ L2
0(Ω) and (~uh, ph) ∈

~V k
h ×Qk

h satisfy (2.3). Let x ∈ Ω̄ and s satisfy 0 ≤ s ≤ k − 1. Then, there exists a
constant C independent of x, (~u, p), (~uh, ph) and h such that

|(~u− ~uh)(x)| ≤ Ch log(1/h)s̄(||~u− ~Π(~u)||W 1,∞
h (Ω),x,s + ||p−Π(p)||L∞h (Ω),x,s

+||σs
x(∇h~u−Π(∇h~u))||L∞(Ω))

where s̄ = 0 if 0 ≤ s < k − 1, and s̄ = 1 if s = k − 1.

Notice that if k ≥ 2 we can take s = 0 < k − 1 and we get the optimal L∞(Ω)
found in [16] for the velocity. But, if we take s > 0 then the error at x depends
much more on the behavior of the exact solution in regions close to x rather than
the behavior of the exact solution in regions far from x. In fact, one can prove error
expansion inequalities; see Theorem 4.1 in [19] for the corresponding result for the
Laplace equation. If k = 1 then we are forced to take s = 0 in Theorem 2.2. In
this case, the logarithmic factor does appear. Also, we see that the estimates is no
longer local. That is, the error of the velocity at the point x depends on the exact
solution equally on all of Ω; see [11] for the sharpness of this result for the Laplace
equation.

The pointwise estimate for the pressure is given in the next theorem.

Theorem 2.3. Suppose (~u, p) ∈ [W 1,∞(Ω)]N × L∞(Ω) ∩ L2
0(Ω) and (~uh, ph) ∈

~V k
h × Qk

h satisfy (2.3). Let x ∈ Ω̄ and s satisfy 0 ≤ s ≤ k. Then, there exists a
constant C independent of x, (~u, p), (~uh, ph) and h such that

|(p− ph)(x)| ≤ C log(1/h)¯̄s(||~u− ~Π(~u)||W 1,∞
h (Ω),x,s + ||p−Π(p)||L∞h (Ω),x,s

+||σs
x(∇~u−Π(∇~u))||L∞(Ω))

where ¯̄s = 0 if 0 ≤ s < k, and ¯̄s = 1 if s = k.
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The logarithmic will not appear in the estimates for the pressure as long as we
take 0 ≤ s < k which can always be done since k ≥ 1. Since we can always choose
0 < s < k, we see that error of the pressure at the x has more of a dependence
on the behavior of the exact solution near x rather than the behavior of the exact
solution far from x.

3. Proofs

Before we prove Theorems 2.1, 2.2 and 2.3, we state some preliminaries results.

3.1. Preliminary results.

3.1.1. Continuity Of Bilinear Forms. We can easily prove the following bound for
our lifting operator. For any ~v ∈ [W 1,p

h (Ω)]N we have

||L(~v)||Lp(Ω) ≤ Ch1/p−1(
∑
e∈Eh

||[[~v ⊗ ~n]]||pLp(e))
1/p

Now it easily follows that

Ah(~u,~v) ≤ C||~u||W 1,l
h (Ω)||~v||W 1,r

h (Ω)

where 1
l + 1

r = 1. In fact, one has

Ah(~u,~v) ≤ C||~u||W 1,l
h (Ω),x,−s||~v||W 1,r

h (Ω),x,s.

We also have

B(~v, q) ≤ C||~u||W 1,l
h (Ω),x,−s||q||Lr

h(Ω),x,s.

3.1.2. Regularity and Global Error Estimates. The following result is standard; see
[24].

Proposition 3.1. If ~f ∈ [H l(Ω)]N and g ∈ H l+1(Ω)∩L2
0(Ω) with for l ≥ −1, then

there exists a unique solution (~u, p) ∈ H l+2 ×H l+1(Ω) of (1.1). Furthermore, the
following bound holds

||~u||Hl+2(Ω) + ||p||Hl+1(Ω) ≤ C(||f ||Hl(Ω) + ||g||Hl+1(Ω)).

Global error estimates were obtained in [10]. Here we state the result in a slightly
different form.

Proposition 3.2. Let (~u, p) solve (1.1) and let (~uh, ph) be the LDG approximation
defined by (2.1), then

||∇(~u− ~uh)||L2(Ω) + ||p− ph||L2(Ω)

≤ C(||∇(~u− ~Π(~u))||L2(Ω) + ||p−Π(p)||L2(Ω))
+C(||∇~u−Π(∇~u)||L2(Ω) + h||∇~u−Π(∇~u)||H1(Ω)).
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3.1.3. Approximation. We start by stating well-known trace inequalities. Let e be
an face of T ∈ Th. Then, for 1 ≤ p ≤ ∞, we have

(3.1) ||φ||Lp(e) ≤ C(h−
1
p ||φ||Lp(T ) + h1− 1

p |φ|W 1,p(T )).

If we restrict φ to Pk(T ), then

(3.2) ||φ||W l,t(T ) ≤ Ch[ N
s −

N
t ]+l−q||φ||W q,s(T ),

(3.3) ||φ||Lp(e) ≤ Ch−
1
p ||φ||Lp(T ),

where C does not depend on φ, h, e, or T . Here 1 ≤ t ≤ s ≤ ∞ and 0 ≤ l ≤ q The
following is a standard elementwise approximation result. Let v ∈
W j,p

h (Ω) with 0 ≤ i ≤ j ≤ k − 1. Then,

(3.4) ||v −Π(v)||W i,p(T ) ≤ Chj−i|v|W j,p(T ), ∀T ∈ Th,

where C does not depend on v, h, or T .
The same result holds for ~Π and Π, but in these cases 0 ≤ i ≤ j ≤ k. We

now define a standard negative-order Sobolev norm. The following inequalities are
similar to Lemma 2.2 in [17].

Lemma 3.3. Let χ ∈ Pr−1(T ), for and let ω be a smooth function. Suppose there
exist constants C > 0 and d ≥ h, ||Dlω||L∞(Ω) ≤ Cd−l for l = 0, 1, · · · , r+1. Then,
for r ≥ 2

|ω2χ|Hr(T ) ≤
C

hr−2
(d−1||ωχ||H1(T ) + d−2||χ||L2(T )),(3.5a)

|ωχ|Hr(T ) ≤
C

hr−2
(d−1||χ||H1(T ) + d−2||χ||2L2(T )),(3.5b)

and for r = 1

|ω2χ|H1(T ) ≤ Cd−1||ωχ||L2(T ),(3.5c)

|ωχ|H1(T ) ≤ Cd−1||χ||L2(T ).(3.5d)

Here C is independent of ω, χ, T , and h.

Now we state a super-approximation result (see [17]) which easily follows from
(3.4) and (3.5a) if we set r − 1 = k.

Lemma 3.4. Let ∂<(D0, Dd) = d > 2h, where ω ∈ C∞< (D0). Suppose
||Dlω||L∞(S0) ≤ Cd−l for l = 0, 1, · · · , k + 2. Then, for all ~v ∈ ~V k

h

1
h
||ω2~v − ~Π(ω2~v)||L2(D0) + ||ω2~v − ~Π(ω2~v)||H1

h(D0)

≤ Ch(d−1||ω~v||H1
h(Dd) + d−2||v||L2(Dd)),

where C is independent of ~v and ω.

We will also need the following superapproximation result.

Lemma 3.5. Let ω be as in Lemma 3.4. Then, for all p ∈ Qh

1
h
||ω2p−Π(ω2p)||L2(D0) + ||∇h(ω2p−Π(ω2p))||L2(D0)

≤ Cd−1(||ωp||L2(Dd) +
h

d
||p||L2(Dd)).

where C is independent of h, p and ω.
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3.2. Proof of Theorem 2.1. With a covering argument, as was used in [20],
it is enough to show Theorem 2.1 with D0 and Dd replaced with Sd and S2d,
respectively. Here Sd = Bd ∩ Ω and S2d = B2d ∩ Ω and Bd ⊂ B2d are concentric
balls with common center in Ω and of radius d and 2d, respectively. We prove this
result in several steps.

3.2.1. Step1: Reduce to weighted stability estimates.

Lemma 3.6. Let ω ∈ C∞< (S3d/2) with ω ≡ 1 on Sd and |Dlω|L∞ ≤ Cd−l for
l = 1, 2, . . . , k + 2, then Theorem 2.1 is implied by the following inequality

||ω~uh||H1
h(Ω) + ||ωph||L2(Ω) +Dh(ωph, ωph)

≤ C(||~u||H1
h(S2d) + h||~u||H2

h(S2d) + ||p||L2
h(S2d))

+Cd−1(||~uh||L2(S2d) + ||ph||H−1
< (S2d)).(3.6)

Proof. Since ~u− ~uh = (~u− ~Π(~u))− (~uh − ~Π(~u)), Theorem 2.1 follows from

||~u− ~uh||H1
h(Sd) + ||p− ph||L2(Sd) + (h

∑
e∈EIh

||[[(p− ph)~n]]||L2(e∩Sd))1/2

≤ C(||~u||H1
h(S2d) + h||~u||H2

h(S2d) + ||p||L2
h(S2d))

+Cd−1(||~u||L2(S2d) + ||p||H−1
< (S2d))

+Cd−1(||~u− ~uh||L2(S2d) + ||p− ph||H−1
< (S2d)).

By the triangle inequality this in turn follows from

||~uh||H1
h(Sd) + ||ph||L2(Sd) + (h

∑
e∈EIh

||[[ph~n]]||L2(e∩Sd))1/2

≤ C(||~u||H1
h(S2d) + h||~u||H2

h(S2d) + ||p||L2
h(S2d))

+Cd−1(||~uh||L2(S2d) + ||ph||H−1
< (S2d)).

Since ω ≡ 1 on Sd we have

||~uh||H1
h(Sd) + ||ph||L2(Sd) + (h

∑
e∈EIh

||[[ph~n]]||L2(e∩Sd))1/2

≤ ||ω~uh||H1
h(Sd) + ||ωph||L2(Sd) +Dh(ωph, ωph).

Lemma 3.6 now follows. �

3.2.2. Step 2: Weighted Stability estimates for the Pressure. We first estimate the
term ||ωph||L2(Sd) in terms of the other terms in the right-hand side of (3.6).

Lemma 3.7. Let ω be as in Lemma 3.6, then

||ωph||2L2(Sd) ≤ C||ω~uh||2H1
h(Sd) + CDh(ωph, ωph)

+C(||~u||2H1
h(S2d) + h||~u||2H2

h(S2d) + ||p||2L2
h(S2d))

+Cd−2(||~uh||2L2(S2d) + ||ph||2H−1
< (S2d)

).

Proof. By the triangle inequality we have

(3.7) ||ωph||L2(S2d) ≤ ||ωph − avgS2d
(ωph)||L2(S2d) + ||avgS2d

(ωph)||L2(S2d)
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where avgS2d
(ωph) = 1

|S2d|
∫

S2d
ωphdx. It is easy to show that

(3.8) ||avgS2d
(ωph)||L2(S2d) ≤

C

d
||ph||H−1

< (S2d).

It is well known that one can find a function ~v ∈ [H1(S2d)]N (see [15]) that
satisfies

−∇ · ~v = ωph − avgS2d
(ωph), in S2d

~v = 0, on ∂S2d,

and

(3.9) ||∇~v||L2(S2d) ≤ C||ωph − avgS2d
(ωph)||L2(S2d).

We define ~v on all of Ω by defining it to be zero outside of S2d.
By the definition of Bh, we have

||ωph − avgS2d
(ωph)||2L2(S2d) = Bh(~v, ωph − avgS2d

(ωph))

Using integration by parts we can rewrite B(·, ·) as

Bh(~v, q) =
∫

Ω

~v · ∇hq dx+
∑
e∈EIh

∫
e

[[q~n]] · {{~v}} ds.

Hence, Bh(~v, c) = 0 if c is a constant. Therefore,

||ωph − avgS2d
(ωph)||2L2(S2d) = Bh(~v, ωph)

= Bh(~v − ~Π(~v), ωph) +Bh(~Π(~v), ωph).

The first term is

Bh(~v − ~Π(~v), ωph) =
∫

Ω

(~v − ~Π(~v)) · ∇h(ωph)dx

−
∑
e∈EIh

∫
e

{{(~v − ~Π(~v))}} · [[ωph~n]]ds.

It easily follows using (3.1), (3.4) and (3.9) that

−
∑
e∈EIh

∫
e

{{~v − ~Π(~v)}} · [[ωph~n]]ds ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d)

+
C

ε
Dh(ωph, ωph).

Also, we have using (3.4) and (3.9)∫
Ω

(~v − ~Π(~v)) · ∇h(ωph) =
∫

Ω

(~v − ~Π(~v)) · ∇h(ωph −Π(ωph))dx

≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

Ch2

εd2
||ph||2L2(S2d),

where we also used

||∇h(ωph −Π(ωph))||L2(S2d) ≤
C

d
||ph||L2(S2d)

which follows from (3.5d).
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Therefore, after applying inverse estimates we see that

||ωph − avgS2d
(ωph)||2L2(S2d) ≤ 2ε||ωph − avgS2d

(ωph)||2L2(S2d)

+
C

ε
Dh(ωph, ωph) +

C

εd2
||ph||2H−1(S2d)

+Bh(~Π(~v), ωph).

A simple exercise shows that

Bh(~Π(~v), ωph) = B(ω~Π(~v), ph) +
∫

Ω

ph∇(ω) · ~Π(~v).

Clearly,∫
Ω

ph∇(ω) · ~Π(~v) =
∫

Ω

ph∇(ω) · (~Π(~v)− ~v)dx+
∫

Ω

ph∇(ω) · ~vdx.

Using (3.4), (3.9) and inverse estimates we get that∫
Ω

ph∇(ω) · (~Π(~v)− ~v)dx ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

εd2
||ph||2H−1(S2d).

Also, we have∫
Ω

ph∇(ω) · ~vdx ≤ ||∇(ω) · ~v||H1(S2d)||ph||H−1
< (S2d)

≤ 1
d
||∇~v||L2(S2d)||ph||H−1

< (S2d)

≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

εd2
||ph||2H−1(S2d).

Here we used Poincare’s inequality ||~v||L2(S2d) ≤ Cd||∇~v||L2(S2d).
Therefore,

||ωph − avgS2d
(ωph)||2L2(S2d) ≤ 4ε||ωph − avgS2d

(ωph)||2L2(S2d)(3.10)

+
C

εd2
||ph||2H−1

< (S2d)

+
C

ε
Dh(ωph, ωph) +Bh(ω~Π(~v), ph).(3.11)

We are left to bound Bh(ω~Π(~v), ph). To this end, we have by (2.3)

Bh(ω~Π(~v), ph) = Bh(~Π(ω~Π(~v)), ph) +Bh(ω~Π(~v)− ~Π(ω~Π(~v)), ph)

= Ah(~u, ~Π(ω~Π(~v))) +Bh(~Π(ω~Π(~v)), p) +

−Ah(~uh, ~Π(ω~Π(~v)))−R(~u, ~Π(ω~Π(~v)))

+Bh(ω~Π(~v)− ~Π(ω~Π(~v)), ph)

=
6∑

i=1

Ji,(3.12)

where

J1 = Ah(~u, ~Π(ω~Π(~v))), J2 = Bh(~Π(ω~Π(~v)), p)

J3 = −Ah(~uh, ω~Π(~v)− ~Π(ω~Π(~v))), J4 = Bh(ω~Π(~v)− ~Π(ω~Π(~v)), ph)

J5 = Ah(~uh, ω~Π(~v)), J6 = −R(~u, ~Π(ω~Π(~v))).
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By the continuity of Ah and Bh we have

|J1|+ |J2| ≤ C||~Π(ω~Π(~v))||H1
h(S2d)(||~u||H1

h(S2d) + ||p||L2
h(S2d)).

Using the triangle inequality we get

||~Π(ω~Π(~v))||H1
h(S2d) ≤ ||~Π(ω~Π(~v))− ω~Π(~v)||H1

h(S2d)

+||ω~Π(~v)− ω~v||H1
h(S2d) + ||ω~v||H1

h(S2d).

It is not difficult to show using approximation properties of ~Π, Poincare’s inequality
and the fact that ||D1ω||L∞(S2d) ≤ Cd−1 that

||~Π(ω~Π(~v))− ω~Π(~v)||H1
h(S2d) + ||ω~Π(~v)− ω~v||H1

h(S2d) ≤ C||∇~v||L2(S2d).

Moreover, using that the jumps of ~v are zero and Poincare’s inequality we have

||ω~v||H1
h(S2d) = ||∇(ω~v)||L2(S2d) ≤ C||∇~v||L2(S2d).

Therefore, after using (3.9) we get

||~Π(ω~Π(~v))||H1
h(S2d) ≤ C||ωph − avgS2d

(ωph)||L2(S2d).

Hence,

|J1|+ |J2| ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

ε
(||~u||2H1

h(S2d) + ||p||2L2
h(S2d)).

By the continuity of Ah

|J3| ≤ ||uh||H1
h(S2d)||ω~Π(~v)− ~Π(ω~Π(~v))||H1

h(S2d)

Using (3.4) and (3.5b) we have

||ω~Π(~v)− ~Π(ω~Π(~v))||H1
h(S2d) ≤ Ch(d−1||∇h

~Π(~v)||L2(S2d) + d−2||~Π(~v)||L2(S2d))

≤ Ch

d
||∇~v||L2(S2d),(3.13)

where in the last inequality we used the stability of ~Π and Poincare’s inequality.
Hence, using inverse estimates and Young’s inequality we have

|J3| ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

εd2
||~uh||2L2(S2d).

One can easily show using the Cauchy-Schwarz inequality, (3.1) and (3.13) that

J4 = −
∑
e∈EIh

∫
e

{{ω~Π(~v)− ~Π(ω~Π(~v)}} · [[ph~n]]ds

≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

εd2
||ph||2H−1(S2d).

To handle the next term we first use integration by parts to get

J5 = A(ω~uh, ~Π(~v)) +
∫

Ω

∇(ω)⊗ ~uh : (∇~Π(~v)− L(~Π(~v))dx

+
∫

Ω

∇huh : (L(ω~Π(~v))− ωL(~Π(~v))dx

+
∫

Ω

∇h
~Π(~v) : (L(ω~uh)− ωL(~uh))dx.
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It simple to see using the continuity of Ah, properties of ~Π and (3.9) that

A(ω~uh, ~Π(~v)) ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d)

+
C

ε
||ω~uh||2H1

h(S2d).

Similarly, one has∫
Ω

∇(ω)⊗ ~uh : (∇~Π(~v)− L(~Π(~v))dx ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d)

+
C

εd2
||~uh||2L2(Ω).

Using the definition of the Π and L we have∫
Ω

∇huh : (L(ω~Π(~v))− ωL(~Π(~v))dx =∑
e∈Eh

∫
e

[[~Π(~v)⊗ ~n]] : {{ω∇huh −Π(ω∇huh)}}dx.

Therefore, using Lemma (3.5d) and (3.9) we get∫
Ω

∇huh : (L(ω~Π(~v))− ωL(~Π(~v))dx

≤ C||ωph − avgS2d
(ωph)||L2(S2d)

h

d
||uh||H1

h(S2d)

≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

εd2
||uh||2L2(S2d).

In a similar fashion we can show∫
Ω

∇h
~Π(~v) : (L(ω~uh)− ωL(~uh))dx

≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

C

εd2
||uh||2L2(S2d).

Hence,

|J5| ≤ 4ε||ωph − avgS2d
(ωph)||2L2(S2d)

+
C

εd2
||uh||2L2(S2d) +

C

ε
||ω~uh||2H1

h(S2d).

One can show using (3.1) and approximation properties ~Π that

|J6| ≤ ε||ωph − avgS2d
(ωph)||2L2(S2d) +

Ch2

ε
||~u||2H2

h(S2d).

Hence, combining the bounds for the J ′is and using (3.12) we have that

Bh(ω~Π(~v), ph) ≤ 8ε||ωph − avgS2d
(ωph)||2L2(S2d)

+
C

ε
(||ω~uh||2H1

h(S2d) +Dh(ωph, ωph))

+
C

ε
(||~u||2H1

h(S2d) + ||p||2L2
h(S2d) + h2||~u||2H2

h(S2d))

+
C

εd2
(||uh||2L2(S2d) + ||ph||2H−1(S2d)).(3.14)
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Finally, combining (3.14), (3.11), (3.8) and (3.7) and taking ε small enough
proves Lemma 3.7. �

3.2.3. Step 3: Weighted Stability Estimates For The Velocity.

Lemma 3.8. For every 1 > δ > 0 we have

||ω~uh||2H1
h(Sd) +Dh(ωph, ωph) ≤ δ||ωph||2L2(Sd)

+
C

δ
(||~u||2H1

h(S2d) + h||~u||2H2
h(S2d) + ||p||2L2

h(S2d))

+
C

δd2
(||~uh||2L2(S2d) + ||ph||2H−1(S2d)).

Proof. In order to prove the result we use a stability result concerning only Ah

bilinear form. The proof is almost identical to the proof of a similar inequality in
[17] for the LDG method applied to Laplace’s equation; see (3.3) in [17].

Proposition 3.9. There exists a fixed number C1 > 1 such that

||ω~uh||2H1
h(S2d) ≤ C1Ah(~uh, ω

2~uh) + C1d
−2||~uh||2L2(S2d).(3.15)

Therefore, we need only to find a bound for Ah(~uh, ω
2~uh). To this end, we use

(2.3) to write

Ah(~uh, ω
2~uh)

= Ah(~uh, ω
2~uh − ~Π(ω2~uh)) +Ah(uh, ~Π(ω2~uh))

= Ah(~uh, ω
2~uh − ~Π(ω2~uh)) +Ah(~u, ~Π(ω2~uh)) +Bh(~Π(ω2~uh), p)

−Bh(~Π(ω2~uh), ph)−R(~u, ~Π(ω2~uh))

=
6∑

j=1

Ij(3.16)

where

I1 = Ah(~uh, ω
2~uh − ~Π(ω2~uh)), I2 = Ah(~u, ~Π(ω2~uh)),

I3 = Bh(~Π(ω2~uh), p), I4 = −Bh(~Π(ω2~uh)− ω2~uh, ph),

I5 = −Bh(ω2~uh, ph), I6 = −R(~u, ~Π(ω2~uh)).

Here we used that (2.3) holds if Qk
h is replaced with Q̃k

h since Bh(~v, c) = 0 for
constant c.

By the continuity of Ah and Lemma 3.4 we see that

I1 ≤ Ch||~uh||H1
h(S3d/2)

(
1
d
||ω~uh||H1

h(S2d) +
1
d2
||~uh||L2(S2d))

≤ δ1||ω~uh||2H1
h(S2d) +

1
δ1d2

||~uh||2L2(S2d).

In the last step we used the inverse estimate h||~uh||H1
h(S3/2d) ≤ ||~uh||L2(S2d). Here

δ1 is a small positive number that will be chosen later.
By the continuity of Ah, the stability of ~Π and Young’s inequality we have

I2 ≤ δ1||ω~uh||2H1
h(S2d) +

C

δ1
||~u||2H1

h(S2d) +
C

δ1d2
||~uh||2L2(S2d).
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By applying Hölder’s inequality, the stability of ~Π and Lemma 3.4 we can easily
show that

I3 ≤ δ1||ω~uh||2H1
h(S2d) +

C

δ1
||p||2L2

h(S2d) +
C

δ1d2
||~uh||2L2(S2d).

The following can be written as

I4 = −
∑
e∈EIh

∫
e

{{~Π(ω2~uh)− ω2~uh}} · [[ph~n]].

By applying the Cauchy-Schwarz inequality, (3.1) and (3.2)

I4 ≤
C

h
||ph||L2(S2d)(||~Π(ω2~uh)− ω2~uh||L2(S2d) + h||∇h(~Π(ω2~uh)− ω2~uh)||L2(S2d)).

By applying Lemma 3.4, inverse estimates and Young’s inequality we get

I4 ≤ δ1||ω~uh||2H1(S2d) + Cd−2||~uh||2L2(S2d)

+C(1 +
1
δ1

)d−2||ph||2H−1(S2d).

Using the product rule we get

I5 = −Bh(~uh, ω
2ph)− 2

∫
Ω

ωph~uh · ∇(ω) dx

= −Bh(~uh, ω
2ph −Π(ω2ph))−Bh(~uh,Π(ω2ph))

−2
∫

Ω

ωph~uh · ∇(ω) dx.

By using Lemma 3.5 and inverse estimates we get

−Bh(~uh, ω
2ph −Π(ω2ph)) ≤ δ1||ωph||2L2(S2d) +

C

d2
||ph||2H−1(S2d)

+
C

d2
(1 +

1
δ1

)||~uh||2L2(S2d).

It easily follows that∫
Ω

ωph~uh · ∇(ω) dx ≤ δ1||ωph||2L2(S2d) +
C

δ1d2
||~uh||2L2(S2d).

Using (2.3) we have

−Bh(~uh,Π(ω2ph)) = Bh(~u,Π(ω2ph))−Dh(ph − p,Π(ω2ph))
= −Bh(~u,Π(ω2ph))−Dh(ph − p,Π(ω2ph))
= −Bh(~u,Π(ω2ph))−Dh(ph, ω

2ph)
−Dh(ph,Π(ω2ph)− ω2ph) +Dh(p,Π(ω2ph)).

By using inverse estimates and stability of the L2 projection Π, we have

−Bh(~u,Π(ω2ph)) ≤ δ1||ωph||2L2(S2d) +
C

δ1
||~uh||2H1

h(S2d),

and

Dh(p,Π(ω2ph)) ≤ δ1||ωph||2L2(S2d) +
C h

δ1

∑
e∈EIh

||[[p~n]]||2L2(e∩S2d).

If we use Lemma 3.5 and inverse estimates we get
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−Dh(ph,Π(ω2ph)− ω2ph) ≤ δ1||ωph||2L2(S2d) +
C

d2
(1 + δ−1

1 )||ph||H−1(S2d).

Hence,

I5 ≤ −Dh(ωph, ωph) + 4δ1||ωph||2L2(S2d)

+
C

δ1
(||p||2L2

h(S2d) + ||~u||2H1
h(S2d))

+
C

δ1d2
(||ph||2H−1(S2d) + ||~uh||2L2(S2d)),

where we used that δ1 < 1.
Finally, by applying Lemma 3.4 we can show

I6 ≤ δ1||ω~uh||2H1
h(Ω)

+
C

d2
||~uh||2L2(S2d) + Ch2(1 + δ−1

1 )||~u||2H2
h(S2d).

Therefore, by combining (3.15), (3.16), the bounds for Ij , j = 1, · · · , 6 and choosing
δ1 so that δ1C1 ≤ 1/2 proves Lemma 3.8 where we let δ = 20 δ1 C1. �

3.2.4. Step 4: Completion of the proof. By combining Lemmas 3.8 and 3.7 and
taking δ sufficiently small we get

||ω~uh||2H1
h(Sd) +Dh(ωph, ωph)

≤ C(||~u||2H1
h(S2d) + h||~u||2H2

h(S2d) + ||p||2L2
h(S2d))

+
C

d2
(||~uh||2L2(S2d) + ||ph||2H−1

< (S2d)
).

Finally, by combining this inequality with Lemma 3.7 gives us (3.6) and hence
completes the proof of Theorem 2.1.

3.3. Proof of Theorem 2.2.

3.3.1. Step 1: Reduce To Error Estimates For Approximate Greens Function.

Lemma 3.10. Let x ∈ Tx where Tx ∈ Th and let ~ρ ∈ [C∞c (Tx)]N with ||~ρ||L2(Tx) =
h−N/2. Then, Theorem 2.2 follows from

||~g − ~gh||W 1,1
h (Ω),x,−s + ||λ− λh||L1(Ω),x,−s ≤ log(1/h)s̄h,

where (~g, λ) (with
∫
Ω
λ dx = 0) solve

−4~g +∇λ = ~ρ

∇ · ~g = 0
~g = 0(3.17)

and (~gh, λh) ∈ ~V k
h ×Qk

h satisfy

Ah(~gh, ~v) +Bh(~v, λh) =
∫

Ω

~ρ · ~vdx

−Bh(~gh, q) +Dh(λh, q) = 0 ∀(~v, q) ∈ ~V k
h ×Qk

h.(3.18)
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Proof. By the triangle inequality and inverse estimates

|(~u− ~uh)(x)| ≤ |(~u− ~Π(~u))(x)|+ Ch−N/2||~Π(~u)− ~uh||L2(Tx).

By the triangle inequality and Hölder’s inequality, we have

|(~u− ~uh)(x)| ≤ C||~u− ~Π(~u)||L∞(Tx) + Ch−N/2||~u− ~uh||L2(Tx).

Using the fact that 1/2 ≤ σx(y) for any y ∈ Tx, we have

|(~u− ~uh)(x)| ≤ Ch||~u||W 1,∞
h (Ω),x,s + Ch−N/2||u− uh||L2(Tx).

Since ~u− ~uh = ~u− ~Π(~u)− (~uh − ~Π(~u)), we easily see that

|(~u− ~uh)(x)| ≤ Ch||(~u− ~Π(~u))||W 1,∞
h (Ω),x,s + Ch−N/2||~u− ~uh||L2(Tx).

We will use that

h−N/2||~u− ~uh||L2(Tx) = sup
ρ∈C∞c (Tx)

||~ρ||
L2(Tx)=h−N/2

∫
Ω

(~u− ~uh) · ~ρ dx.

For a fix ~ρ let (~g, λ) and (~gh, λh) be the solutions of (3.17) and (3.18), respectively.
By using the consistency result for the LDG method and (2.3) we have∫

Ω

~ρ · (~u− ~uh)dx = Ah(~u− ~uh, g) +Bh(~u− ~uh, λ)−R(~g, ~u− ~uh)

= Ah(~u− ~uh, ~g − ~gh)−B(~gh, p− ph) +R(~u,~gh)
+Bh(~u− ~uh, λ− λh) +Dh(λh, p− ph)−R(~g, ~u− ~uh)

= Ah(~u− ~uh, ~g − ~gh) +Bh(~u− ~uh, λ− λh)−R(~g, ~u− ~uh)
+B(~g − ~gh, p− ph)−Dh(λ− λh, p− ph) +R(~u,~gh)

= Ah(~u− ~Π(~u), ~g − ~gh) +Bh(~u− ~Π(~u), λ− λh)

−R(~g, ~u− ~Π(~u)) +B(~g − ~gh, p−Π(p))
−Dh(λ− λh, p−Π(p)) +R(~u,~gh).

Hence, by the continuity of our bilinear forms and the definition of R(·, ·) we
have∫

Ω

~ρ · (~u− ~uh)dx

≤ C(||~u− ~Π(~u)||W 1,∞
h (Ω),x,s + ||σs

x(∇h~u−Π(∇h~u))||L∞(Ω)

+||p−Π(p)||L∞(Ω),x,s)×

(||~g − ~gh||W 1,1
h (Ω),x,−s + h

∑
e∈Eh

||σ−s
x {{∇~g −Π(∇~g)}}||L1(e) + ||λ− λh||L1(Ω),x,−s).

Here we also used that R(~u,~gh) = R(~u,~gh − ~g) since the jumps of ~g are zero.
Theorem 2.2 will follow if we can show

||~g − ~gh||W 1,1
h (Ω),x,−s + h

∑
e∈Eh

||σ−s
x {{∇~g −Π(∇~g)}}||L1(e) + ||λ− λh||L1(Ω),x,−s

≤ C log(1/h)s̄h.
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By using the approximation properties of Π, global regularity bounds and Propo-
sition 3.14 one can show

(3.19) h
∑
e∈Eh

||σ−s
x {{∇~g −Π(∇~g)}}||L1(e) ≤ C log(1/h)s̄h.

We leave the details to the reader. This completes the proof of Lemma 3.10. �

3.3.2. Step 2: Dyadic Decomposition And Error Estimates For Approximate Greens
Functions.

Lemma 3.11. Let (~g, λ) and (~gh, λh) be as in Lemma 3.10

||~g − ~gh||W 1,1
h (Ω),x,−s + ||λ− λh||L1(Ω),x,−s ≤ log(1/h)s̄h,

Proof. Let
dj = 2−j for j = 0, 1, 2, . . .

and set

Ωj = {y ∈ Ω : dj+1 < |y − x| < dj},

Ω(1)
j = {y ∈ Ω : dj+2 < |y − x| < dj−1},

Ω(2)
j = {y ∈ Ω : dj+3 < |y − x| < dj−2},

Ω(3)
j = {y ∈ Ω : dj+4 < |y − x| < dj−3},

Ω(4)
j = {y ∈ Ω : dj+5 < |y − x| < dj−4}.

We now state two important lemmas that we need. The proofs can be found in
the next subsection.

Lemma 3.12. If dj > 8h, then

||~g − ~gh||H1
h(Ωj) + ||λ− λh||L2(Ωj)

≤ Chkd
1−k−N/2
j + d−1

j (||~g − ~gh||L2(Ω
(1)
j )

+ C||λ− λh||H−1
< (Ω

(1)
j )

).

Lemma 3.13. If dj > 8h, then

||~g − ~gh||L2(Ω
(1)
j )

+ ||λ− λh||H−1
< (Ω

(1)
j )

≤ Chkd
1−k−N/2
j (||~g − ~gh||W 1,1

h (Ω) + ||λ− λh||L1
h(Ω))

+Ch(||~g − ~gh||H1
h(Ω

(4)
j )

+ ||λ− λh||L2
h(Ω

(4)
j )

) + C log(
1
h

)s̄hk+1d
1−N/2−k
j .

Let M be a real number to be determined later and let J be an integer such that
dJ = Mh. Set ~E = ~g − ~gh and r = λ− λh. Notice that

|| ~E||W 1,1
h (Ω),x,−s + ||r||L1

h(Ω),x,−s ≤ || ~E||W 1,1
h (SMh),x,−s + ||r||L1

h(SMh),x,−s

+
J∑

j=0

(|| ~E||W 1,1
h (Ωj),x,−s + ||r||L1

h(Ωj),x,−s).

Without loss of generality we have assumed that diam(Ω) ≤ 1. Since σ−s
x (z) ≤ Cds

j

hs

for z ∈ Ωj , using the fact that meas(Ωj) ≤ CdN
j and applying Hölder’s inequality

we can show
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|| ~E||W 1,1
h (Ωj),x,−s + ||r||L1

h(Ωj),x,−s ≤ Cd
N/2+s
j h−s(||E||H1

h(Ωj) + ||r||L2
h(Ωj)).

One also has

|| ~E||W 1,1
h (SMh),x,−s + ||r||L1

h(SMh) ≤ CMN/2+shN/2(|| ~E||H1
h(SMh) + ||r||L2

h(SMh))

≤ CMN/2+shN/2+1(||~g||H2(Ω) + ||λ||H1(Ω))

≤ CMN/2+shhN/2||~ρ||L2(Ω) ≤ ChMN/2+s.

Here we used global error estimates and regularity results.
Therefore, we have

(3.20) || ~E||W 1,1
h (Ω),x,−s + ||r||L1

h(Ω),x,−s ≤ CMN/2+sh+ Cη,

where

η =
J∑

j=0

d
N/2+s
j h−s(|| ~E||H1

h(Ωj) + ||r||L2
h(Ω)).

If we apply Lemma 3.12, we get

η ≤ ChΘ(k − 1− s) + C

J∑
j=0

d
N/2−1+s
j h−s(|| ~E||

L2(Ω
(1)
j )

+ ||r||
H−1

< (Ω
(1)
j )

),

where

Θ(α) =
J∑

j=0

(h/dj)α.

Now applying Lemma 3.13, we have
J∑

j=0

d
N/2−1+s
j h−s(|| ~E||

L2(Ω
(1)
j )

+ ||r||
H−1

< (Ω
(1)
j )

)

≤ CΘ(k − s)(|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω))

+C
J∑

j=0

d
N/2−1+s
j h1−s(|| ~E||

H1
h(Ω

(4)
j )

+ ||r||
L2

h(Ω
(4)
j )

)

≤ CΘ(k − s)(|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω))

+CdN/2−1+s
J h1−s(|| ~E||H1

h(SMh) + ||r||L2
h(SMh)) +

C

M
η

≤ CΘ(k − s)(|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω))

+ChMN/2−1+s +
C

M
η.

Therefore,

η ≤ ChΘ(k − 1− s) + CΘ(k − s)(|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω))

+MN/2−1+sh+
C

M
η.

By Choosing M sufficiently large we have

η ≤ ChΘ(k − 1− s) + CΘ(k − s)(|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω)) +MN/2−1+sh.
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Substituting this bound into (3.20), we have

|| ~E||W 1,1
h (Ω),x,−s + ||r||L1

h(Ω),x,−s ≤ CMN/2+sh+ ChΘ(k − 1− s)

+CΘ(k − s)(|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω)).(3.21)

In particular, we see that

|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω) ≤ CMN/2+sh+ ChΘ(k − 1)

+CΘ(k − 1)(||E|||W 1,1
h (Ω) + ||r||L1

h(Ω)).

Since J ≤ log( 1
h ), we obtain

Θ(α) ≤ C

{
log( 1

h ) if α = 0

M−α 1−(1/2)α log( 1
h

)

1−(1/2)α if α > 0.

Hence, by choosing M large enough so that CΘ(k) ≤ 1/2, we get

|| ~E||W 1,1
h (Ω) + ||r||L1

h(Ω) ≤ CMN/2+sh+ ChΘ(k − 1).

By this inequality and (3.21), we have

|| ~E||W 1,1
h (Ω),x,−s + ||r||L1

h(Ω),x,−s

≤ CMN/2+sh+ ChΘ(k − 1− s) + ChΘ(k − s)Θ(k − 1)

≤ Ch log(
1
h

)s̄.

which proves Lemma 3.11 �

3.3.3. Step 3: Proof of Lemmas 3.12 and 3.13. In order to complete the proof of
Theorem 2.2 it remains to prove Lemmas 3.12 and 3.13.

We first prove Lemma 3.12

Proof. From Theorem 2.1 and approximation properties we get

||~g − ~gh||H1
h(Ωj) + ||λ− λh||L2(Ωj)

≤ Chk(|~g|
Hk+1(Ω

(1)
j )

+ |λ|
Hk(Ω

(1)
j )

)

+Cd−1
j (||~g − ~gh||L2(Ω1

j ) + ||λ− λh||H−1
< (Ω1

j )).

We need only to approximate |~g|
Hk+1(Ω

(2)
j )

+ |λ|
Hk(Ω

(2)
j )

. In order to do so we will

use a Greens’s function representation of ~g and λ. The result is contained in ([22],
Theorem 1.1).

Proposition 3.14. Let (~v, q) (with
∫
Ω
q dx = 0)solve

−4~v +∇q = ~m in Ω,

∇ · ~v = r in Ω,

~v = 0 on ∂Ω.

with ~m ∈ [L2(Ω)]N and r ∈ H1(Ω) with
∫
Ω
rdx = 0. Then, the pair (~v, q) have the

following representations

~v(x) =
∫

Ω

(G(x, y)~m(y) + ~Ψ(x, y)r(y) + Γ(x, y)∇r(y))dy
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and

q(x) =
∫

Ω

( ~H(x, y) · ~m(y) + Θ(x, y)r(y) + ~Ξ(x, y) · ∇r(y))dy.

Furthermore, for 1 ≤ i, j ≤ N

|Dβ
xD

α
yGij(x, y)| ≤

C

|x− y|N−2+|β|+|α| , for N − 2 + |α|+ |β| > 0,

|Gij(x, y)| ≤ C(1 + log(
1

|x− y|
)), for N − 2 + |α|+ |β| = 0,

|Dβ
xD

α
y
~Hi(x, y)| ≤

C

|x− y|N−1+|β|+|α| , for N − 2 + |α|+ |β| ≥ 0.

The components of ~Ψ and Γ have the same bounds as the components of G and Θ
and the components of ~Ξ have the same bounds as the components of ~H.

Applying Proposition 3.14 and using that ~ρ has support in Tx and that dj > 8h
we get for z ∈ Ω(1)

j and |β| = k + 1

|D|β|
z g1(z)|+ |D|β|

z g2(z)| ≤
C

dN−1+k
j

||~ρ||L1(Tx) ≤
C

dk+1
j

.

Hence,

|g|
Hk+1(Ω

(1)
j )

≤ C

d
−1+N/2+k
j

.

Similarly, we can show that

|λ|
Hk(Ω

(1)
j )

≤ C

d
−1+N/2+k
j

.

This completes the proof of Lemma 3.12. �

Now we prove Lemma 3.13.

Proof. We first prove the bound for ||~g − ~gh||L2(Ω
(1)
j )

. To this end, set ~E = ~g − ~gh

and notice that

|| ~E||
L2(Ω

(1)
j )

= sup
~φ∈[C∞c (Ω1

j
)]N

||~φ||
L2(Ω)=1

∫
Ω

(1)
j

~E ~φdx.

Let ~φ ∈ [C∞c (Ω1
j )]

N with ||~φ||L2(Ω) = 1 and (~ψ, θ) solve

−4~ψ +∇θ = ~φ in Ω,

∇ · ~ψ = 0 in Ω,

~ψ = 0 on ∂Ω.
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We have ∫
Ω

~E · ~φ dx = Ah(~ψ, ~E) +Bh( ~E, θ)−R(~ψ, ~E)

= Ah(~ψ − ~Π(~ψ), ~E)−Bh(~Π(~ψ), λ− λh)

+Bh( ~E, θ −Π(θ)) +Dh(λ− λh,Π(θ))

−R(~ψ, ~E) +R(~g, ~Π(~ψ))

= Ah(~ψ − ~Π(~ψ), ~E) +Bh(~ψ − ~Π(~ψ), λ− λh)

+Bh( ~E, θ −Π(θ)) +Dh(λ− λh, θ −Π(θ))

−R(~ψ, ~E) +R(~g, ~Π(~ψ))

If S ⊂ Ω, we define Ah,S to be the terms of Ah with integration restricted to S.
In a similar fashion we define the restrictions of Bh, Dh and R.

Hence, ∫
Ω

~E · ~φ dx = I1 + I2

where

I1 = A
h,Ω

(3)
j

(~ψ − ~Π(~ψ), ~E) +B
h,Ω

(3)
j

(~ψ − ~Π(~ψ), λ− λh)

+B
h,Ω

(3)
j

( ~E, θ −Π(θ)) +D
h,Ω

(3)
j

(λ− λh, θ −Π(θ))

−R
Ω

(3)
j

(~ψ, ~E) +R
Ω

(3)
j

(~g, ~Π(~ψ)),

and

I2 = A
h,Ω\Ω(3)

j
(~ψ − ~Π(~ψ), ~E) +B

h,Ω\Ω(3)
j

(~ψ − ~Π(~ψ), λ− λh)

+B
h,Ω\Ω(3)

j
( ~E, θ −Π(θ)) +D

h,Ω\Ω(3)
j

(λ− λh, θ −Π(θ))

−R
Ω\Ω(3)

j
(~ψ, ~E) +R

Ω\Ω(3)
j

(~g, ~Π(~ψ)).

From local continuity properties of our operators we have

I1 ≤ C Q1(||~ψ − ~Π(~ψ)||
H1

h(Ω
(4)
j )

+ (h
∑
e∈Eh

||{{∇~ψ −Π(∇~ψ))}}||2
L2(e∩Ω

(4)
j )

)1/2

+||θ −Π(θ)||
L2

h(Ω
(4)
j )

)

≤ C hQ1(||~ψ||H2(Ω) + ||λ||H1(Ω))
≤ ChQ1,

where

Q1 = (|| ~E||
H1

h(Ω
(4)
j )

+ (h
∑
e∈Eh

||{{∇~g −Π(∇~g))}}||2
L2(e∩Ω

(4)
j )

)1/2 + ||λ− λh||L2
h(Ω

(4)
j )

).

We can easily show using approximation properties of Π and Proposition 3.14 that

h1/2(
∑
e∈Eh

||{{∇~g −Π(∇~g))}}||2
L2(e∩Ω

(4)
j )

)1/2 ≤ Chkd1−N/2−k.

Hence,

I1 ≤ Chk+1d1−N/2−k + Ch(|| ~E||
H1

h(Ω
(4)
j )

+ ||λ− λh||L2
h(Ω

(4)
j )

).
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For I2 we have

I2 ≤ CQ2(||~ψ − ~Π(~ψ)||
W 1,∞

h (Ω\Ω(3)
j )
||∇~ψ −Π(∇~ψ)||

L∞(Ω\Ω(3)
j )

+||θ −Π(θ)||
L∞h (Ω\Ω(3)

j )
)

≤ ChkQ2(||~ψ||W k+1,∞(Ω\Ω(2)
j )

+ ||θ||
W k,∞(Ω\Ω(2)

j )
),

where

Q2 = || ~E||
W 1,1

h (Ω\Ω(3)
j )

+ ||λ− λh||L1
h(Ω\Ω(3)

j )
+ h

∑
e∈Eh

||{{∇~g −Π(∇~g)||
L1(e∩Ω\Ω(3)

j )
.

If we use (3.19) we get

Q2 ≤ || ~E||
W 1,1

h (Ω\Ω(3)
j )

+ ||λ− λh||L1
h(Ω\Ω(3)

j )
+ log(1/h)s̄.

Using Proposition 3.14 along with the fact that ~φ has support in Ω(1)
j we can easily

show

||~ψ||
W k+1,∞(Ω\Ω(2)

j )
+ ||θ||

W k,∞(Ω\Ω(2)
j )

≤ Cd
1−N/2−k
j ||~φ||L2(Ω) ≤ Cd

1−N/2−k
j .

Hence, we have shown that

|| ~E||
L2(Ω

(1)
j )

dx ≤ Chkd
1−N/2−k
j (||~g − ~gh||W 1,1

h (Ω) + ||λ− λh||L1
h(Ω))

+Ch(||~g − ~gh||H1
h(Ω

(4)
j )

+ ||λ− λh||L2
h(Ω

(4)
j )

)

+C log(
1
h

)s̄hk+1d
1−N/2−k
j .(3.22)

Now we prove the bound for ||λ− λh||H−1
< (Ω

(1)
j )

. Let r = λ− λh and notice that

||r||
H−1

< (Ω
(1)
j )

= sup
γ∈C∞< (Ω(1)

j
)

||γ||
H1(Ω(1)

j
)
=1

∫
Ω

(1)
j

r γdx.

Let γ ∈ C∞< (Ω(1)
j ) with ||γ||

H1(Ω
(1)
j )

= 1 and let (~w, q) with (
∫
Ω
q dx = 0) solve

−4~w +∇q = 0 in Ω,

∇ · ~w = γ − avgΩ(γ) in Ω,

~w = 0 on ∂Ω.
(3.23)

By the consistency result for the LDG method we have∫
Ω

rγ dx =
∫

Ω

r(γ − avgΩ(γ))dx = Bh(~w, r)

= Bh(~w − ~Π(~w), r)−Ah(~Π(~w), ~E) +R(~g, ~Π(~w))

= Bh(~w − ~Π(~w), r) +Ah(~w − ~Π(~w), ~E)

+B( ~E, q) +R(~g, ~Π(~w))−R(~w, ~E)

= Bh(~w − ~Π(~w), r) +Ah(~w − ~Π(~w), ~E)

+Bh( ~E, q −Π(q)) +Dh(r,Π(q)− q)

+R(~g, ~Π(~w))−R(~w, ~E).
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Following a similar argument as was done to bound || ~E||
L2(Ω

(1)
j )

we can show∫
Ω

rγ dx

≤ Ch(|| ~E||
H1

h(Ω
(4)
j )

+ ||λ− λh||L2
h(Ω

(4)
j )

) + Chk+1d
1−N/2−k
j

+Chk(||~w||
W k+1,∞(Ω\Ω(2)

j )
+ ||q||

W k,∞(Ω\Ω(2)
j )

)×

(|| ~E||
W 1,1

h (Ω\Ω(3)
j )

+ ||λ− λh||L1
h(Ω\Ω(3)

j )
+ log(

1
h

)s̄h).

The proof will be complete once we show that

||~w||
W k+1,∞(Ω\Ω(2)

j )
+ ||q||

W k,∞(Ω\Ω(2)
j )

≤ Cd
1−N/2−k
j .(3.24)

We would easily be able to show this inequality using the Green’s function rep-
resentation of (~w, q) if avgΩ(γ) was not present in equation (3.23). We have to
perform an intermediate step since avgΩ(γ) does not have support in Ω(1)

j . In par-
ticular, we need the following Schauder estimate which follows from (1.5) and (4.5)
in [22].

Proposition 3.15. Let 0 < α < 1 and let (~w, q) satisfy

−4~v +∇p = 0 in Ω,

∇ · ~v = β in Ω,

~v = ~m on ∂Ω.

Then, for every x ∈ Ω and d > 0 we have the following bound

|Dk+1~v(x)|+ |Dkp(x)| ≤ Cdα([β]k,α,Bd∩Ω + [~m]k+1,α,Bd∩∂Ω)

+Cd−(k+1)||~v||L∞(Bd∩Ω) + Cd−k||p||L∞(Bd∩Ω).

where Bd is the ball centered at x with radius d. Here C is independent of x and
d. The Hölder seminorm [f ]k,α,S is given by

[β]l,α,S = |β|W l,∞(S) +
∑
|η|=l

sup
x,y∈S

|Dηβ(x)−Dηβ(y)|
|x− y|α

.

Hence, using Proposition 3.15 we have for any x ∈ Ω\Ω(2)
j

|Dk+1 ~w(x)|+ |Dkq(x)| ≤ Cd
−(k+1)
j ||~w||L∞(Sdj/2) + Cd−k

j ||q||L∞(Sdj/2),

where Sd is the intersection of Ω with the ball centered at x with radius d. Here we
used that γ has support in Ω(1)

j and that the seminorms of the constant avgΩ(γ)
are zero.

In fact, since ( ~̂w, q) where ~̂w = ~w−avgSdj/2
(~w) satisfies (3.23) with the boundary

condition ~̂w = −avgSdj/2
(~w) instead of zero, one has by Proposition 3.15

|Dk+1 ~w(x)|+ |Dkq(x)| ≤ Cd
−(k+1)
j || ~̂w||L∞(Sdj/2) + Cd−k

j ||q||L∞(Sdj/2)

≤ Cd−k
j ||∇~w||L∞(Sdj/2) + Cd−k

j ||q||L∞(Sdj/2).
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Here we used that and || ~̂w||L∞(Sdj/2) ≤ Cdj ||∇~w||L∞(Sdj/2). One can easily show
using the Cauchy-Schwarz inequality and Poincare’s inequality that

avgΩ(γ) ≤ Cd
N/2+1
j

If we use this inequality and Proposition 3.14, we have

d−k
j ||∇~w||L∞(Sdj/2) + d−k

j ||q||L∞(Sdj/2) ≤ Cd
1−N/2−k
j .(3.25)

Therefore, we have have shown (3.24). This completes the proof of Lemma 3.13. �

3.4. Proof of Theorem 2.3.

Proof. Using an argument similar to the argument used in Theorem 2.3, we have

|(p− ph)(x)| ≤ C||p−Π(p)||L∞h (Ω),x,s + Ch−N/2−1||p− ph||H−1(Tx).

where x ∈ T̄x, Tx ∈ Th. We know that

h−N/2−1||p− ph||H−1(Tx) = sup
m∈C∞c (Tx)

||m||
H1(Tx)=h−N/2−1

∫
Tx

(p− ph)m dx.

Let m ∈ C∞c with ||m||H1(Ω) = h−N/2−1 and let (~̃g, λ̃) (with
∫
Ω
λ̃ = 0) solve

−4~̃g +∇(λ̃) = 0

∇ · ~̃g = m− avgΩ(m)

~̃g = 0

Let (~̃gh, λ̃h) ∈ ~V k
h ×Qk

h be the functions that satisfy

Ah(~̃gh, ~v) +Bh(~v, λ̃h) = 0

−Bh(~̃gh, q) +Dh(λ̃h, q) =
∫

Ω

(m− avgΩ(m))q ∀(~v, q) ∈ ~V k
h ×Qk

h.
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Then, by the consistency result of the LDG method and (2.3) we have∫
Tx

(p− ph)m dx =
∫

Ω

(p− ph)m dx =
∫

Ω

(p− ph)(m− avgΩ(m)) dx

= −Bh(~̃g, p− ph)

= −Bh(~̃g − ~̃gh, p− ph) +Ah(~u− ~uh, ~̃gh)−R(~u, ~̃gh)

= −Bh(~̃g − ~̃gh, p− ph)−Ah(~u− ~uh, ~̃g − ~̃gh)

−Bh(~u− ~uh, λ̃)−R(~u, ~̃gh) +R(~̃g, ~u− ~uh)

= −Bh(~̃g − ~̃gh, p− ph)−Ah(~̃g − ~̃gh, ~u− ~uh)

−Bh(~u− ~uh, λ̃− λ̃h)−Dh(p− ph, λ̃h)

−R(~u, ~̃gh) +R(~̃g, ~u− ~uh)

= −Bh(~̃g − ~̃gh, p− ph)−Ah(~̃g − ~̃gh, ~u− ~uh)

−Bh(~u− ~uh, λ̃− λ̃h) +Dh(p− ph, λ̃− λ̃h)

−R(~u, ~̃gh) +R(~̃g, ~u− ~uh)

= −Bh(~̃g − ~̃gh, p−Π(p))−Ah(~̃g − ~̃gh, ~u− ~Π(~u))

−Bh(~u− ~Π(~u), λ̃− λ̃h) +Dh(p−Π(p), λ̃− λ̃h)

−R(~u, ~̃gh) +R(~̃g, ~u− ~Π(~u)).

Therefore,∫
Tx

(p− ph)m dx

≤ C(||~u− ~Π(~u)||W 1,∞
h (Ω),x,s + ||p−Π(p)||L∞(Ω),x,s

+||σs
x(∇~u−Π(∇~u))||L∞(Ω))×

(||~̃g − ~̃gh||W 1,1
h (Ω),x,−s + ||λ̃− λ̃h||L1(Ω),x,−s + h

∑
e

||σ−s
x {{∇~̃g −∇~̃gh}}||L1(e)).

We will be done once we show the following inequality

||~̃g − ~̃gh||W 1,1
h (Ω),x,−s + ||λ̃− λ̃h||L1(Ω),x,−s + h

∑
e∈Eh

||σ−s
x {{∇~̃g −Π(∇~̃g)}}||L1(e)

≤ C log(
1
h

)¯̄s.

Again, we omit the easier proof of the bound

h
∑

e

||σ−s
x {{∇~̃g −Π(∇~̃g)}}||L1(e) ≤ C log(

1
h

)¯̄s.

In order to prove the remaining inequality, we will need the two following lemmas.
The proofs are very similar to the proofs of Lemmas 3.12 and 3.13. We leave the
details to the reader.

Lemma 3.16. If dj > 8h, then

||~̃g − ~̃gh||H1
h(Ωj) + ||λ̃− λ̃h||L2(Ωj)

≤ Chkd
−N/2−k
j + d−1

j (||~̃g − ~̃gh||L2(Ω
(1)
j )

+ ||λ̃− λ̃h||H−1
< (Ω

(1)
j )

).
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Lemma 3.17. If dj > 8h, then

||~̃g − ~̃gh||L2(Ω
(1)
j )

+ ||λ̃− λ̃h||H−1
< (Ω

(1)
j )

≤ Chkd
1−N/2−k
j (||~̃g − ~̃gh||W 1,1

h (Ω) + ||λ̃− λ̃h||L1
h(Ω))

+Ch(||~̃g − ~̃gh||H1
h(Ω

(4)
j )

+ ||λ̃− λ̃h||L2
h(Ω

(4)
j )

).

Let M be a real number to be determined later and let J be an integer such that
dJ = Mh. Set ~̃E = ~̃g − ~̃gh and r̃ = λ̃− λ̃h. Notice that

|| ~̃E||W 1,1
h (Ω),x,−s + ||r̃||L1

h(Ω),x,−s ≤ || ~̃E||W 1,1
h (SMh),x,−s + ||r̃||L1

h(SMh),x,−s

+
J∑

j=0

(|| ~̃E||W 1,1
h (Ωj),x,−s + ||r̃||L1

h(Ωj),x,−s).

Using Hölder’s inequality we can show

|| ~̃E||W 1,1
h (Ωj),x,−s + ||r̃||L1

h(Ωj),x,−s ≤ Cd
N/2+s
j h−s(|| ~̃E||H1

h(Ωj) + ||r̃||L2
h(Ωj)).

One also has

|| ~̃E||W 1,1
h (SMh),x,−s + ||r̃||L1

h(SMh) ≤ CMN/2+shN/2(|| ~̃E||H1
h(SMh) + ||r̃||L2

h(SMh))

≤ CMN/2+shN/2h(||~̃g||H2(Ω) + ||λ̃||H1(Ω))

≤ MN/2+shN/2h||m− avgΩ(m)||H1(Ω)

≤ CMN/2+s.

Here we used global error bounds and regularity results.
Therefore, we have

(3.26) || ~̃E||W 1,1
h (Ω),x,−s + ||r̃||L1

h(Ω),x,−s ≤ CMN/2+s + Cη̃,

where

η̃ =
J∑

j=0

d
N/2+s
j h−s(|| ~̃E||H1

h(Ωj) + ||r̃||L2
h(Ω)).

If we apply Lemma 3.16, we get

η̃ ≤ CΘ(k − s) + C

J∑
j=0

d
N/2−1+s
j h−s(|| ~̃E||

L2(Ω
(1)
j )

+ ||r̃||
H−1

< (Ω
(1)
j )

),
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Now applying Lemma 3.17, we have
J∑

j=0

d
N/2−1+s
j h−s(|| ~̃E||

L2(Ω
(1)
j )

+ ||r̃||
H−1(Ω

(1)
j )

)

≤ CΘ(k − s)(|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω))

+C
J∑

j=0

d
N/2−1+s
j h1−s(|| ~̃E||

H1
h(Ω

(4)
j )

+ ||r̃||
L2

h(Ω
(4)
j )

)

≤ CΘ(k − s)(|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω))

+CdN/2−1+s
J h1−s(|| ~̃E||H1

h(SMh) + ||r̃||L2
h(SMh)) +

C

M
η̃

≤ CΘ(k − s)(|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω))

+CMN/2−1+s +
C

M
η̃.

Therefore,

η̃ ≤ CΘ(k − s) + CΘ(k − s)(|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω))

+MN/2−1+s +
C

M
η̃.

By Choosing M sufficiently large we have

η̃ ≤ CΘ(k − s) + CΘ(k − s)(|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω)) +MN/2−1+s.

Substituting this bound into (3.26), we have

|| ~̃E||W 1,1
h (Ω),x,−s + ||r̃||L1

h(Ω),x,−s ≤ CMN/2+s + CΘ(k − s)

+CΘ(k − s)(|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω)).(3.27)

In particular, we see that

|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω) ≤ CMN/2+s + CΘ(k)

+CΘ(k)(|| ~̃E|||W 1,1
h (Ω) + ||r̃||L1

h(Ω)).

Hence, by choosing M large enough so that CΘ(k) ≤ 1/2, we get

|| ~̃E||W 1,1
h (Ω) + ||r̃||L1

h(Ω) ≤ CMN/2+s + CΘ(k).

By this inequality and (3.27), we have

|| ~̃E||W 1,1
h (Ω),x,−s + ||r̃||L1

h(Ω),x,−s

≤ CMN/2+s + CΘ(k − s) + CΘ(k − s)Θ(k)

≤ C log(
1
h

)¯̄s.

This proves our result. �

The author would like to thank Bernardo Cockburn for many useful discussions.
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[7] B. Cockburn, G. Kanschat and D. Shötzau, A locally conservative LDG Method for the
incompressible Navier-Stokes Equations, Math. Comp., 74 (2004), 1067-1095.
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