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Abstract. This paper presents a brief introduction to the controllability
of nonlinear systems through geometrical techniques. More specifically, Lie
brackets are used to steer the system in directions not initially apparent from
the linearization of the system. This allows us to prove an analogous result to
the rank Kalman condition for controllability of nonlinear systems known as
the accessibility rank condition.

1. Introduction

The goal of this paper is to present and prove the accessibility rank theorem
and illustrate how it can be used to determine the controllability of nonlinear,
affine systems of differential equations. The mathematics presented in this paper
is geometrical and the reader who is unfamiliar with these concepts can think of
n-dimensional manifolds as subsets of R

n and vector fields as mappings that assign
tangent vectors to every point on a manifold.

The paper is organized as follows: In section 2 we begin by presenting the essen-
tial definitions from nonlinear dynamical control theory that we will need through-
out the rest of the paper. In section 3 we then state the rank Kalman theorem which
provides an easily verifiable criterion for affine linear systems to be controllable. We
then show how the rank Kalman theorem can be extended to the linearization of
a nonlinear system to provide a sufficient condition for nonlinear systems to be
controllable. We conclude this section with a physical example illustrating the in-
adequacy of studying the linearization of nonlinear systems. In section 4 we give
a brief introduction to Lie brackets and motivate how they can be used to solve
the controllability problem for nonlinear systems. Finally, in section 5 we use Lie
brackets to state and prove an analogous result to the Kalman rank condition for
nonlinear systems known as the accessibility rank theorem. Also, by using Frobe-
nius’ theorem we describe the structure of the reachable set if the accessibility rank
theorem is satisfied on a suitable integral submanifold.

2. Definitions

In this paper we will consider m × n affine control systems [4] of the form

(2.1) ẋ = f(x) +

m
∑

i=1

gj(x)uj(t),

where x = {x1, . . . , xn} are local coordinates on a smooth n dimensional manifold
M , u(t) = (u1(t), . . . , um(t)) ∈ U ⊂ R

m, and f ,g1 . . .gm are smooth vectorfields
on M . f is commonly called the drift vector field [4] and the vector fields gi are
called the input vectorfields [4]. The function u(t) is called the control or the input
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function [4]. Additionally, we will assume that the input space U [4] is such that
the the family of vectorfields

(2.2) F =

{

f +
m
∑

i

giui : u ∈ U

}

contains the vector fields f and f + gi for i ∈ {1, . . . , m}. Furthermore, we will
assume that u ∈ U , where U is the set of all piecewise constant functions which
are continuous from the right. We call U the space of admissible controls [4] and if
u ∈ U we call u an admissible control [4].

Definition 2.1. The system 2.1 is controllable if for any two points x0 and x1 on
M there exists a finite T and an admissible control u : [0, T ] → U such that for x

satisfying x(0) = x0 we have that x(T ) = x1.

3. Linearization and Controllability

Before we analyze the controllability of (2.1) lets investigate the controllability
of the affine linear system

(3.1) ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m,

where A is an n× n matrix and B is an n×m matrix. It is easy to verify that the
solution to (3.1) satisfying x(0) = x0 is given by

x(t) = etAx0 + etA

∫ t

0

e−sABu(s) ds.

Now, define the set R by

R = {x ∈ M : ∃u ∈ U and 0 ≤ t < ∞ such that x(t) = 0}.

So, if x0 ∈ R we have that

x0 = −

∫ t

0

e−sABu(s) ds = −

∫ t

0

∞
∑

k=0

(−s)kAk

k!
Bu(s) ds.

From this result one can prove the following theorem concerning the controllability
of (3.1). For the details of the proof see [1].

Theorem 3.1. Kalman rank condition (3.1) is controllable if and only if the
matrix G = [B|AB|A2B| · · · |An−1B] satisfies rank(G) = n.

One approach to studying the controllability of (2.1) is to investigate its lin-
earization about a point x0, where f(x0) = 0 and use the Kalman rank condition.

Proposition 3.2. Consider the system (2.1), and let x0 ∈ M satisfy f(x0) = 0.
Let U contain a neighborhood V of u = 0 and suppose that the linearization of (2.1)
about x0 given by

ż =
∂f

∂x
(x0)z +

m
∑

j=1

gj(x0)vj , z ∈ R
n, v ∈ R

m

is controllable. Then, for any T > 0 the set of points that can be reached from x0

contains a neighborhood of x0.
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Proof.
Since, the linearization is completely controllable there exists admissible controls
v1(t), . . . ,vn(t) defined on [0, T ] that steer the origin z = 0 in time T to linearly
independent vectors z1, . . . , zn ∈ R

n. Now, consider the input function u(t) defined
for ξ = (ξ1, . . . , ξn) ∈ R

n by

u(t, ξ) = ξ1v
1(t) + . . . + ξnvn(t).

Now, ∀ǫ > 0 it follows that for ξi small enough ‖u(t, ξ)‖2 < ǫ. Now, for all possible
ξ satisfying this criterion apply u(t, ξ) to (2.1) and obtain the trajectory x(t, ξ)) on
M . Therefore x(t, ξ) satisfies

ẋ(t, ξ) = f(x(t, ξ)) +
m
∑

i=1

gi(x(t, ξ))ui(t, ξ).

Differentiating with respect to ξ and evaluating at ξ = 0 yields the matrix differ-
ential equation

Z(t) = AZ(t) + B[v1(t)| · · · |vn(t)], Z(0) = 0,

where Z(t) = ∂x
∂ξ

(t, ξ)|ξ=0, A = ∂f
∂x

(x0) and B = [g1(x0)| · · · |gn(x0]. It follows

from the definition of the controls v1, . . . ,vn that Z(T ) is full rank. Therefore, by
the implicit function theorem applied to the map ξ 7→ x(t, ξ) it follows that the set
of points reachable from x0 contains a neighborhood of x0. �

Figure 1

Although the above proposition gives us a simple condition to check for whether
or not (2.1) is locally controllable, it is not a necessary criterion for the controlla-
bility of a system. For example, consider the following simple model of a car. Let
(x1, x2) ∈ R

2 be the position of the center of the car and θ ∈ S1 be the angle the
front of the car makes with the x1 axis (see figure 1). The motion of the car can
be modeled by the following system:







ẋ1 = u1(t) cos θ,
ẋ2 = u1(t) sin θ,

θ̇ = u2(t).

The functions u1(t) and u2(t) correspond to how the driver controls the speed of
the car with the gas pedal and the orientation of the car with the steering wheel.
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Clearly, the linearization about the origin given by






ẋ1 = v1(t),
ẋ2 = 0,

θ̇ = v2(t),

is not controllable. But, our everyday experience tells us that this model for a car
should be controllable. So, perhaps there is an indirect way we can steer the car so
that the system is controllable.

4. Lie Brackets

Recall that a smooth derivation δ on M is a mapping δ : C∞(M) → C∞(M) such
that ∀f, g ∈ C∞, λ ∈ R the following properties hold:

(1) δ(f + λg) = δ(f) + λδ(g),
(2) δ(fg) = fδg + gδ(f),

(see [6]). It follows that there is a natural correspondence between vector fields and
smooth derivations (see [5]). Namely, if we are given a smooth derivation δ, then
the vector field corresponding to δ is given in local coordinates by

(4.1) vδ = (δ(x1), . . . , δ(xm)) ,

while if we are given a vector field v the corresponding smooth derivation is given
in local coordinates by

(4.2) δv(f) =
m
∑

i=1

vi

∂f

∂xi

.

Figure 2. Illustration of the tangent plane TMp corresponding
to a point p in M .

Recall that the tangent space TMx to M at x is the linear space of smooth
derivations δ(x) : C∞ → R (see [6]). Equivalently, using the correspondence be-
tween smooth derivations and vector fields the tangent space can also be thought
of as the collection of all tangent vectors to all possible curves passing through
x ∈ M (see figure 2). Furthermore, given that derivations act as first order dif-
ferential operators we will denote the basis vectors of TMx, which clearly has the
same dimension of M , by ∂

∂xi
. So, if δ ∈ TMx, then ∃α1 + . . . + αn ∈ R such that

δ = α1
∂

∂x1
, . . . , αn

∂

∂xn

.



GEOMETRIC NONLINEAR DYNAMICAL CONTROL 5

Now, let δ1 and δ2 be two smooth derivations and consider their commutator,
i.e. the map f 7→ δ1(δ2(f)) − δ2(δ1(f)). It follows by direct calculation that this
map is a smooth derivation as well. Therefore, for two vector fields u and v on M
we have that δ[u,v] = δu(δv(f))−δv(δu(f)) will give us another vector field denoted
by [u,v]. This operation is called the Lie Bracket [6] of u and v.

Furthermore, using the correspondence between vector fields and derivations, we
have that since

(4.3) δ[u,v] = δu(δv(f)) − δv(δu(f)),

it follows by (4.2) that

δ[u,v] = δu

(

m
∑

i=1

vi

∂f

∂xi

)

− δv

(

m
∑

i=1

ui

∂f

∂xi

)

=
m
∑

j=1

uj

∂

∂xj

(

m
∑

i=1

vi

∂f

∂xi

)

−
m
∑

j=1

vj

∂

∂xj

(

m
∑

i=1

ui

∂f

∂xi

)

.

Consequently, by (4.1), the k-th component of the vector field corresponding to the
commutator is given by

[u, v]k =
m
∑

j=1

uj

∂

∂xj

(

m
∑

i=1

vi

∂xk

∂xi

)

−
m
∑

j=1

vj

∂

∂xj

(

m
∑

i=1

ui

∂xk

∂xi

)

=

m
∑

j=1

uj

∂vk

∂xj

−
m
∑

j=1

vj

∂uk

∂xj

.

Therefore,

(4.4) [u,v] = J(v)u− J(u)v,

where J(w) is the Jacobian matrix corresponding to a vector field w.
Let M and N be manifolds and let F : M → N be a smooth map between them.

The tangent map is the map is the map defined by F∗ : TMx = TNF (x) (see [5]).
That is, if we are given a smooth curve γ(t) on M such that γ(0) = x then F∗(γ(t))
maps the tangent vector to γ(t) at t = 0 to the tangent vector of the curve F (γ(t))
at t = 0. Furthermore, if we think of elements in the tangent plane as smooth
derivations we have that for δ ∈ TMx and f ∈ C∞

(4.5) F∗(δ(f)) = (δ(f ◦ F )) ◦ F−1,

(see [4]). If two vectorfields, v on M and u on N , satisfy F∗v = u we say that v

and u are F-related [4].

Proposition 4.1. Let F : M → N and suppose that F∗vi = ui, for i = 1, 2 for
vector fields v1,v2 on M and u1 and u2 on N . Then, F∗[v1,v2] = [u1,u2].

Proof.
Thinking of u1,u2,v1,v2 as derivations we have that for g : N → R, g ∈ C∞,

{[u1,u2](g)} ◦ F = {u1(u2(g))} ◦ F − {u2(u1(g)} ◦ F.
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Now, let f : N → R, such that f ∈ C∞. By, (4.5) we have that ui(f) ◦ F =
F∗(vi(f)) ◦ F = vi(f ◦ F ). Therefore,

{[u1,u2](g)} ◦ F = {v1(u2(g) ◦ F )} − {v2(u1(g) ◦ F )}

= {v1(v2(g ◦ F )} − {v2(v1(g ◦ F )}

= [v1,v2](g ◦ F ).

Therefore, F∗[v1,v2] = [u1,u2]. �

We will also need the following important proposition but the proof is long and
not particularly important for our purposes.

Proposition 4.2. Let v1, . . . ,vk be linearly independent vectorfields in a neighbor-
hood of p satisfying [vi,vj ] = 0 for i, j ∈ {1, . . . , k}. Then, there is a coordinate
chart U with local coordinates x1, . . . , xn around p such that

vi =
∂

∂xi

Recall, that the local flow [2] of a vector field v on M denoted by vt(x0) is the

solution to the differential equation dφ(t)
dt

= v for time t and with initial condition
φ(0) = x0. Therefore, it can be shown that the Lie Bracket of the vector fields u

and v tells us that vt(us(x0)) = us(vt(x0)) if and only if [u,v] = 0. In other words,
the Lie Bracket corresponds to how the local flows generated by u and v commute.
Furthermore, this failure to commmute is entirely a non-linear phenomenon for if
we are given two constant vector fields their Lie Bracket is identically 0. The next
proposition show us how this failure to commute gives us, at least approximately,
the indirect method we need to steer the car.

Proposition 4.3. Let u,v be vector fields on M . For each x ∈ M define the curve
Ψ(x, t) on M by

(4.6) Ψ(x, t) = u−t(v−t(ut(vt(x)))).

The Lie Bracket [v,u](x) is the tangent vector to this curve at the endpoint Ψ(x, 0),
i.e,

(4.7) [v,u](x) =
d

dt
Ψ(x, t)|t=0.

Proof.
First, to simplify notation all functions will be evaluated at x but the evaluation
will not be explicitly written down, i.e, v(x) = v and vt = vt(x). Also, to reduce
the length of the proof many intermediate computations have been removed. To
prove the result we will use repeated applications of Taylor’s Theorem. Computing
gives us

vt = x + tv +
1

2
t2J(v)v + O(t3)

⇒ ut(vt) = x + t(v + u) + t2
(

1

2
J(v)v + J(u)v +

1

2
J(u)u

)

+ O(t3)

⇒ v−t(ut(vt)) = x + tu + t2
(

J(u)v − J(v)u +
1

2
J(u)u

)

+ O(t3)

⇒ Ψ(x, t) = u−t(v−t(ut(vt))) = x + t2(J(u)v − J(v)u) + O(t3).
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Therefore,

lim
t→0

Ψ(x, t) − Ψ(x, 0)

t2
= lim

t→0

Ψ(x, t) − x

t2
= [v,u](x)

�

x

ut(x)

vt(ut(x))

u−t(vt(ut(x)))

v−t(u−t(vt(ut(x))))

Figure 3. Graphical illustration of the above proof. The Lie
bracket is the tangent vector to the curve Ψ(t,x) at t = 0 and
gives us another direction to steer our system in.

By picking more complicated input function it follows by the above proposition
that we can approximately steer the car in the direction of higher order brackets,
i.e. for vector fields v1,v2, . . . ,vk terms of the form

[[v1,v2],v3], [vk, [vk−1, [· · · , [v2,v1] · · · ]]]

etc.

Definition 4.4. A vector space V over R is said to be a Lie algebra if there exists a
binary operation V × V → V denoted by [ , ] such that ∀u,v,w ∈ V and ∀α, β ∈ R

the following properties are satisfied

(1) [αu, βv,w] = α[u,w] + β[v,w] (bilinearity),
(2) [u,v] = −[v,u] (anti-symmetry),
(3) [[u, [v,w]] + [v, [w,u]] + [w, [v,v]] = 0 (Jacobi-identity).

Let V ∞(M) be the linear space of smooth vector fields on M . Clearly, for the
Lie bracket it follows by (4.4) that the bilinearity and skew symmetry properties
are satisfied for elements in V ∞(M). Also, it can be shown, with a a little bit of
work, that the Jacobi identity holds as well. So, V ∞(M) with the Lie bracket is
an infinite dimensional Lie algebra. A subalgebra of V ∞(M) is a linear subspace
U∞ ⊂ V ∞(M) satisfying ∀u,v ∈ U∞, [u,v] ∈ U∞. For our purposes, we will be
interested in the following subalgebra.
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Definition 4.5. For the affine system (2.1) the accessibility algebra C is the small-
est subalgebra of V ∞(M) containing the vector fields f ,g1, . . . ,gm.

Proposition 4.6. Every element of C is a linear combination of repeated Lie brack-
ets of the from

(4.8) [vk, [vk−1, [· · · , [v2,v1] · · · ]]]

where vi, i ∈ 1, . . . , k is in the set {f ,g1, . . . ,gm} and k = 0, 1, 2, . . . .

Proof.
Let L be the linear subspace of V ∞ spanned by (4.8). ∀w ∈ L let L(w) denote the
number of Lie brackets contained in w. I.e. if w is given by (4.8) then L(w) = k.
Now, ∀n ∈ N let P (n) denote the logical statement that for an arbitrary u ∈ L
we have that ∀v ∈ L satisfying L(v) ≤ n, [v,u] ∈ L. P (1) is trivially true.
Suppose ∃k ∈ N such that P (k) is true. Let v = [vk+1, [vk, [· · · , [v2,v1] · · · ]]] and
let z = [vk, [· · · , [v2,v1] · · · ]]. Then, by the Jacobi identity we have that

[v,u] = [[vk+1, z],u]

= −[u, [vk+1, z]]

= [vk+1, [z,u]] + [z, [u,vk+1]].

Since L(z) = k it follows by P (k) that [vk+1, [z,u]] ∈ L and [z, [u,vk+1]] ∈ L. By
the principle of mathematical induction it follows that L is a subalgebra containing
{f ,g1, . . . ,gm} so L = C. �

5. Local Accessibility and Controllability

Now, to answer the question of controllability of a system we need to examine
the space spanned by the elements in the accessibility algebra.

Definition 5.1. A distribution D on M is a map which assigns to each x ∈ M a
linear subspace D(x) of the tangent space TMx. D is called a smooth distribution
if around any point x, D(x) is spanned by a set of smooth vector fields, i.e, for
x ∈ M there exists a neighborhood U of x and a set of smooth vectorfields vi, i ∈ I
with I some index set such that

∀y ∈ U, D(y) = span{vi(y); i ∈ I}.

The dimension [4] of a distribution at x ∈ M is the dimension of the subspace
D(x). A distribution D is called constant dimensional [4] if ∀x ∈ M the dimension
of D(x) does not depend on x. Furthermore, a distribution D is called called
involutive [4] if for all u,v ∈ D, [u,v] ∈ D. Define the accessibility distribution [4]
to be the involutive distribution generated by C:

(5.1) C(x) = span{v(x) : v ∈ C}.

We say that a submanifold N of M is an integral manifold [4] of a distribution D
on M if

∀x ∈ N, TNx = D(x).

Proposition 5.2. Let D be a distribution on M such that through each point of
M there passes an integral manifold of D. Then, D is an involution.
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Figure 4. This figure illustrates one-dimensional integral sub-
manifolds of a torus. The black curves labeled as leaves are integral
submanifolds corresponding to a distribution that is spanned by a
single vector field on the torus.

Proof.
Let u,v ∈ D and x ∈ M . Let N be an integral manifold of D with dimension
n < m. Then, for every x ∈ N ,

u(x) ∈ D(x) = TNx, and v(x) ∈ D(x) = TNx.

Since N is a submanifold of M , it follows that there exists a coordinate chart U
with local coordinates x1, . . . , xm, such that

U ∩ N = {y ∈ U : xi(y) = xi(x), i = n + 1, . . . , m}.

Therefore, the last m − n components of u and v in the basis
{

∂
∂x1

, . . . , ∂
∂xm

}

are

precisely zero. Consequently, by (4.4) it follows that the last m− n components of
[u,v] are precisely zero as well. Therefore, [u,v] ∈ TMx = D(x). �

Now we are in a position to give our first major result concerning the control-
lability of (2.1). Related to the notion of controllability is the reachability set [4]
RV (x0, T ) defined by

RV (x0, T ) = {x ∈ M : ∃u ∈ U , u : [0, T ] → U such that the evolution of

(2.1) for x(0) = x0 satisfies x(t) ∈ V, 0 ≤ t ≤ T and x(T ) = x}.

Let

(5.2) RV
T (x0) =

⋃

τ≤T

RV (x0, τ ).

Theorem 5.3. Accessibility Rank Condition. Consider the system (2.1). As-
sume that dim(C(x0)) = n. Then, for any open neighborhood V of x0 and T > 0
the set RV

T (x0) contains a non-empty open set of M .

Proof.
By continuity there exists a neighborhood W ⊂ V of x0 such that dim(C(x0)) = n
for any x ∈ W . It follows that since dim(C(x0)) 6= 0 we can pick v1 ∈ F , where
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F is defined in (2.2), such that v1(x0) 6= 0. Therefore, for sufficiently small ǫ1 > 0
the set

N1 = {vt1
1 (x0) : 0 < t1 < ǫ1}

is a submanifold of dimension 1, contained in W . Now, assume we have constructed
a submanifold Nj−1 ⊂ W of dimension j − 1 < n defined as

Nj−1 = {v
tj−1

j−1 ◦ vt−2
j−2 ◦ · · ·v

t1
1 (x0) : 0 < ti < ǫi, i ∈ {1, . . . , j − 1}},

where vi, i ∈ {1, . . . , j − 1} are vectorfields in F . Now, we can find vj ∈ F
and q ∈ Nj−1 such that vj(q) /∈ TNj−1,q. For if this was not possible, then
∀v ∈ F ,q ∈ Nj−1 we have have that v(q) ∈ TNj−1,q. By the proof of proposition
5.2 it follows that all linear combinations of Lie brackets of elements in F would
also lie in TNj−1,q which contradicts the fact that dim(C(q)) = n. It also follows
that we may take q arbitrarily close to x0. Therefore, the map

(tj , . . . , t1) → v
tj

j ◦ v
tj−1

j−1 ◦ · · ·vt1
1 (x0)

has rank equal to j on some set 0 < ti < ǫi for i ∈ {1, . . . , j}. Hence, Nj ⊂ W is a
submanifold of dimension j. By the principle of mathematical induction it follows
that Nn is the desired open set contained in RV

T (x0). �

Motivated by this result we say that the system (2.1) is locally accessible [4] from
x0 if RV

T (x0) contains a non-empty open set of M for all neighborhoods V of x0 and
all T > 0. If this is true for all x0 ∈ M we say that the system is locally accessible
[4]. It immediately follows from theorem 5.3 that if dim(C(x)) = n for all x ∈ M
then the system is locally accessible.

But, we cannot say that the system is controllable even if the system is locally
accessible. For example, consider the system

{

ẋ1 = x2
2

ẋ2 = u

In this case the drift vector field is given by (x2
2, 0) and the only input vector field

is (1, 0). Computing the lie brackets gives us

C(x) = span{(−2x2, 0), (2, 0), (x2
2, 0), (0, 1)}.

Clearly, dim(C(x)) = 2 for all x ∈ M so the system is locally accessible. But, since
x2

2 ≥ 0 the x1 coordinate is always increasing so the system is not controllable.
Now, a natural question to ask is what can we say about the reachable set if C(x)

is constant dimensional but dim(C(x)) < n? This question is essentially answered
by the celebrated Frobenius Theorem which says that a constant dimensional distri-
bution D is involutive if and only if it is integrable. Moreover, Frobenius’ theorem
gives us a method for computing the integral manifold corresponding to the distri-
bution (see [3]). Then, if we restrict the system (2.1) to the integral submanifold
the system will be locally accessible.

Theorem 5.4. Frobenius’ Theorem Let D be an involutive constant dimen-
sional distribution on M . Then, around any p ∈ M there exists a coordinate chart
(U, x1, . . . , xm) such that

(5.3) D(q) = span

{

∂

∂x1
, . . . ,

∂

∂xk

}

.
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Proof.
Let D be a involutive, constant dimensional distribution on M . Let (U, ϕ) be a
coordinate chart about p ∈ M with ϕ(p) = 0. Since U locally looks like a subset
of R

m we may as well work in R
m with p = 0. So, we can assume that there exists

k such that D(0) ⊂ TR
m is spanned by

{

∂

∂r1
, . . . ,

∂

∂rk

}

.

Define the function π : R
m → R

k to be the projection map onto the first k compo-
nents. It follows that π∗0 : TR

m
0 → TR

k
π(0) when restricted to to D(0) is one-to-one,

onto and since it is linear a homomorphism. Therefore, π∗0 is an isomorphism. By
continuity it follows that for q close to 0 π∗q : TR

m
q → TR

k
πq

is an isomorphism

when restricted to D(q) as well. So, for q sufficiently close to 0 we have vectors
v1(q), . . . ,vk(q) ∈ D(q) such that

π∗q(vi(q)) =
∂

∂ri

∣

∣

∣

∣

π(q)

.

By proposition 4.1 it follows that for i, j ∈ 1 . . . , k,

π∗q ([vi,vj]) =

[

∂

∂ri

,
∂

∂rj

]
∣

∣

∣

∣

π(q)

= 0.

Now, since D is involutive we have that [vi,vj ] ∈ D. Therefore, since π∗q is one-
to-one when restricted to D(q) and π∗q(0) = 0 it follows that [vi,vj ] = 0. Finally,
it follows by proposition 4.2 that for all q ∈ U

vi =
∂

∂xi

.

�

Corollary 5.5. Let D be an involutive distribution of constant dimension k on M .
Then, for any p ∈ M there is a coordinate chart (U, x1, . . . , xm) with ϕ(p) = 0 and

ϕ(U) = (−ǫ, ǫ), . . . , (−ǫ, ǫ),

such that for each ak+1, . . . , am, smaller in absolute value than ǫ, the submanifold

(5.4) {q ∈ U : xk+1(q) = ak+1, . . . , xm(q) = am}

is an integral manifold of D. Moreover, every integral manifold is of this form.

The union over all possible submanifolds defined by (5.4) is called a foliation [6]
of the coordinate chart U . For fixed values of ai the submanifold given in (5.4) is
called a leaf [6] of the foliation. Therefore, Frobenius’ theorem tells us that every
involutive constant dimensional distribution generates a foliation of M whose leaves
are integral manifolds of the distribution.

Proposition 5.6. Suppose that for all x ∈ M , C(x) has constant dimension k < n.
By Frobenius’s theorem we can find a neighborhood W of x and local coordinates
x1, . . . , xn, such that the submanifold

Sx = {q ∈ W : xi(q) = xi(x), i = k + 1, . . . , n}

is an integral manifold of C. Then, the system restricted to Sx is locally accessible.
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Figure 5. This figure illustrates a foliation of R
3. One can think

of the leaves of the foliation as slices of R
3 that correspond to

submanifolds that are locally accessible from a system starting on
the submanifold. Physically, the system we are trying to control
can only be steered to other points on the leaf the system starts
on.

If we now return to our previous example where we illustrated why local ac-
cessibility does not imply controllability, it is clear that the problem was with the
input vector fields inability to steer the system in the opposite direction of the drift
vector field. So, to guarantee controllability we will need the system to remain
locally accessible if f is removed from F and in addition we will need the input
vector fields and their associated Lie brackets to be able to steer the system in all
directions.

Theorem 5.7. Controllability Suppose the drift vector field f satisfies f = 0 or
f ∈ span{gi(x), i ∈ {1, . . . , m}} and suppose also that for any v ∈ F we have that
−v ∈ F . Then, if dim(C(x) = n for all x ∈ M and M is connected then (2.1) is
controllable.

Proof.
Recall the proof of theorem 5.3 and consider the n-dimensional submanifold Nn(x)
which is the image of the map

(tn, . . . , t1) → vtn

n ◦ v
tn−1

n−1 ◦ · · · ◦ v1
t1(x), 0 < ti < ǫi

for some vi ∈ F , i ∈ {1, . . . , n}. Now, let (s1, . . . , sn) satisfy 0 < si < ǫi and for
si ∈ {1, . . . , n} fixed consider the map

(tn, . . . , t1) → (−v1)
s1 ◦ (−v2)

s2 ◦ · · · (vn)sn ◦ vtn

n ◦ v
tn−1

n−1 ◦ · · ·vt1
1 (x), ti < ǫi.

Now, since (−vi)
si = v−si

i it follows that the image of this map is an open set
of M containing x. Therefore, by the symmetry of F we have proven that for all
x ∈ M , RV

T (x) contains an open neighborhood of x for all neighborhoods V of x

and T > 0.



GEOMETRIC NONLINEAR DYNAMICAL CONTROL 13

Now, let

R(x) =
⋃

τ>0

RM (x, τ ).

and B be the boundary of R(x). Suppose there exists z ∈ M such that z ∈ B. By
the above argument R(z) contains a neighborhood of z. Consequently, ∃z′ ∈ R(z)
such that z′ /∈ R(x). Consequently z′ can be reached by first steering x to z and
then steering z to z′. But, this contradicts the fact that z is in the boundary of
R(x). Therefore, B = ∅ which proves that R(x) = M . �
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