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CONFORMING AND DIVERGENCE FREE STOKES ELEMENTS ON

GENERAL TRIANGULAR MESHES

JOHNNY GUZMÁN AND MICHAEL NEILAN

Abstract. We present a family of conforming finite elements for the Stokes problem on general
triangular meshes in two dimensions. The lowest order case consists of enriched piecewise linear

polynomials for the velocity and piecewise constant polynomials for the pressure. We show that the

elements satisfy the inf-sup condition and converges optimally for both the velocity and pressure.
Moreover, the pressure space is exactly the divergence of the corresponding space for the velocity.

Therefore the discretely divergence free functions are divergence free pointwise. We also show how
the proposed elements are related to a class of C1 elements through the use of a discrete de Rham

complex.

1. Introduction

Let Ω ⊂ R2 be a simply connected bounded polygonal domain. We consider conforming finite
element approximations for the Stokes equation:

−ν∆u+∇p = f in Ω,(1.1a)

divu = 0 in Ω,(1.1b)

u = 0 on ∂Ω.(1.1c)

In (1.1a) f is a given L2(Ω) := [L2(Ω)]2 function and ν > 0 is the effective viscosity. A detailed
account of the notation used is given below. A pair of functions (u, p) ∈ V ×W := H1

0 (Ω)×L2
0(Ω)

are defined to be a solution of (1.1) if there holds

ν(∇u,∇v)− (p,div v) = (f ,v) ∀v ∈ V ,(1.2a)

(divu, q) = 0 ∀q ∈W,(1.2b)

where L2
0(Ω) denotes the set of square integrable functions with vanishing mean.

We consider finite element methods that take the same form as (1.2). Namely, let Vh ×Wh ⊂
V ×W be a pair of conforming finite element spaces with discretization parameter h. Then the
finite element method reads: find (uh, ph) ∈ Vh ×Wh such that

ν(∇uh,∇v)− (ph,div v) = (f ,v) ∀v ∈ Vh,(1.3a)

(divuh, q) = 0 ∀q ∈Wh.(1.3b)
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2 J. GUZMÁN AND M. NEILAN

The stability and the error estimates of the approximate pair (uh, ph) depends on the classical
inf-sup condition

sup
v∈Vh\{0}

(div v, q)

‖v‖H1(Ω)
≥ α‖q‖L2(Ω) ∀q ∈Wh,(1.4)

where α > 0 is a constant independent of the parameter h. If (1.4) is satisfied, then one may easily
deduce the solvability of (1.3) as well as derive the quasi-optimal estimate

‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C inf
v∈Vh, q∈Wh

(
‖u− v‖H1(Ω) + ‖p− q‖L2(Ω)

)
,(1.5)

where the constant C > 0 depends on ν and α, but is independent of h.
In this paper we find a pair of spaces Vh ×Wh that satisfy the inf-sup condition (1.4) and in

addition satisfy the following desirable property:

(1.6) {v ∈ Vh : (div v, q) = 0 ∀q ∈Wh} ⊂ {v ∈H1(Ω) : div v ≡ 0}.

In other words, we find inf-sup stable spaces for the Stokes problem such that discretely divergence
free functions are divergence free pointwise. In fact, our spaces satisfy divVh = Wh.

Finite element spaces that do not satisfy (1.6) can lead to undesired instabilities in nonlinear
problems; see for example [4, 17]. However on general meshes, most stable pairs (i.e., pairs satisfying
(1.4)) in the literature do not satisfy (1.6), e.g., Taylor-Hood elements [15], the MINI element [1],
and Bernardi-Raugel elements [5]; see the review paper [6] for a more comprehensive list of examples.
On the other hand, the spaces Pk − Pk−1 (with Pk continuous and Pk−1 discontinuous) are inf-sup
stable and satisfy (1.6) provided certain restrictions of the polynomial degree and mesh hold. For
example, Scott and Vogelius [21] proved that these elements are stable if k ≥ 4 and the mesh does
not contain singularly vertices. In [2, 26, 24] it was shown that the spaces Pk − Pk−1 satisfy (1.6)
for smaller values of k if the meshes were Hsieh-Clough-Tocher or Powell-Sabin triangulations. As
far as we are aware, conforming finite element spaces that satisfy both (1.4) and (1.6) on general
triangulations have not appeared in the literature.

However, there are non-conforming methods that are inf-sup stable and lead to exactly divergence
free approximation (at least locally) for the Stokes problem. These methods include the classical
Crouzeix–Raviart elements [11] and the Fortin–Soulie elements [12]. Another strategy to construct
non-conforming methods with these properties is to modify H(div ; Ω) conforming elements so that
they possess (weak) tangental continuity [18, 23, 25, 14]. The motivation behind this approach is
the fact that classical H(div ; Ω) finite element spaces (e.g., RT and BDM) satisfy (1.4)–(1.6), and
therefore, if they can be enriched with div-free elements that enforce weak continuity, then the end
result is a convergent finite element for the Stokes problem satisfying (1.4)–(1.6). To be more precise,
the local spaces constructed in [18, 23, 25, 14] are of the form

M(T ) + curl (bTQ(T )),(1.7)

where M(T ) is the local space corresponding to the H(div ; Ω) space, bT is the triangle cubic bubble
function and Q(T ) is some scalar space. For example, in [14] this scalar space in the lowest order
case is defined as Q(T ) = span{bei}3i=1 where {bei}3i=1 denotes the quadratic edge bubbles. Since
only divergence free functions are added in (1.7), the resulting space (1.7) still satisfies (1.4)–(1.6).

The results in the current paper are motivated by the finite element methods construction in
[18, 14]. Namely, we also modify H(div ; Ω) conforming finite elements (locally) to enforce tangental
continuity. However, enriching these spaces with only polynomials (as done in (1.7)) is not flexible
enough to guarantee conformity. This is in large part to the relatively high polynomial degree of both
bT and Q(T ). For this reason, in this paper we instead enhance H(div ; Ω) elements with divergence
free rational functions which seem to offer the correct flexibility to enforce (strong) continuity. We
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also mention that we use a non-standard H(div ; Ω) base space M(T ) in our construction, which as
far as we are aware, has not appeared in the literature before.

In order to lessen the number of degrees of freedom, we also introduce reduced elements. The
dimension of the reduced local velocity space VR(T ) restricted to a triangle T is as follows

dimVR(T ) =


dimPk(T ) + 3 if k = 1,

dimPk(T ) + 5 if k = 2,

dimPk(T ) + 6 if k ≥ 3.

We note that the lowest-order element (k = 1) has the same dimension as the Bernardi-Raugel
element [5] (the global dimension is the same as well).

Finally, we mention that there has been recent development in the construction of conforming,
divergence free and stable elements for the Stokes problem on rectangular grids. These include the
Qk+1,k ×Qk,k+1 elements [27, 16] as well as using splines [9]. However, it is not at all obvious how
to extend these elements to triangular meshes.

The rest of the paper is organized as follows. After presenting some notation and preliminary
results in Section 2, we present our finite element method in the lowest order case in Section 3.
Here we define the local space and the associated degrees of freedom, and derive the approximation
properties of the corresponding projection (Fortin) operator. We then proceed with the convergence
analysis of the finite element method using the abstract results discussed above. In Section 4 we
define the analogous higher order elements for any polynomial degree k ≥ 1. Finally in Section 5 we
describe some reduced elements that enjoy the same orders of convergence, but have less degrees of
freedom.

2. Notation and Preliminaries

Given a set D ⊂ Ω, we denote by Hm(D) (m ≥ 0) the Sobolev space consisting of all L2(D)
functions whose distributional derivatives up to order m are in L2(Ω), and Hm

0 (D) to denote the
set of functions whose traces vanish up to order m−1 on ∂D. We then set the corresponding vector
Sobolev spaces as Hm(D) = (Hm(D))2 and Hm

0 (D) = (Hm
0 (D))2, and define the space of square

integrable with vanishing mean as L2
0(D).

The L2 inner product over a two dimensional (resp., one dimensional) set D is denoted by (·, ·)D
(reps.,

〈
·, ·
〉
D

). In the case D = Ω we set (·, ·) := (·, ·)Ω and
〈
·, ·
〉

:=
〈
·, ·
〉
∂Ω

. The curl of a scalar
function is a vector given by

curl v =

(
∂v

∂x2
,− ∂v

∂x1

)t
,

where as the curl and divergence of a vector valued function v = (v1, v2)t is defined, respectively by

div v =
∂v1

∂x1
+
∂v2

∂x2
, curlv =

∂v2

∂x1
− ∂v1

∂x2
.

The corresponding Sobolev spaces of these two operators are then given by

H(div ;D) =
{
v ∈ L2(D) : div v ∈ L2(D)

}
,

H(curl ;D) =
{
v ∈ L2(D) : curlv ∈ L2(D)

}
,

and we also define

H0(div ;D) =
{
v ∈H(div ;D) : v · n|∂D = 0

}
,

where n denotes the outward normal of the boundary ∂D.
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For a given simplex S and m ≥ 0, the vector-valued polynomials are defined as Pm(S) = [Pm(S)]2,
where Pm(S) is the space of polynomials defined on S of degree less than or equal to m. We also
set Pm(S) and Pm(S) to be the empty set for any negative valued m. Let Th be a shape-regular
triangulation of Ω [10, 7] with hT = diam(T ) for all T ∈ Th and h = maxT∈Th

hT . We define the
patch of an edge e in Th as

ω(e) :=
{
T ∈ Th : ∂T ∩ e 6= ∅

}
,

and we use the convention

‖v‖2Hm(ω(e)) =
∑

T∈ω(e)

‖v‖2Hm(T ).

Given T ∈ Th, we denote by n the outward unit normal of ∂T , by t the unit tangent of ∂T obtained
by rotating n 90 degrees counterclockwise, and by {λi}3i=1 the three barycentric coordinates of T
labeled such that λi vanishes on ei ⊂ ∂T . We also denote by {xi}3i=1 the three vertices of T with
λi(xj) = δij . The element bubble and edge bubbles are then respectively given by

bT = λ1λ2λ3 ∈ P3(T ) bei = λi+1λi+2 ∈ P2(T ) (mod 3).(2.1)

Due to their definitions, the element and edge bubbles satisfy the following properties:

bT
∣∣
∂T

= 0,
∂bT
∂ni

∣∣
ei

= aibei , bei
∣∣
∂T\ei

= 0, bei
∣∣
ei
> 0,(2.2)

where

ai := −|∇λi|,(2.3)

and ni denotes the outward unit normal of ei. We emphasize that ai 6= 0, as this property will be
used frequently in the sequel. We also set the rational bubble functions as (i = 1, 2, 3)

Bei =
bT bei

(λi + λi+1)(λi + λi+2)
for 0 ≤ λi ≤ 1, 0 ≤ λi+1, λi+2 < 1,

Bei(xi+1) = Bei(xi+2) = 0 otherwise.

A few properties of the rational bubble functions are established in the following lemma.

Lemma 2.1. There holds

Bei ∈ C1(T ) ∩W 2,∞(T ), Bei
∣∣
∂T

= 0, ∇Bei(xj) = 0 (j = 1, 2, 3),(2.4a)

∇Bei
∣∣
∂T\ei

= 0,
∂Bei
∂ni

∣∣
ei

= aibei , ∇Bei
∣∣
ei
∈ P2(ei).(2.4b)

Proof. The property Bei ∈ C1(T ) as well as the second and third properties have been shown in
[10, p. 347–348]. To show the fourth property, we note that since bT vanishes on ∂T ,

∂Bei
∂xk

∣∣∣∣∣
∂T

=

∂bT
∂xk

bei

(λi + λi+1)(λi + λi+2)

∣∣∣∣∣
∂T

.(2.5)

Thus, since bei vanishes on ∂T\ei, we obtain ∇Bei
∣∣
∂T\ei

= 0. Moreover since λi vanishes on ei, we

have by (2.5) and (2.2),

∂Bei
∂ni

∣∣∣∣∣
ei

=

∂bT
∂ni

bei

(λi + λi+1)(λi + λi+2)

∣∣∣∣∣
ei

=
∂bT
∂ni

∣∣∣∣∣
ei

= aibei .
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Since
∂Bei
∂t

∣∣
∂T

= 0 and
∂Bei
∂n

∣∣
∂T
∈ P2(∂T ), we have ∇Bei

∣∣
∂T
∈ P2(∂T ).

Finally we show the property Bei ∈ W 2,∞(T ). It is easy to see that Bei is well-behaved away
from the vertices of T , so it suffices to show that the second derivatives of Bei are bounded at the
vertices. Furthermore since the property Bei ∈W 2,∞(T ) is invariant through affine transformations,
it is enough to consider the case when T is the unit triangle with vertices (0, 1), (1, 0) and (0, 0).
The rational bubble is then given by

Be1 =
x1x

2
2(1− x1 − x2)2

(x1 + x2)(1− x2)
.

We study the behavior of Be1 at the origin as the other vertices follow from the symmetry of

the rational bubble functions. Writing Be1 = s(x1, x2)g(x1, x2) with s(x1, x2) =
x1x

2

(x1 + x2)
and

g(x1, x2) =
(1− x1 − x2)2

(1− x2)
, it suffices to show that s ∈W 2,∞(T ) since g is smooth at the origin. An

easy calculation shows

∂2s

∂x2
1

= − 2x3
2

(x1 + x2)3
,

∂2s

∂x2
2

=
2x3

1

(x1 + x2)3
,

∂2s

∂x1∂x2
=
x2

2(3x1 + x2)

(x1 + x2)3
.

Since x1, x2 ≥ 0 in T we have∣∣∣ ∂2s

∂x2
1

∣∣∣ ≤ 2x3
2

(x1 + x2)3
≤ 2, and

∣∣∣ ∂2s

∂x2
2

∣∣∣ ≤ 2x3
1

(x1 + x2)3
≤ 2.

Similarly we obtain ∣∣∣ ∂2s

∂x1∂x2

∣∣∣ ≤ 3x1x
2
2

(x1 + x2)3
+

x3
2

(x1 + x2)3
≤ 4.

It then follows that the second derivatives of s are bounded at the origin, and therefore Be1 ∈
W 2,∞(T ). �

Remark 2.2. Since Bei
∣∣
T
∈W 2,∞(T ), we clearly have Bei |T ∈ H2(T ).

Remark 2.3. Although the rational bubbles lie in W 2,∞(T ), they are not C2(T ) [10].

3. The finite element method in the lowest order case

3.1. The local space. In this section, we describe a finite element for the Stokes problem using
enriched piecewise linear polynomials for the velocity and piecewise constants for the pressure.
Essentially, we enrich H(div ; Ω) elements with rational bubbles to obtain H1(Ω) approximations.
First we describe the local space of the H(div ; Ω) element.

For T ∈ Th we define

M2(T ) = P1(T ) + span
{
curl (beiλi+1)

}3

i=1
.(3.1)

The associated degrees of freedom of M2(T ) are given by

v(xi) for all vertices xi,(3.2a) 〈
v · ni, κ

〉
ei

for all κ ∈ P0(ei) (i = 1, 2, 3).(3.2b)

To see that the degrees of freedom (3.2) are unisolvent on M2(T ) we first notice that the sum in
(3.1) is direct, and therefore the dimension of M2(T ) is dimP1(T ) + 3 = 9 (proving that the sum
is direct can easily be shown by using the techniques used below). Since there are a total of nine



6 J. GUZMÁN AND M. NEILAN

degrees of freedom given in (3.2), it suffices to show that if v ∈ M2(T ) vanishes at the degrees of
freedom, then v ≡ 0.

First since v ∈ P2(T ) we have v · n
∣∣
∂T

= 0. Writing v = v0 + s with v0 ∈ P1(T ) and s =∑
i=1 dicurl (beiλi+1) with di ∈ R, we then deduce that s · n

∣∣
∂T
∈ P1(∂T ). Therefore by (2.1), we

have for any j = 1, 2, 3,

s · nj
∣∣
ej

=

3∑
i=1

di
∂(beiλi+1)

∂tj

∣∣∣
ej

= dj
∂(bejλj+1)

∂tj

∣∣∣
ej

= dj
∂(λ2

j+1λj+2)

∂tj

∣∣∣
ej
∈ P1(ej).

Noting λj+1 + λj+2 = 1 on ej , it follows that

s · nj
∣∣
ej

= djλj+1

(
2λj+2

∂λj+1

∂tj
+ λj+1

∂λj+2

∂tj

)∣∣∣
ej

= djλj+1
∂λj+1

∂tj

(
2− 3λj+1

)∣∣∣
ej
∈ P1(ej).

We then conclude that djλj+1(2 − 3λj+1)
∣∣
ej
∈ P1(ej), and therefore dj = 0. It then follows that

s ≡ 0 and therefore v0 · n
∣∣
∂T

= 0. This implies v0 ≡ 0 and so v ≡ 0 as well. Thus the unisolvency

of the degrees of freedom (3.2) is proved.
With the local space of the H(div ; Ω) established we now describe the local space of the con-

forming velocity finite element for the Stokes problem. Set

V (T ) = M2(T ) +Q2(T ),(3.3)

with

Q2(T ) = span
{
curl (Bei)

}3

i=1
.(3.4)

The associated degrees of freedom of V (T ) are as follows:

v(xi) for all vertices xi,(3.5a) 〈
v,κ

〉
ei

for all κ ∈ P0(ei) (i = 1, 2, 3).(3.5b)

Lemma 3.1. There holds

V (T ) = P1(T )⊕Q2(T ),(3.6)

dimV (T ) = 12.(3.7)

Furthermore, any function v ∈ V (T ) is uniquely defined by the degrees of freedom (3.5), and V (T )
restricted to ei is a subspace of P2(ei) for i=1,2,3.

Proof. It is clear from the definition of Bei that the sum in (3.3) is direct and therefore dimV (T ) =
dimM2(T ) + 3 = 12.

Next, since the number of degrees of freedom given in (3.5) is 12, to show unisolvency, it suffices
to show that if v ∈ V (T ) vanishes at the degrees of freedom, then v ≡ 0. To this end, we write
v = v0 + q with v0 ∈M2(T ) and q ∈ Q2(T ). By Lemma 2.1, q vanishes at the vertices of T and
q · n

∣∣
∂T

= 0. Since these two types of degrees of freedom uniquely determine a function in M2(T ),

it follows that v0 ≡ 0. Next, write q =
∑3
i=1 dicurl (Bei). Then by (3.5b), (2.2) and Lemma 2.1 we

have

0 =

∫
ei

q · ti ds = di

∫
ei

∂Bei
∂ni

ds = aidi

∫
ei

bei ds =⇒ di = 0.

It then follows that v ≡ 0, and hence the degrees of freedom (3.5) are unisolvent on V (T ).
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Finally, the fact that V (T ) restricted to the boundary ∂T is a subspace of P2(T ) follows directly
from the definition (3.3) and Lemma 2.1.

�

3.2. The global space and its approximation properties. The degrees of freedom (3.5) natu-
rally lead us to define the global space as

Vh =
{
v ∈H1

0 (Ω) : v
∣∣
T
∈ V (T )

}
,(3.8)

and a projection Π̂h : C0(Ω)→ Vh defined locally by

Π̂hv(xi) = v(xi),

∫
ei

Π̂hv ds =

∫
ei

v ds (i = 1, 2, 3).(3.9)

Remark 3.2. Since the rational bubble functions satisfy Bei
∣∣
T
∈W 2,∞(T ), there holds the inclusion

Vh ⊂W 1,∞(Ω).

We also define the pressure space as the space consisting of piecewise constants

Wh =
{
q ∈ L2

0(Ω) : q
∣∣
T
∈ P0(T )

}
.(3.10)

Note that by (3.9), we have

(∇ · (v − Π̂hv), q)T =
〈
(v − Π̂hv) · n, q

〉
∂T

= 0 ∀q ∈ P0(T ).(3.11)

Thus, denoting by Ph the L2(Ω) projection onto Wh, equation (3.11) is equivalent to the following
commutative property:

div Π̂hv = Phdiv v ∀v ∈ C0(Ω) ∩H1
0 (Ω).(3.12)

However, due to the first condition in (3.9), the operator Π̂h is not well-defined on H1
0 (Ω), and

therefore some modifications are in order. To this end, we use the common approach of replacing
v(xi) in (3.9) with ΠSv(xi), where ΠS : H1

0 (Ω) → Lh denotes the Scott-Zhang interplant [22]
and Lh ⊂ H1

0 (Ω) is the linear Lagrange finite element space. This then leads to the definition of
Πh : H1

0 (Ω)→ Vh with

Πhv(xi) = ΠSv(xi),

∫
ei

Πhv ds =

∫
ei

v ds (i = 1, 2, 3).(3.13)

It easily seen that the commutative property (3.12) holds for Πh as well, i.e.,

div Πhv = Phdiv v ∀v ∈H1
0 (Ω).(3.14)

We now address the approximation properties of Πh. To this end, we first introduce the two
auxiliary spaces

Mh =
{
v ∈H0(div; Ω) : v

∣∣
T
∈M2(T ) ∀T ∈ Th

}
,(3.15)

Qh =
{
v ∈H1

0 (Ω) : v
∣∣
T
∈ Q2(T ) ∀T ∈ Th

}
.(3.16)

The associated projections of Mh and Qh are then given respectively as ΠM : H1
0 (Ω) → Mh,

ΠQ : H1
0 (Ω)→ Qh, defined locally by

ΠMv(xi) = ΠSv(xi),

∫
ei

(ΠMv) · ni ds =

∫
ei

v · ni ds,(3.17) ∫
ei

(ΠQv) · ti ds =

∫
ei

v · ti ds.(3.18)
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Following the arguments in Section 3.1, we see that these spaces and their corresponding projections
are well-defined. Note that functions in Qh vanish at the vertices of the mesh, and that their zeroth
order normal moments vanish as well. It then follows from (3.17) that

ΠMv(xi) + ΠQ(I −ΠM )v(xi) = ΠMv(xi) = ΠSv(xi),(3.19)

and ∫
ei

(
ΠMv + ΠQ(I −ΠM )v

)
· ni ds =

∫
ei

ΠMv · ni ds =

∫
ei

v · ni,(3.20)

where I denotes the identity operator on H1
0 (Ω). Moreover, by (3.18) we have∫

ei

(
ΠMv + ΠQ(I −ΠM )v

)
· ti ds(3.21)

=

∫
ei

(
ΠMv + (I −ΠM )v

)
· ti ds =

∫
ei

v · ti ds.

It then follows from (3.19)–(3.21) and (3.13) that

Πh = ΠM + ΠQ(I −ΠM ),

and therefore,

I −Πh = (I −ΠQ)(I −ΠM ).(3.22)

Hence, the approximation properties of Πh reduce to the stability estimates of ΠQ plus the approx-
imation properties of ΠM . We now address the first issue. Given v ∈H1

0 (Ω), we write

ΠQv
∣∣
T

=

3∑
i=1

dicurl (Bei)
∣∣
T

with di ∈ R.

By Lemma 2.1, we have

ΠQv · tj
∣∣
ej

= dj
∂Bej
∂nj

∣∣∣
ej

= ajdjbej
∣∣
ej
.(3.23)

Therefore by (3.18), we obtain

ajdj

∫
ej

bej dx =

∫
ej

ΠQv · tj ds =

∫
ej

v · tj ds,

and thus,

ajdj =
1∫

ej
bej ds

∫
ej

v · tj ds =
6

|ej |

∫
ej

v · tj ds ≤
6

|ej |1/2
‖v · tj‖L2(ej).(3.24)

Hence by a scaling argument using the Piola transformation and (3.23)–(3.24), we obtain

‖ΠQv‖L2(T ) ≤ Ch
1/2
T

3∑
i=1

∥∥ΠQv · ti
∥∥
L2(ei)

(3.25)

= Ch
1/2
T

3∑
i=1

aidi‖bei‖L2(ei)

≤ Ch1/2
T

3∑
i=1

aidi|ei|1/2 ≤ Ch1/2
T ‖v · t‖L2(∂T ),

where C > 0 is independent of h.
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The arguments in [3] can be used to derive the approximation properties of Mh so we only sketch
the main points. First, we introduce the operator ΠM,0 : H1

0 (Ω)→Mh, defined locally as

ΠM,0v(xi) = 0,

∫
ei

ΠM,0v · ni ds =

∫
ei

v · ni ds.(3.26)

By (3.17) and (3.26), we have I−ΠM = (I−ΠM,0)(I−ΠS). Furthermore, by standard scaling argu-
ments, we have ‖ΠM,0v‖L2(T ) ≤ C

(
‖v‖L2(T ) +hT ‖v‖H1(T )

)
. It then follows that ‖v−ΠMv‖L2(T ) ≤

C
(
‖v −ΠSv‖L2(T ) + hT ‖v −ΠSv‖H1(T )

)
, and therefore by approximation properties of the Scott-

Zhang operator and the inverse estimate, we deduce

‖v −ΠMv‖Hm(T ) ≤ Chs−mT ‖v‖Hs(ω(T )) (0 ≤ m ≤ s, 1 ≤ s ≤ 2).(3.27)

Combining the decomposition (3.22) with (3.25), (3.27) and the trace inequality, we obtain

‖v −Πhv‖L2(T ) ≤ ‖v −ΠMv‖L2(T ) + Ch
1/2
T ‖v −ΠMv‖L2(∂T )

≤ C
(
‖v −ΠMv‖L2(T ) + hT ‖v −ΠMv‖H1(T )

)
≤ ChsT ‖v‖Hs(ω(T )).

With a further scaling argument we have the following lemma.

Lemma 3.3. For any v ∈Hs(Ω) ∩H1
0 (Ω) with 1 ≤ s ≤ 2, there holds

‖v −Πhv‖Hm(T ) ≤ Chs−mT ‖v‖Hs(ω(T )) (0 ≤ m ≤ 1).(3.28)

3.3. Convergence analysis. To start the convergence analysis, we first verify that the inf-sup
condition (1.4) holds as well as show that the discretely divergence free functions in Vh are divergence
pointwise, that is, (1.6) holds. First, for given q ∈ Wh ⊂ L2

0(Ω) there exists v ∈ H1
0 (Ω) such that

[13]

C‖q‖L2(Ω) ≤
(div v, q)

‖v‖H1(Ω)
.

It then follows from (3.14) and (3.28) that

C‖q‖L2(Ω) ≤
(div Πhv, q)

‖v‖H1(Ω)
≤ C (div Πhv, q)

‖Πhv‖H1(Ω)
≤ sup

w∈Vh\{0}

(divw, q)

‖w‖H1(Ω)
.

Thus, the inf-sup condition holds. Furthermore it is easy to see from the definition of Vh and Wh

that divVh ⊂ Wh, from which we easily deduce divVh = Wh. It then follows that (1.6) holds as
well.

As is well known, since our spaces satisfy (1.6) we get estimates of the velocity which are inde-
pendent of p. We omit the proof of the following theorem as it can be found in many places in the
literature (e.g., [8, 6]).

Theorem 3.4. Let (u, p) satisfy (1.1) and let (uh, ph) ∈ Vh ×Wh satisfy (1.3). We then have

‖∇(u− uh)‖L2(Ω) ≤ ‖∇(u−Πhu)‖L2(Ω),

and

‖Php− ph‖L2(Ω) ≤ C ν‖∇(u−Πhu)‖L2(Ω).

Consequently, by (3.28) and the Poincaré inequality there holds

‖u− uh‖H1(Ω) ≤ Ch‖u‖H2(Ω),

‖p− ph‖L2(Ω) ≤ Ch
(
ν‖u‖H2(Ω) + ‖p‖H1(Ω)

)
.
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3.4. Characterization of divergence-free elements. In this section, we discuss how the divergence-
free functions of Vh can be explicitly characterized, and show the relation of this space with the C1

singular Zienkiewicz finite element space [10]

Zh =
{
z ∈ H2

0 (Ω) : z
∣∣
T
∈ Z(T )

}
,(3.29)

where

Z(T ) = P3(T )\span{bT } ⊕ span
{
Bei
}3

i=1
.(3.30)

The space Zh consists of (reduced) Hermite polynomials enriched with rational bubble functions to
enforce C1 continuity across the interior edges of the mesh. The local space Z(T ) has dimension 12
whose degrees of freedom are

z(xi),∇z(xi) for all vertices xi,(3.31a) 〈
∂z/∂ni, κ

〉
ei

for all κ ∈ P0(ei) (i = 1, 2, 3).(3.31b)

We now show that the divergence-free functions in Vh can be written as the curl of functions in Zh.
Furthermore, we establish the commutative property

curl Ihz = Πhcurl z,(3.32)

where Ih : H2(Ω) → Zh denotes the projection onto Zh corresponding to the degrees of freedom
(3.31); that is,

Ihz(xi) = z(xi), ∇Ihz(xi) = ΠS∇z(xi),
∫
ei

∂Ihz

∂ni
ds =

∫
ei

∂z

∂ni
ds ∀z ∈ H2(Ω).

From the commuting property (3.32), we can then easily establish that the following de Rham
complex is an exact sequence (i.e., the range of each map is the kernel of the following one):

R
⊂

−−−−−→ H2(Ω)
curl
−−−−−→ H1(Ω)

div
−−−−−→ L2(Ω) −→ 0y Ih

y Πh

yPh
R

⊂
−−−−−→ Zh

curl
−−−−−→ Vh

div
−−−−−→ Wh −→ 0

(3.33)

We note that the sequence in the first row of (3.33) is exact provided the domain Ω is simply
connected [13].

First, we claim that the curl operator maps Zh to the space of divergence-free function of Vh.
Indeed, this follows by writing P3(T )/span{bT } = P2(T )⊕ span{beiλi+1}3i=1. Therefore, we have

curlZ(T ) = curlP2(T )⊕ span{curl (beiλi+1)}3i=1 ⊕ span{curl (Bei)}3i=1 ⊂ V (T ).

Since curlZh ⊂H1
0 (Ω), the claim is proved.

We also note that curl (Ihz)(xi) = ΠScurl (z)(xi) = Πhcurl (z)(xi). Moreover, we have∫
ei

curl (Ihz) · ti ds =

∫
ei

∂(Ihz)

∂ni
ds =

∫
ei

∂z

∂ni
ds =

∫
ei

(Πhcurl z) · ti ds,

and ∫
ei

curl (Ihz) · ni ds =

∫
ei

∂(Ihz)

∂ti
ds =

∫
ei

∂z

∂ti
ds =

∫
ei

(Πhcurl z) · ni ds.

Since curl (Ihz) ∈ Vh, it follows that the commutative property (3.32) holds.
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Now suppose that v ∈ Vh with div v = 0. It then follows from the first row of (3.33) that there
exists z ∈ H2(Ω) such that curl z = v. Then by (3.32) and the idempotency of Πh there holds
v = Πhv = Πh(curl z) = curl (Ihz). It then follows that the diagram (3.33) is exact.

Remark 3.5. From the discussion above, we can deduce that the divergence-free functions in Mh

(defined by (3.15)) can be written as the curl of reduced cubic Hermite functions, and the analogous
exact de Rham complex holds:

R
⊂

−−−−−→ H(curl ; Ω)
curl
−−−−−→ H(div ; Ω)

div
−−−−−→ L2(Ω) −→ 0y Ĩh

y ΠM

yPh
R

⊂
−−−−−→ Z̃h

curl
−−−−−→ Mh

div
−−−−−→ Wh −→ 0,

(3.34)

where Z̃h denotes the reduced cubic Hermite finite element space and Ĩh the corresponding projec-
tion.

4. Higher Order Elements

The elements discussed above can be generalized to form a hierarchy of conforming finite elements
of arbitrary order. For an integer k ≥ 1, we set

V (T ) = Mk+1(T ) +Qk+1(T ),(4.1)

with

Mk+1(T ) = Pk(T ) + span
{
curl (beiλ

k
i+1)

}
,(4.2)

Qk+1(T ) =

3∑
i=1

curl (BeiQ
(i)
k−1(T )),(4.3)

and

Q
(i)
k−1(T ) =

{
q ∈ Pk−1(T ) : (q,Beip)T = 0 ∀p ∈ Pk−2(T )

}
.(4.4)

In the case k = 1, we set Q
(i)
k−1(T ) = P0(T ) so that we recover the local space discussed in Section

3. The degrees of freedom that uniquely determine a function in V (T ) are then given as

v(xi) for all vertices xi,(4.5a) 〈
v,κ

〉
ei

for all κ ∈ Pk−1(ei) (i = 1, 2, 3),(4.5b)

(v,ρ)T for all ρ ∈Nk−1(T ),(4.5c)

where

Nk−1(T ) = Pk−2(T ) +
{
w ∈ Pk−1(T ) : w · x = 0

}
denotes the Nedelec space of index k − 1 [19].

We now prove the higher order analogue of Lemma 3.1.

Lemma 4.1. There holds

V (T ) = Mk+1(T )⊕Qk+1(T ),(4.6)

dimV (T ) = dimPk(T ) + 3(k + 1).(4.7)
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Moreover, the degrees of freedom (4.5) are unisolvent on V (T ), and V (T ) restricted to ∂T is a
subspace of Pk+1(∂T ).

Proof. First we show that Mk+1 = Pk(T ) ⊕ span{beiλki+1}. Suppose that v =
∑3
i=1 dibeiλ

k
i+1 ∈

Pk(T ) with di ∈ R. Then v · ni
∣∣
ei

= di
∂(beiλ

k
i+1)

∂ti

∣∣∣
ei
∈ Pk(ei) It then follows that

0 = di
∂k+2(beiλ

k+1)

∂tk+2
i

∣∣∣
ei

=
di
2

(k + 1)(k + 2)
∂2bei
∂t2i

∂k(λki+1)

∂tki

∣∣∣
ei

=
di
2
k!(k + 1)(k + 2)

∂2bei
∂t2i

(∂λi+1

∂ti

)k∣∣∣
ei

Since
∂2bei
∂t2i

(
∂λi+1

∂ti

)k
is a nonzero constant, it follows that di = 0. It then follows that the direct sum

(4.6) holds. Furthermore, it is clear that dimQk+1(T ) = 3k and dimSk+1(T ) = 3, and therefore
the dimension count (4.7) follows from (4.6).

Now suppose that v ∈ V (T ) vanishes at all the degrees of freedom (4.5). Then to show unisol-
vency, it suffices to show that v ≡ 0 since the number of degrees of freedom equals the dimension
of V (T ). Write v = v0 + q with v0 ∈ Mk+1(T ) and q ∈ Qk+1(T ). Noting that q · n

∣∣
∂T

= 0, we
see that v0 vanishes at the vertices of T and its normal components vanish on ∂T up to moments of
degree k − 1. Since v0 ∈ Pk+1(T ), we have v0 · n

∣∣
∂T

= 0. By using the same arguments as above,

we deduce v0 ∈ Pk(T ).

Next, we write q =
∑3
i=1 curl (Beiqi) with qi ∈ Q(i)

k−1(T ). By (4.5c) and (4.4), we have

0 = (v,ρ)T = (v0,ρ)T +

3∑
i=1

(curl (Beiqi),ρ)T

= (v0,ρ)T −
3∑
i=1

(qi, Beicurl (ρ))T = (v0,ρ)T ∀ρ ∈Nk−1(T ).

Here we have used the inclusion curlNk−1(T ) ⊂ Pk−2(T ). Since v0 · n vanishes on ∂T , it follows
that v0 ≡ 0 [20]. Finally by (4.5c) and Lemma 2.1, we have

0 =
〈
v · ti, qi

〉
ei

=
〈
∂(Biqi)/∂ni, qi

〉
ei

= ai
〈
beiqi, qi

〉
ei
.

Therefore qi = 0 (i = 1, 2, 3) on ei and hence we may write qi = λipi for some pi ∈ Pk−2(T ). But
then by (4.4) we have 0 = (qi, Beipi)T = (pi, Beiλipi)T . It then follows that qi ≡ 0 and therefore
v ≡ 0. This completes the proof. �

In the general case, the global spaces are defined as

Vh =
{
v ∈H1

0 (Ω) : v
∣∣
T
∈ V (T )

}
,

Wh =
{
q ∈ L2

0(Ω) : q
∣∣
T
∈ Pk−1(T )

}
.

It is easy to see that the corresponding projections Πh and Ph satisfy the commutative property
(3.14). Moreover, the following estimates can be shown by following the derivation of Lemma 3.3

‖v −Πhv‖Hm(T ) ≤ Chs−mT ‖v‖Hs(ω(T )) 0 ≤ m ≤ 2, m ≤ s ≤ k + 1.

Finally, we mention that divergence free functions in Vh can be written as the curl of functions
belonging to a generalized Zienkiewicz finite element space. Indeed define

Z(T ) = Pk+1(T )⊕ span
{
beiλ

k
i+1

}3

i=1
+ span

{
BeiQ

(i)
k−1(T )

}3

i=1
,
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and let Zh =
{
z ∈ H2

0 (Ω) : z
∣∣
T
∈ Z(T )

}
be the corresponding global space. The degrees of freedom

that uniquely determine functions in the local space of Zh are

z(xi), ∇z(xi) for all vertices xi,〈
z, κ
〉
ei

for all κ ∈ Pk−2(ei),

(z, ρ)T for all ρ ∈ Pk−2(ei),〈
∂z/∂ni, ω

〉
ei

for all ω ∈ Pk−1(ei).

Following the arguments in the proof of Lemma 4.1, it is straightforward to show that these degrees
of freedom are insolvent on Z(T ). Similar to the lowest order Zienkiewicz finite elements, the space
Z(T ) consists of reduced Hermite-type elements plus 3k rational basis functions. We are not aware
of any higher order generalization of the Zienkiewicz elements nor the reduced Hermite elements in
the literature, although their practical value may be questionable.

5. Reduced Elements

In this section, we discuss how to construct reduced elements with smaller dimension. One
plausible approach is to impose the condition that the tangental component of functions in V (T )
(defined by (4.1)) are a subset of Pk(∂T ) when restricted to the boundary of T . The resulting local
space has dimension that is exactly three less than V (T ), i.e., the dimension is dimPk(T )+3k. The
degrees of freedom of this reduced space would then by the same as (4.5) except that the degrees of
freedom (4.5b) is replaced by the (k−1)th moments of the normal component of v and the (k−2)th
moments of the tangental component.

Here, we construct an alternative reduced space that has a smaller dimension than the one
discussed above when k ≥ 2. To describe the local space of these reduced elements we first need the
following result.

Lemma 5.1. Define

si := curl
(
beiλ

k
i+1 + ciλ

k−1
i+1 Bei + λk−1

i+1 Bei+2

)
,(5.1)

where

ci :=
(
∇λi+2 − (k + 1)∇λi+1

)
· ∇λi/a2

i .(5.2)

Then si enjoys the following properties:

div si = 0, si · t
∣∣
∂T
∈ Pk(∂T ),(5.3a)

si · nj
∣∣
ej

= 0 (i 6= j), si · ni
∣∣
ei
∈ Pk+1(ei)\Pk(ei).(5.3b)

Proof. The identity div si = 0 is clear from the definition of si. To show that s · t
∣∣
∂T
∈ Pk(∂T ), we

employ Lemma (2.1) and (5.1) to obtain for any ej ⊂ ∂T ,

si · tj
∣∣∣
ej

=
∂(beiλ

k
i+1)

∂nj
+ δi,jciaiλ

k−1
i+1 bei − δi+2,jai+2λ

k−1
i+2 bei+2

= δi,j(k + 1)λk−1
i+1 bei

∂λi+1

∂nj
+ λk+1

i+1

∂λi+2

∂nj
+ δi,jciaiλ

k−1
i+1 bei − δi+2,jai+2λ

k−1
i+1 bei+2

= δi,j

[
(k + 1)

∂λi+1

∂nj
+ ciai

]
λk−1
i+1 bei − δi+2,jai+2λ

k−1
i+1 bei+2 + λk+1

i+1

∂λi+2

∂nj
.
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We note that if j = i + 1, then si · tj
∣∣
ej

= 0. On the other hand, if j = i, then by (5.2), and since

nj = ∇λj/aj , we obtain

s · tj
∣∣∣
ej

=
(

(k + 1)
∂λi+1

∂nj
+ ciai

)
λk−1
i+1 bei + λk+1

i+1

∂λi+2

∂nj

=
(

(k + 1)
∂λi+1

∂ni
+ ciai

)
λki+1(1− λi+1) + λk+1

i+1

∂λi+2

∂ni

=

[
−
(

(k + 1)
∂λi+1

∂ni
+ ciai

)
+
∂λi+2

∂ni

]
λk+1
i+1 +

(
(k + 1)

∂λi+1

∂ni
+ ciai

)
λki+1

=
(

(k + 1)
∂λi+1

∂ni
+ ciai

)
λki+1 ∈ Pk(ei).

When j = i+ 2 we have

s · tj
∣∣∣
ej

= ai+2λ
k−1
i+1 bei+2 + λk+1

i+1

∂λi+2

∂ni+2

= ai+2λ
k
i+1(1− λi+1) + ai+2λ

k+1
i+1 = ai+2λ

k
i+1 ∈ Pk(ei+2).

Finally, since the rational bubbles vanish on ∂T we have si ·n
∣∣
∂T

=
∂(beiλ

k
i+1)

∂t

∣∣
∂T

. Since bei vanishes

on ∂T\ei, there holds si · nj
∣∣
ej

= 0 for i = j. On the other hand, on edge ei, we have si · ni
∣∣
ei

=

∂(λk+1
i+1 λi+2)

∂t

∣∣
ei
∈ Pk+1(ei)\Pk(ei). �

We define the local space of the reduced elements as follows:

VR(T ) = MR(T ) +QR(T ),(5.4)

where

MR(T ) = Pk(T ) + span{si}3i=1,(5.5)

and

QR(T ) =

 ∅ if k = 1,
span{curl (Bei)}2i=1 if k = 2,
span{curl (λi+1Bei)}3i=1 if k ≥ 3.

(5.6)

In (5.5), the functions si are defined in Lemma 5.1. It is easy to see that the summations in (5.4)
are direct and

dimVR(T ) =


dimPk(T ) + 3 if k = 1,

dimPk(T ) + 5 if k = 2,

dimPk(T ) + 6 if k ≥ 3,

The degrees of freedom of VR(T ) are then

v(xi) for all vertices xi,(5.7a) 〈
v · ni, κ

〉
ei

for all κ ∈ Pk−1(ei) (i = 1, 2, 3),(5.7b) 〈
v · ti, ω

〉
ei

for all ω ∈ Pk−2(ei) (i = 1, 2, 3),(5.7c)

(v,∇q)T for all q ∈ Pk−1(T ),(5.7d)

(v, curl (b2Tm))T for all m ∈ Pk−5(T ).(5.7e)
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Here we have used the convention that if k ≤ 4, then the degrees of freedom (5.7e) are omitted, and
if k = 1 then the degrees of freedom (5.7c) are omitted.

Lemma 5.2. The degrees of freedom (5.7) are unisolvent on VR(T ).

Proof. We prove the (harder) case k ≥ 3 as the other cases can be handled similarly. We proceed
by showing that if v ∈ VR(T ) vanish at the degrees of freedom (5.7) then v ≡ 0. Unisolvency then
follows since the number of degrees of freedom in (5.7) and the dimension of VR(T ) match.

Write

v = v0 + q v0 = v̄ + s, v̄ ∈ Pk(T ),

s =

3∑
i=1

disi, q =

3∑
i=1

giqi ∈ QR(T ), qi = curl (λi+1Bei),

and di, gi ∈ R. By Lemmas 5.1 and 2.1 there holds v ·n
∣∣
∂T
∈ Pk+1(∂T ). Therefore by (5.7a)–(5.7b),

we have v · n
∣∣
∂T

= 0. Hence, by (5.1) and Lemma 2.1 we obtain

0 = v · n
∣∣
ej

= v0 · n
∣∣
ej

+ dj
∂(bejλ

k
j+1)

∂tj

∣∣∣
ej
.

It then follows that dj∂(bejλ
k
j+1)/∂tj

∣∣
ej
∈ Pk(ej), and therefore we conclude dj = 0 by using the

same arguments found in the proof of Lemma 4.1. Thus, v = v̄ + q.
Next by (5.7d), we have

0 = (v,∇q)T = (v̄,∇q)T +

3∑
i=1

gi(curl (λi+1Bei),∇q)T = (div v̄, q) ∀q ∈ Pk−1(T )

since v̄ ·n
∣∣
∂T

= 0. It then follows that div v̄ = 0 and therefore v̄ = curl (bT r) for some r ∈ Pk−2(T ).

By (5.7c), Lemma 2.1 and (2.2), we have

0 =
〈
v · tj , ω

〉
ej

=
〈
v̄ · tj , ω

〉
ej

+ ajgj
〈
λj+1bej , ω

〉
ej

=
〈
curl (bT r) · tj , ω

〉
ej

+ ajgj
〈
λj+1bej , ω

〉
ej

= aj
〈
(r + gjλj+1)bej , ω

〉
ej

∀ω ∈ Pk−2(ej).

It then follows that r + gjλj+1

∣∣
ej

= 0 and therefore we may write r = pjλj − gjλj+1 for some

pj ∈ Pk−3(T ). Similarly, we have r = pj+1λj+1 − gj+1λj+2 for some pj+1 ∈ Pk−3(T ). Then on edge
ej+1 we have

pjλj
∣∣
ej+1

= r
∣∣
ej+1

= −gj+1λj+2

∣∣
ej+1

.

From this identity, we conclude that gj+1 = 0 and therefore q ≡ 0 and r vanishes on ∂T . We can
then write v̄ = curl (b2Tm) for some m ∈ Pk−5(T ), and hence the degree of freedom (5.7e) implies
v̄ ≡ 0. �

6. Conclusion

In this paper, we have developed a family of Stokes finite elements that produce conforming
exactly divergence free approximations. We have exploited the corresponding smoothed de-Rham
complex to make connections with H2-conforming elements. We note that using complexes of
function spaces have helped to develop conforming and symmetric elements for linear elasticity
[3]. Our reduced elements seem to be computationally competitive. For example, the lowest order
element has the same degrees of freedom as the Bernardi–Raugel element. We plan to test the
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computational advantage of these methods in the near future as well as develop the analogous three
dimensional elements on general tetrahedral meshes.
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