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ABSTRACT. We identify and study an LDG-hybridizable Galerkin method,
which is not an LDG method, for second-order elliptic problems in several space
dimensions with remarkable convergence properties. Unlike all other known
discontinuous Galerkin methods using polynomials of degree k > 0 for both the
potential as well as the flux, the order of convergence in L? of both unknowns
is k + 1. Moreover, both the approximate potential as well as its numerical
trace superconverge in L2-like norms, to suitably chosen projections of the
potential, with order k + 2. This allows the application of element-by-element
postprocessing of the approximate solution which provides an approximation
of the potential converging with order k42 in L2. The method can be thought
to be in between the hybridized version of the Raviart-Thomas and that of the
Brezzi-Douglas-Marini mixed methods.

1. INTRODUCTION

In this paper, we consider the LDG-hybridizable (LDG-H) Galerkin methods
recently introduced in [9] and show how to define their numerical traces in order
to achieve the optimal order of convergence for the approximation to the flux,
and to obtain superconvergence properties similar to those of the hybridized mixed
methods of Raviart-Thomas (RT) [13] and the Brezzi-Douglas-Marini (BDM) [4]
methods; see also [8].

For the sake of simplicity of the exposition, we carry out this in the setting of
the model second-order elliptic problem

(1.1a) cqg+Vu=0 inQ,
(1.1b) Vg=f inQ,
(1.1¢) u=g on dp,
(1.1d) g-m=qn on 00y,

where @ C R is a polyhedral domain (d > 2), f € L?(Q), and ¢ = c(x) is
a symmetric d x d matrix function that is uniformly positive definite on 2 with
components in L>(). As usual, we assume that the (d — 1)-Lebesgue measure of
9Qp is not zero, that 9Q = 0Qp U 0Ny and that 9Qp NIQN = 0.

To describe our results, we need to introduce the hybridized Galerkin methods
studied in [9]. To do that, let us introduce some notation. We denote by Q) = {K'}
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a triangulation of the domain €2 of shape-regular simplexes K and set 92, := {0K :
K € Qp}. We associate to this triangulation the set of interior faces & and the set
of boundary faces é",? . We say that e € & if there are two simplexes KT and K~
in Q, such that e = 0K N 0K, and we say that e € é",? if there is a simplex in
Qy, such that e = 0K N 9. We set &, := & U &Y.

The hybridized Galerkin methods seek an approximation to the exact solution
(gla, ula, ulg\00y ) (@n,Un, An), in a finite-dimensional space V', x Wy, x M}, of
the form

(1.2a) Vi :={ve L*(Q) : v|x € V(K) VK € Q},

(1.2b) Wy i={w e L*(Q) : w|x € W(K) VK € Q},

(1.2¢) My :={m € L*(9Q,) : m|c € M(e) Ve€ &, mlsqa, =0},
and determines it by requiring that

(1.3a) (e qp,v)q, — (up, V- -v)q, + (Un,v-n)aq, =0,

(1.3b) = (qn, Vw)a, + (@), - n,w)oq, = (f,w)a.,

(1.3¢) (@), - m, oo, = (an, ooy,

for all (v,w, pu) € V'), x Wy, x My,. Here, we have used the notation

(o,v)q, = Z /Ko'(x)v(x) dz,

KeQp

Gl = 3 [ (@) wl@)da,

KeQp

<<5 v n>6ﬂh = Z C(FY) v(ﬁ)/) "n dﬁ)/a
Keq, 7oK

for any functions o, v in H'(Q,) := [H(Q,)]¢ and ¢,w in the space H () =
{veL*(Q): wv|lg € H(K) VK € Q}. The outward normal unit vector to 9K
is denoted by n.

To complete the description of the hybridized Galerkin methods, the definition
of numerical traces (qy,, Up) on the faces of the triangulation &}, has to be provided.
The choice which is relevant here is

~ Pag Onéohﬂaﬂ[),
(1.4&) Up =
)\h on éah \ aQD,
(1.4b) 4, =q;, + 7 (un —Up)n  on &,

where Py denotes an L2?-projection defined as follows. Given any function ¢ €
L?(&,) and an arbitrary face e € &, the restriction of Ps( to e is defined as the
element of P*(e) that satisfies

(1.5) (PoC —Cwhe =0,  Ywe PF(e).

Note that by suitably choosing the local spaces V(K), W(K), and M (e), and
the values of the local stabilization parameters T, we can obtain the hybridized RTy,
the hybridized BDMy and the LDG-Hj methods; see Tables 1 and 2. In Table 1
and in the remaining of this paper, we denote the space of polynomials of degree
at most k > 0 defined on D by P*(D), and set P*(D) := [PF(D)]?. Since all
these methods can be implemented in the same way and can be used in different
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elements while being automatically coupled, what it relevant, as argued in [9], is
to find out which method should be used in what element in order to optimize the
computational effort. It is thus important from this perspective to develop DG
methods as accurate and efficient as mixed methods so that they could be used in
situations in which mixed method cannot. The LDG-H methods we uncover in this
paper are the first example of those methods.

TABLE 1. The local spaces

method V(K) W(K) M(e)
RT, PHE)@zPH(K) PHE) Prle)
LDG-H;, PH(K) PEK)  PF(e)
BDM;, PH(K) PFLK)  Pr(e)

TABLE 2. The local stabilization parameters 7

method T|ox

RTk =0
LDG-H, >0,%#0

BDMjy =0

It is well known that the RTy; and BDMj methods provide an approximation
q,, to the flux which converges in L? with order k+1, that u;, and \;, superconverge
in L2-like norms to suitably chosen projections of the potential u with order k + 2,
and that, as a consequence, it is possible to postprocess the approximate solution to
obtain another approximation u} converging in L? with order k + 2; see [1] and [4],
and also [8]. In this paper, we use an extension of the postprocessing proposed in
[14, 15] and [12]. Given the similarities between these two mixed methods and the
LDG-Hj, method, it is natural to ask if it is possible to choose the local penalization
parameters 7 as to obtain similar convergence and superconvergence results. The
main contribution of this paper is to show that this is actually possible.

Indeed, we show that this happens if we take, on each simplex K € ),

0 OK \ e,
7__{ , on \ €%,

(1.6) .
TK on eK,

where e}, is an arbitrary but fixed face of K and 7x is a strictly positive real
number. Due to the superconvergence properties of this DG method, we say that
this is an SCDG method; for simplicity, we are going to refer to the method un-
der consideration by the SCDG ) method. It is interesting to note two of the
minimal dissipation DG methods considered in [6], in the framework of a study
of superconvergence properties of DG methods for one-dimensional steady-state
convection-diffusion problems, happen to be an SCDG method. The first is called
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the md-DG method, see Table 1 in [6], and is obtained, in our notation, by taking
on each interior node z;,

T(:c:r) =0 and T(z;) = k/hi,

where h; is the size of the interval to the left of the node z;. The second is called
the md-LDG method, and is obtained by taking the above choice of parameters
7 formally letting 7(x;) go to infinity. The authors are not aware of any other
instance of SCDG methods. In particular, let us emphasize that SCDG methods
are not LDG methods whenever the stabilization parameters 7 are finite; see the
discussion about LDG-H methods in [9].

In Table 3, we compare the orders of convergence for the flux of this method
and the above-mentioned mixed methods. We have also included the order of
convergence for the general LDG-H methods; it can be deduced from their charac-
terization [9] and the study of DG methods carried out in [5]. Finally, in Table 4,
we display the orders of convergence of the postprocessed approximation ujy to the
potential.

TABLE 3. The orders of convergence in h of the L2-errors

method (g —qy |22, | v—unllz2p) condition
RT}, k41 E+1 k>0
LDG-Hy, k E+1 k>1and 7=0(1/h)
LDG-Hy, k+1/2 E+1 k>0and 7=0(1)
SCDG g k41 E+1 k>0
BDMj, k+1 k k>1

TABLE 4. The orders of convergence in h of || u — uj ||12(q,)

method order condition

RT,  k+2 k>0
SCDG ) k+2 k> 1
SCDGj k+2 k=0,f=0
BDM, k42 k> 2
BDM, k41 k=1

We also uncover new relations between these three methods. One of the main
features of the hybridized Galerkin methods proposed in [9] is that the only degrees
of freedom that turn out to be globally coupled are those of the so-called Lagrange
multiplier A\p. This implies, in particular, that the LDG-H methods can be more
efficiently implemented than the LDG methods introduced in [10]. In fact, they can
be implemented as efficiently as the hybridized RT\ and BDM), mixed methods; see
[9] for details. Here we show that the stiffness matrix of the Lagrange multiplier
for the RTy, BDMy and SCDG ; methods is actually identical and that, when
flx € PP~Y(K) for all K € Qj, , these methods provide the same approximation

(qha )\h)
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Next, let us briefly comment on the approach taken to carry out the a priori
error analysis of the SCDG j, methods. We did not take the approach used in [5] to
analyze DG and LDG methods, or that used in the unified analysis of DG methods
[2]. Instead, we exploited the unifying framework of hybridized Galerkin methods
[9] to render the analysis of the SCDG ; methods as close as possible to those of the
hybridized RTj and BDM}, methods. Since a key ingredient in those analyzes is
the existence of a projection (II, P) satisfying the so-called commutativity property

V- -IIoe =P'V -0,

for all o € H(div,Q), the crucial step in the analysis was to find a similar projec-
tion. Unlike the above-mentioned mixed methods, the space of fluxes V', of the
SCDG j methods is not included in H(div, Q) and, as a consequence, the above
commutativity property can only be satisfied in a weak sense. We found a new
projection satisfying the following weak version of the commutativity property:

_(VCa Ho’)ﬂh = (]P)Ca V. O')Qh

for all (o, ¢) € H"(Q,) x H'(Q,) such that ¢|pq = 0. Just as the local spaces of the
SCDG j, methods are, roughly speaking, “in between” the local spaces of the RT}
and BDMj methods, this projection can also be considered to be “in between”
the corresponding projections of those mixed methods. The construction of this
projection, which is intimately linked to the definition of the numerical traces of
the method @y, and @, and to the choice of the local spaces, is certainly the most
interesting aspect of the analysis of the SCDG ;, methods. The first component of
the projection, II, was used in the error analysis of the minimal dissipation LDG
method in [7].

The paper is organized as follows. In Section 2, we state and discuss our
main results and then prove them in Section 3. In Section 4, we display numerical
experiments validating the theoretical results. Finally, in Section 5, we end with
some concluding remarks.

2. THE MAIN RESULTS
2.1. The projection (IL,P). In this subsection, we define the projection
(IL,P) : H'(Q,) x HY(Qy) — Vi, x Wy,

and gather its main properties.
Given a function & € H*(Q) and an arbitrary simplex K € €y, the restriction
of Io to K is defined as the element of P*(K) that satisfies

(2.7a) (o — o,v)x =0, Yve P YK), ifk>1,
(2.7b) (I — o) - n,w) =0, Yw e P*(e) and Ve € 0K, e # 5.

Similarly, given a function ¢ € H'(Qj;) and an arbitrary simplex K € Q, the
restriction of P( to K is defined as the element of P*(K) that satisfies

(2.8a) (P —¢w)g =0,  Ywe PFYEK), if k> 1,
(2.8b) (P¢ — ¢, wher =0,  Vwe PFek).

We gather the main properties of this projection in the following result. To
state it, we need to recall the definition of some classical projections. Given a
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function & € H'(Q,) and an arbitrary simplex K € €, the restriction of II*" o
to K is defined as the element of P*(K) & @ P(K)* that satisfies

(2.9a) (Mo —o,v)g =0, VYove P Y(K), ifk>1,
(2.9Db) (I — o) - n,w). =0, Yw € P¥(e), for all faces of K.

Given a function ¢ € H(Q,) and an arbitrary simplex K € Q, the restriction of
PC to K is defined as the element of P‘(K) that satisfies

(2.10) (P¢ —¢w)rg =0, Vw e PYUK).
To simplify the notation, we are going to write P instead of P*. Note that (IT"", P)

is nothing but the projection for the RT; method. We are now ready to state our
result.

Proposition 2.1. The projection (IL,P) given by (2.7) and (2.8) is well defined.
Moreover, on each simplex K € Qp,, it satisfies the orthogonality properties

(i) ((=P¢V-v)k =0,
(17) (0 —Ilo,Vw)g =0,
(#it) (P — Py, Ilo-n —Pyo -n). =0  for all faces e of K,

for all (v,w) € P*(K) x P¥(K), and the weak commutativity property
(iv) —(V(Ilo)k = (P(, V- o)k — (Pa¢, Pao - n)ox,

for all (o,¢) € HY () x HY(Q,). Finally, we have the following approzimation
estimates
(v) |Ho-n—Pso nllp2ery < Chid 2PV - o ),
(i) || o -0 ||r2(x) < ChY [PV -0 |5 (r0),
(vii)) [P —PC |2y £ CRF |V b (x0),s

where r,s € [0,k], hx is the diameter of K, and C depends only on k and the
shape-regularity parameters of the simplex K, for any (o,¢) € H (K) x H'(K).

We are going to show that the three orthogonality properties imply all the
others; they are thus the crucial properties for the analysis. Note also that, by
simply adding the identity (iv) over all K € Q, we obtain the weak commutativity
property discussed in the introduction.

2.2. Characterization of the approximate solution. Next we give a charac-
terization of the approximate solution provided by the SCDG ; method. We begin
by characterizing the difference between the numerical traces and the traces of the
approximate solutions on each simplex.

Proposition 2.2. For each simplex K € €y, we have that,
(ah—qh)'n:T(uh—ah):Paq-n—l_[q~n on OK.

We see that the jump (q;, — q;,) - n is independent of the value of 7 whereas
the jump @y, — uy, is inversely proportional to 7. Moreover, by the estimate (v) of
Proposition 2.1, we have that,

1@ = an) 7 llr2ey < CRE2IPF 1),
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for any r € [0, k], and we see that the size of jump under consideration depends
solely on the smoothness of f|x. For example, if Pf|x is a polynomial of degree
k —1, then (g, — q;,) - = 0 on €%. This implies that (g, — q;,) -n =0 on K for
every K € Qy, and, as a consequence, that q, € H(div,Q). Now, if f € H"(K), for
some r € [0, k], then we have that

@ —an) -l < OB Lo,

by well-known approximation properties of the projection P.

Next, we give a characterization of the approximate solution which follows
from a similar result for general hybridized Galerkin methods obtained in [9]. To
state it, we need to introduce the local solvers associated with the method. The
first local solver is defined on the simplex K € €2, as the mapping m € L?(0K) —
(Qm, Um) € P*(K) x P*(K) where

(2.11a) (cOm,v)g — (Um, V- -v)g = —(m,v - n)sk,
(2.11b) —(Vw, Om) g + (w,Qm - n)yx =0,

for all (v, w) € P*(K) x P*(K), where

(2.11¢) Om = Om + 7(Um — Poym)n.

The other local solver is defined on the simplex K € € as the mapping f €
L2(K) — (Qf, Uf) € PF(K) x P*(K) where

(2.12a) (cQf,v)k — (Uf,V-v)g =0,
(2.12b) —(Vw,Qf )k + (w, Of - nox = (f, )k,

for all (v, w) € P¥(K) x P*(K), where

(2.12¢) Qf =Of + 7Ufn.
We can now state our characterization result.

Theorem 2.3. The approximate solution (g, un, An) € Vi, X Wi, x M}, given by
the SCDG;, method is well defined. Moreover, we have that

(qh5 uh) = (Q)‘ha U)‘h) + (an uQ) + (Qfa uf)a
where A\, can be characterized as the function in M}, satisfying

an(An, p) =bn(p) Y € My,

where

an(n, 1) :=(c9n, Lu)q,,
br(p) :=(g, Qu - n)aq, + (f, U, — (1, aN)oay
for allm and p € Mjy,.

This result allows us to shed light on the effect of local stabilization parameters
7 on the approximate solution. It will also allow us to compare the RTy, the BDMy
and the SCDG ;, methods; see [8] for a comparison of the hybridized version of the
RT} and the BDMy methods. These results are gathered in the following theorem.
To state it, we use the projection P*~! which is defined by (2.10) for £ > 1 and
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which we take to be identically zero when k£ = 0. We keep this convention in the
remainder of the paper.

Theorem 2.4. We have that

(i) The function (qy,P* ‘un, \n), is independent of the values of the local
stabilization parameters T. Moreover, changes in the local stabilization pa-
rameters Tic only affect the function Uf|er .

(i) If Pflx € P*Y(K) for all simpleres K € Qp, then (g, P*~tup, \p) is
the same for the RTy, the BDM (if k > 1) and the SCDG methods.
Moreover, uh|e;( = ﬂh|e;( for all K € Q.

(iii) The bilinear form ap(-,-) is always the same for the RTy, the BDMy (if
k > 1) and the SCDG methods.

2.3. A priori error estimates. In this subsection, we obtain a priori error esti-
mates for the error of the approximation (g, un, Ap) € Vi X Wy, X M}, given by
the SCDG , and the numerical trace Uy, defined by (1.4a). To state them, we need
to introduce new notation.

For any real-valued function ¢ in H'(,), we set

| ¢ lran) = ( Z ¢ (xy) ?-

KeQy,
For a vector-valued function o = (01, . ..,04) € H'(Q) we set
d 1
|o |Hl(Qh) = (Z | o @11(9,1))5'
i=1

We can now state our results.

We begin by measuring the error in the approximation of the flux q in the
norm || o ||2(q,e) = (€O, a);l/f.
Theorem 2.5. Suppose that the exact flur q belongs to H™ ' (Qy,) for some r €
[0,k]. Then

lga — anllznie) <l —TIqll L2 (0 i0) < Ch™tlq | +1(0,)s

for some constant C independent of h and the exact solution (g, u).

Note that the upper bound of the error is independent of the local stabilization
parameters 7, in complete agreement with the characterization of the approximate
solution given by Theorem 2.3. It is interesting to realize that the first estimate also
holds for the RTy and BDM} methods when the projection IT is suitably chosen;
see [11] and [4]. Such estimate is obtained by using the commutativity property and
the fact that the image of their projections is in H(div,)). Since our projection
(I1, p) only satisfies a weak version of the commutativity property, a much more
delicate analysis has to be carried out to obtain it.

In [5], it was shown that for general LDG methods with penalization parame-
ters of order 1/h, the order of convergence of the approximations for flux g using
polynomials of degree k is only k; this order is sharp because it is actually attained
for some LDG methods. It was also shown that, for DG methods with both pe-
nalization parameters of order one, the order of convergence of the approximations
for the flux using polynomials of degree k is (k+ 1/2). Here, we obtain an order of
convergence of (k+1). No other DG method has this property.
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Next, we present several estimates for the error in the approximation of the
potential u. The first is a superconvergence result. To state it, we need to introduce
the adjoint equations

(2.13a) cY+Ve=0 inQ,
(2.13b) V=0 inQ,
(2.13¢) =0 ondp
(2.13d) Y-n=0 ondy.

We also need to assume that the following elliptic regularity result holds

(2.14) Yt + I Vellasti@,) < Cerll 0llms ()

for s € [0, k]. Note that, since we are working with domains that can be triangulated
by using straight-faced simplexes, the above result only holds if such domain is
convex and s = 0. However, we want to write this assumption in such generality
since the method will be extended to domains with smooth curved boundaries in a
forthcoming paper.

Theorem 2.6. Suppose that the ezact flur q belongs to H™ ™1 (Qy,) for r € [0, k].
Set k 1= maxgeq, ﬁ Then,

[Py — unl| -+ (0, <C&:*(q) Rt
where
e (q) = {CeT | g a8V -qlar@,), forsel0,k—1],k>1,
Cerl@lmr(a,) + Cerlan|mioay)  forr=s=k=0and f =0.
Moreover, for k =0 and general f € L*(Q4),
[Pu = unllz2(,) < C Cxlq) h,
where Cy(q) = (1 +h)Cer | g1 (a,) + K|V qlr2u)-

It is interesting to note that the above superconvergence result holds for any
choice of local stabilization parameters 7x such that  is uniformly bounded, that
is, such that 1/(hg 7x) is uniformly bounded with respect to h. This shows that
Tx cannot be too small for superconvergence to take place.

A straightforward consequence of this theorem is the following result.

Corollary 2.7. Suppose that the exact fluz (q,u) belongs to H™ T () x H™1 ()
forr €0,k]. Then

lu—unllr2@,) < C AT (Culq) + [ ularian))

where
min{€;1(q). K ()} ifk > 1.
Cn( ): . -
Cu(q) ifk=0.

Note that the above result shows that if 1/7x is uniformly bounded for quasi-
uniform triangulations, the convergence of uy, is still optimal, provided q is smoother
than required, that is, provided ¢ € H""(Qy,) instead of just ¢ € H"(Q,). Of
course, in this case, the superconvergence of uj to Pu is lost.



10 B. COCKBURN, B. DONG, AND J. GUZMAN

The next result is a superconvergence result for the Lagrange multiplier Aj.
To state it, we use the following norm:

I Pou — T || L2(g,my = (D il Pow—Tn [|2000)) ">
KeQyp

Theorem 2.8. Suppose that the exact solution (u, q) of (1.1) belongs to H™ 1 (Qy,) x
H"™(Qy,) for some r € [0,k]. Then,

IPou — n|| £2(s,n) <C (QS’O(Q) +|q |HT+1(Q;L)) ht?,
ifk>1, orif k=0 and f=0.

There are no results of this type for any other DG method. However, the
RT; and the BDMj; methods have both similar results. Here we exploited the
similarity of the SCDG g methods with the RT; and BDMj methods to obtain
these superconvergence results.

2.4. Postprocessing. We end this section by showing how to exploit the super-
convergence results to postprocess up, q;, and 4y to get a better approximation to
u defined as follows.

On the simplex K, we define the new approximation of u, u}, as the function
of P*+1(K) given by

(215&) ’U,Z =7 + ,ah,
where
d Unle k=0
(2.15b) T = dlzeeaK | % :
meuhdrc if k>0,

and 4y, is the polynomial in PE(K) satisfying
(2.15¢) (aVip, Vu)g =(f,w)x — (w,q), -n)ox Yw € PPTHK).

Here a = ¢! and P! (K) is the collection of functions in P*+1(K) with mean
zero. The postprocessing technique just introduced is a slight modification of a
postprocessing proposed in [14, 15] and [12]; it consists in using the numerical trace
q,, instead of gy,

It is easy to see that this postprocessing is associated to a locally conservative
method. Indeed, the scheme satisfied by uj, on each simplex K € Q, is

(@aVu}, Vw)g + (0, Gy, -n)ox = (f,w)x Yw e PFK).

As a consequence, if we take Dy to be the union of an arbitrary set of simplexes
K € Qy, we get that

<1aah ) n>3Dh = (fa 1)Dha
which is nothing by the property of local conservativity.

Note that 4y, is well defined. Indeed, if we take w = 1 in equation (2.15c¢),
the right-hand side is also equal to zero thanks to equation (1.3b). The fact that
it provides a better approximation to the potential v than wu; is contained in the
following result.
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Theorem 2.9. Suppose that the exact solution (u, q) belongs to H™2(Qy) x H™ ()
forr €[0,k]. Then, if k > 1,

e~ wtll ey <CAT2 (€5°(a) + 1alprrssany + iz )
and if k=0 and f =0,

lu—uhllzz@,) SCH? (Cola) + | ulm2(ay)) -

Note that when Pf|x € P*~1(K) for all K € Qp,, by Theorem 2.4 we have
that the function (g, - m, P¥~1uy, A) is the same for the RTx, BDMy (k > 1) and
SCDG ;; methods. As a consequence, the postprocessed approximation uj is also
the same for all these methods.

Note also that in [3], a general postprocessing which is solely based on approx-
imation results was obtained. When applied to the SCDG ; method for £ > 1, it
gives rise to an approximation of u which converges with the same orders as ours.
However, unlike such postprocessing, our postprocessed solution uj, is associated to
a locally conservative scheme; it is also easier to compute.

Let us end this section by noting that all the error estimates for £ > 1 hold if in
the equation (1.3b), we replace f by any function Jj, f such that J, f|x € P¥~1(K)
for all K € Q) and such that

I f=Inf 1) S CR T f e -

Moreover, by statement (ii) of Theorem 2.4, the function (q,,, P*~us, A,) provided
by the RTg, the BDM}, and the SCDG j, method is the same; in particular, we have
that q;, € H(div,Q). The postprocessed approximation u} is also the same for
those three methods.

3. PROOFS

In this section, we present detailed proofs of all our results.
3.1. Proof of Proposition 2.1: The properties of (IL, P).

3.1.1. Two key auxiliary results about polynomials. To prove Proposition 2.1, we
begin by stating and proving two lemmas whose use is crucial in our analysis.

Lemma 3.1. Given the face e of the simplex K and a function z € P*(e), there is
a unique function Z € P*(K) such that

(Z) <Za w>8 = <Zaw>8 Vw € (Pk(e)a
(i) (Z,w)g =0 Vwe?kfl(K).
Moreover,
(@ii) 11 Z |2y < C il 2 z2eys

where hy is the diameter of the simplex K and C depends solely on k and the
shape-regularity parameters of the simplex K.
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Lemma 3.2. Given the face e of the simplex K and the function z such that for all
faces €' of K different from e, z|o € PE(e’), there is a unique function Z € P*(K)
such that

(i) (Z-nwe=(zwe YweP(), #e

(i) (Z,v)k =0 VwvePYK).

Moreover,

(i#i) 1| Zllz2gey < Ol zllzzorve.
where hyi is the diameter of the simplex K and C depends solely on k and the
shape-regqularity parameters of the simplex K.

We are only going to give a detailed proof of Lemma 3.2 since the proof of
Lemma 3.1 is similar and simpler.

Proof of Lemma 3.2. Let us begin by proving that the function o € P¥(K) sat-
isfying (i) and (ii) exists and is unique. Since the linear system determined by
equations (i) and (ii) is square, indeed,

dim(PF 1 (K)) = (k —i d) x d,

Y dim(@H() = (k;fz 1) x d,

e’cOK ,e'#e
k+d
dim(P*(K)) = ( ; ) x d,
and ("7 + (1971 = (M), we only need to show that if o € P*(K) satisfies
(Z,v)x =0, Yo e PHH(K),
(Z n,w)e =0 VYwePr(),e €K, e e,
then Z =0on K.

Let T be the affine mapping that transforms the element K to the reference
simplex K. Moreover, let us denote by e;, : = 1,---,d + 1, the faces of K where
e := eqy1. Assume that the mapping T is such that €; := T'(e;) is the face of K
lying on the plane Z; = 0. and set Z(Z) := Z(T~'(Z)). Then the above equations
become

(Z,3)z =0 Vo e PFUE),

(Z-n;,0)s, =0 VYo ePr@),i=1,..4d,
since spaces of polynomials of a given total degree are invariant under affine transfor-
mations. Now, let {nJ} | be the basis of R? dual to {ni}le, that is, n,; -n; = d;;.

Then we can write Z = ZJ | Djnj, where p; € P*(K ), and obtain that

ijanj :0 vaeg)kfl(i{'),
Jj=1
Di, Wye, =0 Vo ePr@E), i=1,..,d.

d
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The last equation implies that, forany i = 1, ..., d, p;

2, = 0 and hence that p; = Z;p;
for some polynomial p; in P*~1(K). Taking ¥ = p; n;, we get

and, since T; > 0 on K , we conclude that p; = 0. This implies that Z = 0 on K.
This proves the existence and uniqueness of Z satisfying the conditions (i) and (i4).

The estimate (iii) follows now from a simple scaling argument. This completes
the proof. ([l

3.1.2. Proof of the orthogonality properties. It is not difficult to see that the fact
that (II,P) is well defined is a direct corollary of Lemmas 3.1 and 3.2.

Now, let us prove the orthogonality properties. The property (i) follows from
the property (2.8a) defining P and the orthogonality property (ii) follows from the
property (2.7a) defining II. The orthogonality property (iii) follows from the prop-
erties (2.8b) and (2.7b) defining P and II, and from the definition of the projection
Ps, (1.5). In fact, it follows from the fact that on each face e of any simplex K, we
have that either P( = P or Ilo - n = Pgo - n.

3.1.3. Proof of the weak commutativity property. The weak commutativity property
(iv) is a direct consequence of the three orthogonality properties we just proved.
Indeed, we have that
—(V¢, o)k = ((,V o)k — (¢, IIo - n)ok

= (P¢, V- Ilo)k — (¢, Ho - n)ok by (i),

= —(VP(,Ilo)k + (P¢ — ¢, Ilo - n)ok

=—(VP¢, o)k + (PC = (o -n)ox Dy (i),

= —(VP(,0)k + (P( —Ps,0 -n)sx by (iii),

= (P, V-0)k — (Pa¢,0 - nhsk,

= (P, V- -0)x — (Pa¢,Pgo - n)sk,

by the definition of the projection Py, (1.5). This completes the proof of (iv).

3.1.4. Proof of the estimates (v) and (vi). Note that, by the definition of the pro-
jections I, (2.7), and II"", (2.9), we have that

(I — o, v)k =0,

<(HRT0' — HU') ' n;w>e :<P80' ‘n—1Ilo - n;w>eﬁe"i{'

for all v € P*71(K), if k > 1, and for all w € P¥(e) and all faces e of K. By a well
known scaling argument, we immediately obtain that

|0 — o || g2 (k) < Chyl* || Poo - — Tl - n || 2(eq.)-

It remains to estimate the above right-hand side. To do that, we note that, for any
w in P¥(K), we have that

(w,IMIg - n — Pgo - n)er = (w, Mo — o) -n)ox = (w,V - (Ilo — 7))k,

-
€K
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by the definition of the projections IT, (2.7). Taking w = Z, where Z is given by
Lemma 3.1 with z := ITo - n — Pgo - n , we get that, for any p in P*—1(K),
12 Z2(er,) =l To - = Paor - || F2(er
1/2
<O W* 1PV - o = pllra I 2 2,

and, after a direct application of the Bramble-Hilbert lemma, we get

|Poo-n—To 1|2 < Ch [PV -0 |5,

where 7 € [0, k]. This completes the proof of the estimates (v) and (vi).

3.1.5. Proof of the estimate (vii). Note that, by the definition of the projections P,
(2.8), and P, (2.10), we have that

(PC — P w)k =0,
(P — P(,w)er, = (PaC — PG wer, .
for all w € P*~1(K), if k > 1, and for all w € P¥(e%). This implies that Lemma
3.1 holds with z := Py¢ — P and Z = P{ — P({. As a consequence,
IP¢ = PC | zare) < Chil* | PaC = PC (1o

It remains to estimate the above right-hand side.
To do that, we note that, for any v in P*(K) @ x P*(K), we have that

(3.16) (PC—PyC,v-n)ox = (PC— (v -n)ox = (VP -V, v)k,

by the definition of the projection P, (2.10) and that of the projection Py, (1.5). A
well known scaling argument states that given any function z such that its restric-
tion to each face e of k belongs to P¥(e), there is a function Z in P*(K) @ x PF(K)
such that

(1) (Z n,w)e = (z,w)e Y we Pe),
(i) (Z,v)xk =0 VwveP YK).
(@ii) | Z 2y < C il 2 lleaor),s

where hg is the diameter of the simplex K and C depends solely on the shape-
regularity constants of the simplex K. Taking v := Z with z = P{(—Ps( in equation
(3.16), we obtain that

I 217201 =(VPC = V¢, Z)k
< ChL2IVC = plleeo |l 2l Laor),s

for any p € ﬂ’kfl(K ). Thus, after a direct application of the Bramble-Hilbert
lemma, we get
I P¢ = PoC llz2ar) < Ch |V b (a0,
where 7 € [0, k]. This completes the proof of estimate (vii).
This completes the proof of Proposition 2.1.
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3.2. Characterization of the approximate solution. To prove the results about
the characterization of the approximate solution of the SCDG method, we begin by
proving two auxiliary results concerning key properties of the local solvers.

3.2.1. Two auziliary results about the local solvers. To state the first auxiliary re-
sult, we need to introduce the following decomposition of our local spaces:

PH(K) =V(K) & V* (K),
PHK) =W(K) & WH(K),
where
V(K) :={ve P*(K): V-v=0},
VHEK) :={ve P*(K): (cv,0)k =0 VoeV(K)},
and
W(K) =P (K),
WH(K) :={w € P¥(K) : (w,O)x =0 V¢ e W(K)},

Lemma 3.3. Let K be any simplex of the triangulation Q. Then the local mapping
(Qm, Um) given by equations (2.11) can be obtained as follows:

(i) Set
Um|e;( = P3m|8;(.
(ii) Compute Qm € V(K) by solving
(€Om,v)g = —(m,v-n)ox Vv eV(K).
(iii) Compute P*=1Um by solving
(PF1UM, V- v)x = (m,v-n)ox Vv e V(K).

Similarly, the local mapping (Qf, Uf) given by equations (2.12) can be obtained as
follows:

() Compute Ufle; by solving
(W, TUf)er = (f,w)x YVweEWH(K).
(B) Compute Qf € V*(K) by solving
(W, V- Qf)k = —(w,7Uf)er + (fw)xk Vwe W(K).
(v) Compute PE=LUS by solving
(PF=YUF, V -v)g = (¢Qf,v)xk VveV(K).

Proof. Let us begin by proving the properties of the first local mapping. Thus,
integrating by parts in the equation (2.11b), we obtain

(w,V-0m)g = (w, (Qm — Om) - n)ox = (w,7(Um — m))er.
for all w € P*(K), by the definition of the numerical trace Om, (1.4b) and (1.6).
Taking w € W (K), we see that

(W, 7(Um —=m))er =0 VYwe WHK).

€K
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Using the fact that W+ (K)|e; = P*(e}) which follows by a simple application of
Lemma (3.1), we have that (i) holds. As a consequence, we see that

(W, V-Qm)g =0 Ywe PK),

and hence that Om € V(K). The property (ii) can be now obtained by restricting
the test functions v to the space V(K) in the equation (2.11a). Now that we know
Om, we obtain the formulation (iii) for P*~1Um by restricting the test functions
v to the space V= (K) in the equation (2.11a). It remains to show that P*~!Um
is uniquely defined by those equations. But this follows from the fact that the
system of equations is square and that V - V*(K) = P*~1(K) = W(K), which in
turn follows from the fact that V - V(K) = {0} and V - P*(K) = P*~1(K). This
completes the proof of the properties of the first local lifting.

The proof the properties () and () of the second local mapping is similar
to the proof of the properties (i) and (iii) of the first local mapping, respectively.
Let us prove property (8). If we take v € 'V in the equation (2.12a), we see that
Qf € V*(K). Since the equation in () is obtained from (2.12b) by restricting
the tests functions w to W(K), we only have to prove that Qf given by (3) is well
defined. But this follows from the fact that the system is a square system and
V.V (K) = P*'(K) = W(K). This completes the proof. O

The second auxiliary result concerns the jumps of the local solvers.
Lemma 3.4. For each simplex K € Qy,, we have that, on 0K,
(Om —9Om) -n =7 (Um — Pym) = 0,
(Qf—Qf)-n:TUf:Paq~n—Hq~n.

Proof. Let us begin by proving the second identity since its proof is more involved.
Taking w = Z in the identity (3) of Lemma 3.3, where Z is given by Lemma 3.1
with e = e}, we obtain that

(z,(Qf - Qf) nYer =(z,7 Uf)er.
(Z,V-(q—1lq))k

=—(VZ,q-Tq)k + (Z,(q —T1q) - n)ox

exo

by the properties of the projection II, (2.7). As a consequence, we immediately
obtain that, on e,

(Qf —Qf) n=1k Uf =Pyq-n —TIq- n.
A similar argument gives that, on e,
(Om —Om) - n = 7% (Um — Pym) = 0.
This completes the proof of Lemma 3.4. ([l

3.2.2. Proof of Theorem 2.3: Characterization of the approzimate solution. The fol-
lowing result is a particular case of a general result for hybridized Galerkin methods
proven in [9].
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Theorem 3.5. The approximate solution (qy,un, An) € Vi, X Wi, x M}, given by
the SCDG, method is well defined. Moreover, we have that
(@, un) = (QAn, UAn) + (g, Ug) + (2, US),
where A\, can be characterized as the function in M}, satisfying
an(An, p) = bn(p) Y € Mp,

where

an(n, 1) =(cQn, Qu)a,  — (i — Up, (D — 1) - n)aq,,
bi(i) =(9: Qp - M)oay, + (f, Unda,, — (1, an)ooy
— (1= Up, (Qf — 2f) - n)oa,
(—Uf, (Qu —Qp) - n)ag,
(1 — Up, (Qg — Qg) - n)oa,
— (g — Ug, (Qu— Q) - m)on,,

- -

for allm and p € My,.
Theorem 2.3 follows from this result if we show that on &},
(Qu—Qu)-n=0 and (n— Up)(Qf - 2f) =0,

for all 4 € Mp. Since this is a straightforward consequence of Lemma 3.4, this
completes the proof of Theorem 2.3.

3.2.3. Proof of Proposition 2.2: Characterization of the jumps. By the definition
of the numerical traces (1.4) and (1.6), we have that

—~ T (up, — Up,) on e,
_ =
@~ an) { 0 otherwise.
) i (up — Up) on €y,
B Pog-n—1Ilg-n otherwise.

by the definition of the projection II, (2.7b), and that of the projection Py, (1.5).
So, we only have to prove that

(@, —a,) n=Pog-n—Ilg-n  oneg.
But, by Theorem 2.3, we have that
(@ —gn) - =(QX —Q\) -n+ (29 —Qg) - n+(Qf ~2f) '
=Psq-n—TIIg-n
on the face e}.. This completes the proof of Proposition 2.2.

3.2.4. Proof of Theorem 2.4. The statement (i) of Theorem 2.4 follows directly from
Theorem 2.3 and from Lemma 3.3.

To prove the remaining statements, we are going to use the fact that the
RTy, BDM and SCDG ; methods have exactly the same structure and satisfy the
characterization theorem 2.3; see [9]. The only difference between these methods
is the choice of local spaces, see Table 1, and the choice of the local stabilization
parameters 7, see Table 2. Thus, to prove statement (ii) we only have to show that
the functions (Qm, P*~1Um) and (Qf, P*~1Uf) are the same for all these methods
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whenever f|x € PF1(K) for all K € . Similarly, to prove statement (iii), we
only have to show that Qm is the same for all these methods.

To do that, we begin by noting that we have that, by Lemma 3.3, the function
(Qm, P*~1Um) € V(K) x W(K) is determined by

(cQOm,v)g = — (M, v -n)sx VveV(K),
(P*'Um, V- v)x =(cOQm, v)g + (m, v -n)ox VYV ve V(K).
and (Qf, PF~1Uf) € VH(K) x W(K) is determined by the equations
(W, V-9Qf )k == (w, TUf)er. + (fLw)rk VweW(K),
(P*1Uf, V- v)g =(cQm,v) Vv e VHK),

where Uf|er = 0, by (@) of Lemma 3.3, if f|x € P*~1(K). Since the four above
equations also hold (the third whenever f|x € P*~1(K)) for the BDMj method,

we conclude that the statements (ii) and (iii) hold if we exclude the RTy method.
To show that these statements also hold if we include it, we note that the above

equations hold for the RTy method if we modify the definition of the spaces V(K)
and V(K) by

Virr(K) :=={v e P*(K) ®x P*(K): V-v =0},

Vi (K) :={v e P*(K)®@xP*(K): (cv,0)xk =0 Vo e Vrr(K)},
and if we replace the third equation by

V-Qf=Pf.
Thus, the result follows from the fact that
Vrr(K) = {veP*K): V-v=0}=VK),

and from the fact that, if Qf € Vigp(K) and V- Qf = Pf € P*~1(K), then Qf

belongs to the space {v € P*(K): (cv,0)x =0 Vo € V(K)} = V-(K). This
completes the proof of Theorem 2.4.

)
)

3.3. Proof of the error estimates. The proof of the error estimates is based on
the so-called error equations and the properties of the projection (IL,P) gathered
in Proposition 2.1. The error equations are

(3.17a) (c(q@—aqp);v)a, — (u—up, V- -v)g, +(u—1uv- n)og, =0,
(3.17b) (W, V- (q—ap))a, — W, (@, —q) noa, =0,

(3.17¢) u—up =g— Pag on 0Qp,

(3.17d) (@ —qp)-m=aqn — Paqn on Iy,

for all (v,w) € Vj, x Wy,
A direct consequence of the weak commutativity identity (iv) of Proposition
2.1 we find convenient to use in our analysis is contained in the following result.

Corollary 3.6. For all (o7,¢) € H*(Q,) x H (Q,), we have
(a) (¢, V- o), = (P V- 0a)g, + (Po¢,Ilo - n — Pyo - n)sq,
(B) Mo -0 |lz2,) < CH o [ge ),
() NPC = C ez < CR [ msian),
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where r,s € [0, k] and C depends only on k and the shape-regularity parameters of
the simplexes K € Qy,.

3.3.1. Proof of Theorem 2.5: The error in the flux. Theorem 2.5 follows immedi-
ately from the following auxiliary result.

Lemma 3.7. We have (c¢(q — q;,),IIq — q},)q, = 0.
Indeed, this implies that

(c(@—an);q—qp)e, =(c(qg—qy),q—11q)q,,
and hence, that

lq—anll29n.0) < 1 Tg — qllz2(0p.0) < CR°F a1y,

for some s € [0, k], by the estimate (vi) of Proposition 2.1. This proves Theorem
2.5.
Let us prove Lemma 3.7.

Proof. By the error equation (3.17a) with v := IIq — q,,, we have
(c(q—qn),11q — qp)0, =(u—un, V- (Ilg — g;,))a,
—(u—up, (Ilq — q;,) - n)oq, -
By the identity («) of Corollary 3.6 with (o, () := (@ — q,, u — up), we get that
(c(g—q,). g — q;)a, =Pu —up, V- (q - q,))e,
+ (Pou — un, (Ilg — q) - n)oq,
— (u—up, (Ilg — q3,) - n)oq,,
and by the error equation (3.17b) with w := Pu — uy,
(c(q—aq1) TIg — ;) =(Pu —un, (@) — 1) - 7)o,
+ (Pou — un, (Ilg — q) - n)oq,
— (u—up, (Ilg — q3) - n)oq,-
It we denote by T the right-hand side of the above equations, it is not difficult
to see that, after a few simple algebraic manipulations, we have that T = Zle T;
where
Ty :=(un — un, (@ — Q1) - Mo,
Ty :=(up — up, (Ilg — q) - n)sq,,
T3 :=(Un — u, (@ — G) - n)o,,
Ty :=(Pou — u, (IIq — q) - n)sq,,
T5 :==({Pu — u, (), — q,) - Moo,
We are going to show that T' = 0.
We begin by noting that,

Ty =Y (n—un, (@ — q1) Mok
KeQy

= Y (th —un,Pog-n—Ilq - n)ox,
KeQy
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by Proposition 2.2. By the definition of the projection Py, (1.5),

Ty = > (n—un (g —TIq) - n)ox
KeQy
- _T25

by the definition of the projection II, (2.7b). Thus, T3 + T = 0.

Next, let us show that T3 +74 = 0. By the fact that the numerical trace uy, and
the normal component of the numerical trace q,, are single-valued on the interior
faces, by definition of @y, (1.4a), and the equation (1.3c) satisfied by q,,, we have
that

T3 =(up — u, (g — qp) - m)oe
=(Pog — 9. (a — d1) - n)oa, + (An —u,an — Poan)aax,

by the definition of the numerical traces at the boundary. By using the definition
of the projection Py, (1.5), we get

T3 =(Pou—u,q-n—Paq-n)sa, + (Pou—u,q-n—Pag-n)say,

(
(
(Pou—1u,q-n —Psq - n)sq,
=(Pou—u,q-n —IIg-n)sq,
— Ty,

Pou—u,q-n —Paq-n)sq

Finally, let us show that 75 = 0. By the definition of the numerical trace g,
(1.4b),

T5 = Z (Pu —u, (g, — q,) - m)ox

KeQy,
= Z (Pu—u, (g, —qp) - n)er.
KeQy,
= 0,
by the definition of the projection P, (2.8b). This completes the proof. O

3.3.2. Proof of Theorem 2.6: Superconvergence of up. Since

B (Pu — up, 0)q
lo = un llg-e(uy = sup ==
0eCE () 10120

we need to estimate the number (Pu — up, 0)q. It is expressed in a suitable way in
the following auxiliary result. Let us recall that P*~! is defined by (2.10) for k& > 1,
and is P*~1 =0 for k = 0.

Lemma 3.8. We have
(Pu — up, ), =(c (g —qp), M — P)a, + (P* 'V — Vi, q—Tq)q,

— Z T*1<Hq~n—P3q~n,H1,b~n—P,91,b~n>e;(.
Ke,

Assume that £ > 1. Then, applying the Cauchy-Schwarz inequality and using
the estimate of ¢ — g}, in Theorem 2.5, and the approximation properties of the
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projections P*~! and P, (v) in Proposition 2.1 and (3) in Corollary 3.6, we readily
obtain

(Pu —up, 0)q, <C h lq |Hr+1(szh) htt | |Hs+1(szh)
+Ch | q |Em+1(00) h*t Ve | o1 ()

CR™ M flar @ B0 e 0

+ max
KeQ, hi Ti

where r, s € [0, k — 1]. Since k := maxkeq, ﬁ and using the elliptic regularity
assumption (2.14), we get

(Pu — un, 0)a, <CC€°(q) K" [0] 5= (q,)-

This completes the proof of Theorem 2.6 for k£ > 1.
In the case k = 0, we have that

(Pu — up, 0)a, <Ch|q|ar(,) M|V |m @)
+Chlqlar.) | Velaan
+kCh| flrz@un b 1012,

and, after using the elliptic regularity assumption (2.14), we get

(Pu —up, 0)q, <CC.(q)h|0|L2qy)-

Finally let us consider the case k = 0 and f = 0. By the identity (v) of Proposition
2.1 we have that Ilo - n = Pyo - n, and by the identity (vi) of Proposition 2.1 we
have that IIq = II""q. This implies that

(Pu — un,0)q, =(c (q—qp,), Iy —p)a, + (v, (g —I1q) -n)sq
=(c (g —q,), I —1)q, + (¢ — Paw,an — Paan)oay

by the adjoint equation (2.13c) and the boundary condition (1.1d). As a conse-
quence, we get

(Pu —up, 0)q, <Ch|q|m@,) ¥ H @)
+ Chlan |ar@ax) M ¢ |a 00N)
and since
| o lmean) < Cleln ),
by the elliptic regularity assumption (2.14), we get
(Pu — up, 0)q, <CEL(q)h?|0|12(0).

It remains to prove Lemma 3.8.

Proof. By the adjoint equation (2.13b), we have that

(Pu — up,0)q, =Pu —un, V-9)q,
:(u —Up, V- H’l,b)gh — <P8U — Uh, (H":b - ¢) ! n>6ﬂh’
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by the identity («) of Corollary 3.6 with (o, ¢) := (¢, u—wup). By the error equation
(3.17a) with v := ITtp, we get
(Pu —un,0)a, =(c (g —qp), p)a, + (u—un, Ip - n)oq,
— (Pou — up, (Il — 1) - m)aq,
=(c(q—an), MY —Y)q, + (c (g —ai), ¥)a,
+ (u —up, Ip - n)oq, — (Pou — up, (IIth — ) - n)oq,,,

and, by the adjoint equation (2.13a),

(Pu — up, 0)q, =(c (g —qy), MY — ), — (@ —q,, Ve)a,
+ (u —up, I - n)oq, — (Pou — up, (IIh —1p) - n)sq, .

By the orthogonality property (ii) of Proposition 2.1, we get that

(Pu — up, 0)q, =(c (@ —qy), p —1)q, + (g — g, P*'Ve — Vi)g,
- (Hq —4qp, V‘/ﬂﬂh + <u - aha H":b : n>6(lh
— (Pou — up, (IIp — ) - n)aq,

If we denote by T' the last three terms of the above right-hand side, we see
that, after some simple algebraic manipulations, we can write T = Z?:l T;, where

(Un — un, (I — ) - m)aq,
(Pou — u, (TIh — ) - n)sq,,
T3 = — (Un — u, ¥ -n)sq,,

Ty = — (IIq — q;,, V)a,.

T =—
T, = —

By the definition of the numerical trace up, (1.4a) and (1.6), we have that

Ty =— Z (Up —up, Mp -m — Parh - m)er.

KeQyp

:—Z Mg -n—Psg-n,IIp - n—Poyp - n)er
KeQy,

by Proposition 2.2.
It remains to show that 75 + 75 + T, = 0. By the definition of the projection
P@a (15)5
1o = — (Pou — u, =9 - m)aq,
—(Pou—u, =9 - n)oq,
= (Pou—u, ¢ -n)oq,.
By the definition of the numerical trace up, (1.4a),
— (Up —u, - n)oo
— (U —u, P - n)oa,
—(Pou—u, ¥ -n)oq,

- 2
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Next, we show that T, = 0. Integrating by parts, we obtain
Ty =(V - (Iq — q3), 9)a, — ((IIg — g;) - 1, p)og,
=(V-(a—-4q1),Pp)a, + ((Ilg — q) - n, Pay)oq,
— (g — g,) - m, p)oq,
by the identity («) of Corollary 3.6 with (o, () := (g—gqy,, ¢). By the error equation
(3.17b) with w := Py,
Ty =Py, (@, — qn) - m)og, + (Ilg — @) - n, Pap)aq,
—((I1g — g;) -, p)og,
=(Paw, (@, — q1) - ), + ((T1g — q) - n, Poy)aq,
—((Ilg — q3) - », Pa)oa,,

by the definition of the projection Py, (1.5), the definition of the projection P,
(2.8b), and the definition of the numerical trace gy, (1.4b). Hence

T4 :<P6<P5 (ah - q) ' n>6(lh = <P6<Pa (ah - q) . n>6(l - Oa

by the adjoint equation (2.13¢) and the equation (1.3c) for gj,.
This completes the proof. (I

3.3.3. Proof of Theorem 2.8: Superconvergence of uy,. To prove this theorem, let
us begin by estimating || Pou — up, H%Q(e) for each face e of each simplex K. For the

face e}, we have that, by definition of the projection P, (2.8),
| Pou — i || L2 ey = Pu — U || L2(er,)
<Py — un | 22(er) + | un — Un ||l 22(e,)

r+1/2

SH]P’u—uhHLz(e;()—FC K |f|HT(K)
TK

by Proposition 2.2 and the identity (v) of Proposition 2.1. By using a classical
inverse inequality, we can conclude that

R hrJrl
il || Pou — lz2(e7) <C (| Pu —up || 2 (x) + TI; |f|Hr(K)> :

Now we consider the error in the faces e of K which are different from the face
¢5. By the error equation (3.17a), we have that, for all v € P*(K),
(Un — Pou,v-n)om\er. =(c(q@ —aqy),v)x — (Pu—up, V- v)k
— (up — Pou,v-m)er .
Taking v := Z given by Lemma 3.2 with z = @, — Pyu, we obtain that
T — Pou |l L2orcveqy < C (hil 1@ = @ lz2ey + b 21 Pu = un [l 2
+ | @n — Pou || z2(er.) ) 5

and using the estimate for the error in e,

2N — Pou || 2orver) < C (I Pu— un |2y + hic Il g — ay, 225
r+1

+ L f ey ) -
TK
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As a consequence
1Pt — @ 2w < € (1Pu—un o) + Al a — an Nz
+ R flar@n )
where k := maxgeq, 1/(Tk hk). The result now follows from Theorems 2.6, 2.5

and 2.4 (i). This completes the proof of Theorem 2.8.

3.3.4. Proof of Theorem 2.9: The error estimate for uj. By the definition of uj,
(2.15a), we have that

w—uj lL2c) SIT—=Tn[[2) + || @ = n || L2k,

where T is defined in (2.15b) and @ = u — u. We estimate each of the two terms of
the right-hand side separately.

We begin by estimating the second term. Since, by Poincaré’s inequality, we
have

@ —tn||lL2cx) < Chi | V(@ = tn) |20k,
it is enough to estimate the error in the gradient. To do that, we note that, by the
definition of @y, (2.15¢), we have

(a V(i —ap), Vw)g = —(w, (g — q,) - nox Vweﬂ)ISH(K).
Then
I V(P* i —an) 1 72(kay =(a V(@ — an), V(PP 1o — )k
+ (@ V(P o — @), V(PP — ap)) ke
=— (P — i, (g —Gp) - m)ox
+ (@V(P* 1 a — @), V(P o — ) k.

Let us estimate the first term of the right-hand side. For any arbitrary w €
PETL(K), we have

(w, (@ —qp) - n)ox

<wa (q - qh) ’ n>8K + <wa (qh - ah) ! n>6K
3
T;,
i=1
where
Tl :(VU}, q— qh)Ka
T =(w, V- (q—aqn)k;
T5 =(w, (@, — Q) - n)ok.
By using Cauchy-Schwarz inequality, we get that
Ty <[ Ve 2 (e |4 = @i 220550

By using the definition of the Raviart-Thomas projection II*", (2.9), and by using
its commutativity property, we get that, for any r € [0, k],

T2 :(wa f - Pf)K + (wa V : (HRTq - Qh))K
<Nwlirexy (Wi | flarx) + hi |l @ — an l2(xce))
< Vwllrziay (Wi ey + 1@ — an L2 ki)



A SUPERCONVERGENT LDG-HYBRIDIZABLE METHOD 25

by Poincaré’s inequality. Finally, by the definition of the numerical trace g,,, (1.4b),
5 =[|wllzzeq) I (an — @n) -1 llr2(ey)
<Ol llzaeg " 1 f Lo,

by Proposition 2.2 and identity (v) of Proposition 2.1. Applying a simple inverse
inequality, we get

Ty <C || Vw2 (sia) M| 1 (x)-
As a consequence,
(w, (g —ay) -n)ox < C|VwllL2ka) (14— ll2cie) + A f L)) -
This implies that
19 (P*+ 1 — ) ey < VPHH1 — ) |2
+C (lg—ap le2(zciey + R f L)) 5
and so,
| P* 0 — i | L2(psa) SCR V(PP — @) [| L2(a,)
+C (h|la—ayllr2ne) + 22| Flar@n))
<Ch** (|q |Er10,) + | u |HT+2(Q;1)) ;

by Theorem 2.5 and the well-known approximation properties of P*+1,
Let us now estimate the error @ — ;. We begin by considering the case k > 1.
In this case, since @ — up = P(u — uy), we get
1T = || L2y < | Pu—un ||L2x) < C€0(q) A+

by Theorem 2.6. Note that by Theorem 2.4, P*~uy, is independent of the value of
the local stabilization parameters 7. This implies that the same is true for u; and
so, we get that
1 =l 20) < C €0 (q) W72,
It remains to consider the case K = 0 and f = 0. We have that

U —Up = |K|/ Zuh|8

BGBK

=— u—Pl x)dx
|K|/

— [ Plu( Po(Plu)
+|K| dzu/f’

ecOK

- |/PBU—P1 u)) dy

||/uh Pou) d

Since, for any function w € P!(K), we have that

1
W/Kw(x)d:c B |/Pawd"y

ecOK

ecOK

BGBK
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we readily obtain that
||@—up HL2(K) <Cllu-— PluHLz(K) +Chg|u— P1u|H1(K)
+ C hy || up, — Pou HL2(6K)

and so,

1T —n |22 (0, <Ch* (Culq) + | u|m2(as)) -
Since, by Theorem 2.4, \;, is independent of the value of the local stabilization
parameter 7, so is up and so
1% —Tn || L2 () <CR* (Co(q) + | ul|m2(an)) -
This completes the proof of Theorem 2.9.

4. NUMERICAL EXPERIMENTS

In this section, we carry out numerical experiments to validate the theoretical
convergence properties of the SCDG  method.

To do that, we use uniform meshes obtained by discretizing Q = (-1, 3) x
(-1, 1) with squares of side 27! which are then divided into two triangles as indi-
cated in Fig. 1; the resulting mesh is denoted by “mesh=I[".

0.5

-0.5 !
-0.5 0.5

FIGURE 1. Example of a mesh with h = 1/23.

The test problem is obtained by taking dQy = 0,¢ = I and choosing g and
f so that the exact solution is u(x,y) = cos(nz)cos(my) on the domain Q. The
history of convergence of the SCDG method with

T = 1/h =2},

on the “mesh=[", is displayed in Table 5 for polynomials of degree k = 0, k =1
and k = 2. We observe optimal convergence rates of the quantities [|u — up||z2(q)
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and [|q — qnl|z2(q) for k =0, 1,2 as predicted by Theorems 2.5 and 2.7. We also see
that ||[Pou — Apl|lr2(e,mn) and |lu — uj | r2(q) superconverges with rate O(h**2) for
k =1, 2 just as predicted by Theorems 2.8 and 2.9. These results do not guarantee
that these quantities are superconvergent if £k = 0 and f # 0. Since we do not
observe superconvergence, we can conclude that the theoretical results for such a
case are actually sharp.

TABLE 5. History of convergence of the SCDG j, method.

mesh | |lu—upllp2q) | la—anllp2q) | IPou—2ulip2ce, iy | v —uillp2g)
k I3 error order error order error order error order
1 1le+1 - 17e+1 - .28e-0 - .22e-0 -
2 .36e-0 1.54 .78e-0 1.12 .92e-1 1.61 .57e-1 1.96
0 3 .12e-0 1.50 .41e-0 0.94 .35e-1 1.37 .19e-1 1.57
4 .53e-1 1.29 .21e-0 0.97 .14e-1 1.21 .79e-2 1.27
5 .24e-1 1.13 .10e-0 0.98 .69e-2 1.15 .36e-2 1.14
6 12e-1 1.05 .53e-1 0.99 .32e-2 1.12 17e-2 1.10
1 .21e-0 - .23e-0 - .3le-1 - .2le-1 -
2 .43e-1 2.27 .12e-0 0.94 .75e-2 2.02 .40e-2 2.38
1 3 .78e-2 2.47 .3le-1 1.94 .10e-2 2.96 .53e-3 2.91
4 17e-2 2.19 .79e-2 1.99 .12e-3 3.00 .68e-4 2.98
5 .42e-3 2.05 .20e-2 2.00 .15e-4 3.01 .85e-5 2.99
6 .10e-3 2.0 .50e-3 2.00 .19e-5 3.00 .1le-6 2.99
1 .68e-1 - .89%e-1 - .T2e-2 - .8le-2 -
2 .38e-2 4.12 .9le-2 3.29 41e-3 4.12 .40e-3 4.35
2 3 .32e-3 3.58 .12e-2 2.96 27e-4 3.93 .25e-4 3.97
4 .32e-4 3.31 .15e-3 2.98 .18e-5 3.96 .16e-5 3.99
5 .37e-5 3.12 .19e-4 2.99 .11le-6 3.98 .10e-6 4.00
6 .45e-7 3.01 .23e-5 3.00 .70e-8 3.99 .63e-8 4.00

Next we explore the effect of the size of 75 on the quality of the approximation.
In table 6, we see that as 7 diminishes the quality of the approximation to u
deteriorates. However, the effect of taking 7 = 1/h? or 7 = 1/h is almost negligible
especially when the grids are not coarse. We also see that the order of convergence
is k+1 for 7 = 1/h?,7 = 1/h and 7 = 1, but it is only k for 7 = h. This is in
perfect agreement with Corollary 2.7.

We end with an example where the exact solution is harmonic, that is, ¢ =
I, f =0, and display the convergence rates for k = 0 in Table 7. We take 0Qy =0
and choose g and so that u(z,y) = e”sin(y) is the solution. We see that the
quantities || Pou — Ap|z2(e,;n) and ||u— uj || L2(q) superconverge with rate O(h?) as
our theoretical results predict.

5. CONCLUDING REMARKS

The error analysis carried out here for the SCDG j method also holds for the
hybridized versions of the RT x and the BDM;, methods. We simply have to replace
the local space P¥(K) x P¥(K) by the local space V(K) x W (K) given by Table
1, use the definition of the local stabilization parameter 7 given in Table 2, and
suitably define the projection (II,P). Indeed, with such changes, the first four
properties of Proposition 2.1, on which the whole analysis is based upon, do hold.
For this reason, we can consider this analysis to be a unifying analysis of these
three methods.
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TABLE 6. Effect of 7 on the convergence of || u — up || z2(q) -

mesh T =1/h? T=1/h T=1 T=h
k I3 error order error order error order error order
1 .61le+0 - dle+1 - 21le+1 - .40e+1 -
2 .21e+0 1.50 .36e-0 1.54 dle+1 0.88 .42e+1  -0.06
0 3 .95e-1 1.17 .12e-0 1.50 .57e-0 0.97 .43e+1  -0.02
4 .46e-1 1.04 .53e-1 1.29 .28e-0 1.00 .43e+1  -0.00
5 .23e-1 1.02 .24e-1 1.13 .14e-0 1.01 43e+1 0.00
6 .1le-1 1.01 .12e-1 1.05 .70e-1 1.01 43e+1 0.00
1 .15e+0 - .21e-0 - .35e-0 - .67e-0 -
2 .27e-1 2.47 .43e-1 2.27 .14e-0 1.34 .54e-0 0.29
1 3 .66e-2 2.06 .78e-2 2.47 .35e-1 1.98 .28e-0 0.97
4 .16e-2 2.00 17e-2 2.19 .88e-2 2.00 .14e-0 0.99
5 4l1e-3 2.00 42e-3 2.05 .22e-2 2.00 .67e-1 1.00
6 .10e-3 2.00 .10e-3 2.0 .60e-3 2.00 .35e-1 1.00
1 .33e-1 - .68e-1 - .14e-0 - .28e-0 -
2 .19e-2 4.10 .38e-2 4.12 .14e-1 3.31 .56e-1 2.33
2 3 .23e-3 3.07 .32e-3 3.58 .18e-2 2.96 .14e-1 1.98
4 .28e-4 3.00 .32e-4 3.31 .23e-3 2.99 .35e-2 2.00
5 .36e-5 3.00 .37e-5 3.12 .28e-4 3.00 .88e-3 2.00
6 .45e-6 3.00 .45e-7 3.01 .35e-5 3.00 .22e-3 2.00

TABLE 7. History of convergence for a harmonic exact solution.

mesh | [lu—unllp2(q) | la—anllp2¢q) | 1Pov = Anllpz(e, ny | v = villL2(q)

k I3 error order error order error order error order
1 .17e-0 - .22e-0 - .29%e-1 - .23e-1 -

2 .87e-1 0.94 .11e-0 0.96 .79e-2 1.84 .62e-2 1.87

0 3 .44e-1 0.99 .57e-1 0.98 .21e-2 1.90 .16e-2 1.93

4 .22e-1 0.99 .29%e-1 0.99 .55e-3 1.96 4l1e-3 1.97

5 .1le-1 1.00 .14e-1 1.00 .10e-3 1.98 .10e-3 1.99

6 .55e-2 1.00 .T2e-2 1.00 .35e-4 2.00 .26e-4 2.00

A study of the optimal way to choose the local stabilization parameter 7 falls
beyond the scope of this paper and will be carried out elsewhere. Extensions of
these results to more general second-order elliptic equations and other boundary
conditions are straightforward. The extension of these results to the case of hanging
nodes, variable-degree approximations and curved domains constitute the subject
of ongoing work.
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