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Abstract. Utility maximization problems of mixed optimal stopping/control type are con-
sidered, which can be solved by reduction to a family of related pure optimal stopping problems.
Sufficient conditions for the existence of optimal strategies are provided in the context of continuous-
time, Itô process models for complete markets. The mathematical tools used are those of optimal
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1. Introduction. Problems of expected utility maximization go back at least
to the seminal articles of Samuelson and Merton (1969) and Merton (1971), and
have been studied extensively in recent years, for instance by Pliska (1986), Karatzas,
Lehoczky, and Shreve [KLS] (1987), and Cox and Huang (1989). Most of this literature
shares the common setting of an agent who receives a deterministic initial capital,
which he must then invest in a market (complete or incomplete) so as to maximize
the expected utility of his wealth and/or consumption, up to a prespecified terminal
time.

In this paper we consider a variant of these problems by allowing the agent freely
to stop before or at a prespecified final time in order to maximize the expected utility
of his wealth and/or consumption up to the stopping time. The assets available to the
agent can be traded continuously, without restrictions, frictions, or transaction costs;
they consist of a locally riskless money-market, and m risky stocks. (One can think,
for example, of an investor or mutual fund manager who tries to invest/consume as
skillfully as possible before “retiring” from the stock market and putting all his hold-
ings in the money-market.) The stock prices are driven by m independent Brownian
motions; these represent the sources of uncertainty in the market model, which is
assumed to be complete in the sense of Harrison and Pliska (1981). The market coef-
ficients, i.e., the money-market rate, the stock-appreciation rates, and the matrix of
stock volatilities, are bounded random processes adapted to the driving m-dimensional
Brownian motion.

The utility maximization problem studied here involves aspects of both optimal
stopping and stochastic control. Such problems also arise in situations like pricing
American contingent claims under constraints, selecting trading strategies in the pres-
ence of transaction costs with an American option held in the portfolio, target-tracking
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followed by a decision (to engage the target or not), etc.; see Karatzas and Kou (1998),
Davis and Zariphopoulou (1995), Davis and Zervos (1994), as well as Karatzas and
Sudderth (1999) for such problems in different contexts. The free-boundary prob-
lem approach, based on an associated Hamilton–Jacobi–Bellman (HJB) equation of
dynamic programming, is inadequate for the analysis of the general version of our
model, which is not Markovian. Instead, duality theory plays an important role and
leads to a family of pure optimal stopping problems which is even more amenable to
analysis. Duality approaches have been used with success in treating portfolio opti-
mization problems for financial markets which are incomplete or impose constraints
on portfolio choice, as in Karatzas, Lehoczky, Shreve, and Xu [KLSX] (1991), Shreve
and Xu (1992), and Cvitanić and Karatzas (1992).

The model and the utility maximization problem are described in sections 2–5. We
present a solution in section 6 using a duality approach. However, this solution is not
quite satisfactory in the sense that it leads to computationally tractable results only in
very special cases and does not shed much light on the general question of existence of
optimal strategies. We then introduce and analyze a family of pure optimal stopping
problems in sections 7–8. In terms of these, we are able to provide conditions which
guarantee the existence of optimal strategies. In section 9, several examples are
presented, one of which demonstrates that optimal strategies need not always exist.
For completeness, we treat in Appendix A an example which can be solved explicitly
using a free-boundary problem for the associated HJB equation. In Appendix B we
formulate an open problem, suggested by the referee, where consumption continues
past the time of retirement from the stock market.

It is hoped that the analysis in this paper will serve as a step towards estab-
lishing a general theory for stochastic control problems with discretionary stopping
in continuous time, possibly along the lines of the Dubins–Savage (1965) theory for
discrete-time “leavable gambling problems” developed in Chapter 3 of Maitra and
Sudderth (1996).

Remark 1.1. We denote by “standing assumption” those conditions that are al-
ways in force throughout the paper; they will not be cited in theorems. And “assump-
tion” stands for those conditions which are in force only when theorems specifically
cite them.

2. The market model. We adopt a model consisting of a money-market, with
price P0(·) given by

dP0(t) = P0(t)r(t) dt, P0(0) = 1,(2.1)

and of m stocks with prices-per-share Pi(·) satisfying the equations

dPi(t) = Pi(t)


bi(t) dt +

m∑
j=1

σij(t)dWj(t)


 , i = 1, . . . ,m.(2.2)

Here W (·) = (W1(·), . . . ,Wm(·))∗ is an m-dimensional Brownian motion on a com-
plete probability space (Ω,F,P). We shall denote by F = {Ft}0≤t≤T the P-augmentation
of the filtration generated by W (·). The coëfficients of the model, that is, the scalar
interest rate process r(·), the vector process b(·) = (b1(·), . . . , bm(·))∗ of appreciation
rates, and the matrix-valued volatility process σ(·) = (σij(·))1≤i,j≤m, are assumed to
be bounded, and progressively measurable with respect to F. All processes encoun-
tered throughout sections 2–9 of the paper will be defined on the fixed, finite horizon
[0, T ].
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Standing Assumption 2.1. We assume that ‖b(t)‖ ≤ L, |r(t)| ≤ L, ∀ 0 ≤ t ≤ T
hold almost surely (a.s.) for some given real constant L > 0.

Standing Assumption 2.2. The process σ(·) satisfies the strong nondegeneracy
condition

ξ∗σ(t)σ∗(t)ξ ≥ ε‖ξ‖2 ∀ (t, ξ) ∈ [0, T ] × R
m

a.s. for some given real constant ε > 0. From Standing Assumption 2.2, the matrices
σ(t), σ∗(t) are invertible, and the norms of (σ(t))−1 and (σ∗(t))−1 are bounded from
above and below by δ and δ−1, respectively, for some δ ∈ (1,∞); cf. Karatzas and
Shreve (1991), p. 372. We also define the “relative risk” process

θ(t)
�
= σ−1(t)[b(t) − r(t)1m],(2.3)

where 1m = (1, . . . , 1)∗, the discount process

γ(t)
�
=

1

P0(t)
= exp

{
−
∫ t

0

r(s) ds

}
,(2.4)

the exponential martingale (or likelihood ratio process)

Z0(t)
�
= exp

{
−
∫ t

0

θ∗(s) dW (s) − 1

2

∫ t

0

‖θ(s)‖2 ds

}
,(2.5)

and the state-price-density process

H(t)
�
= γ(t)Z0(t).(2.6)

3. Portfolio and wealth processes. A portfolio process π(·) = (π1(·), . . . , πm(·))∗
is R

m-valued, and a consumption process c(·) takes values in [0,∞); these are both
F-progressively measurable and satisfy

∫ T

0

c(t) dt +

∫ T

0

‖π(t)‖2 dt < ∞

a.s. We regard πi(t) as the proportion of an agent’s wealth invested in stock i at time
t; the remaining proportion 1 − π∗(t)1m = 1 −∑m

i=1 πi(t) is invested in the money-
market. These proportions are not constrained to take values in the interval [0, 1]; in
other words, we allow both short-selling of stocks and borrowing at the interest rate of
the bond. For a given, nonrandom, initial capital x > 0, let X(·) ≡ Xx,π,c(·) denote
the wealth-process corresponding to a portfolio/consumption process pair

(
π(·), c(·))

as above. This wealth-process is defined by the initial condition Xx,π,c(0) = x and
the equation

dX(t) =

m∑
i=1

πi(t)X(t)


bi(t) dt +

m∑
j=1

σij(t)dWj(t)


(3.1)

+

{
1 −

m∑
i=1

πi(t)

}
X(t)r(t) dt− c(t) dt

= r(t)X(t)dt + X(t)π∗(t)σ(t)dW0(t) − c(t) dt, X(0) = x > 0,
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where we have set

W0(t)
�
= W (t) +

∫ t

0

θ(s) ds, 0 ≤ t ≤ T.(3.2)

In other words,

d (γ(t)Xx,π,c(t)) = γ(t)Xx,π,c(t)π∗(t)σ(t) dW0(t) − γ(t)c(t) dt, 0 ≤ t ≤ T.(3.3)

The process W0(·) of (3.2) is Brownian motion under the equivalent martingale mea-
sure

P0(A)
�
= E

[
Z0(T )1A

]
, A ∈ FT ,(3.4)

by the Girsanov theorem (section 3.5 in Karatzas and Shreve (1991)). We shall say
that a portfolio/consumption process pair (π, c) is available at initial capital x > 0 if
the corresponding wealth-process Xx,π,c(·) of (3.3) is strictly positive on [0, T ] a.s.

An application of Itô’s rule to the product of the processes Z0(·) and γ(·)Xx,π,c(·)
leads to

H(t)Xx,π,c(t) +

∫ t

0

H(s)c(s) ds(3.5)

= x +

∫ t

0

H(s)Xx,π,c(s)(σ∗(s)π(s) − θ(s))∗ dW (s).

This shows, in particular, that for any pair (π, c) available at initial capital x > 0, the
process H(·)Xx,π,c(·)+

∫ ·
0
H(s)c(s) ds is a continuous, positive local martingale, hence

a supermartingale, under P. Consequently, the optional sampling theorem gives

E

[
H(τ)Xx,π,c(τ) +

∫ τ

0

H(s)c(s) ds

]
≤ x ∀ τ ∈ S.(3.6)

Here and in what follows, we denote by Ss,t the class of F-stopping times τ : Ω −→ [s, t]
for 0 ≤ s ≤ t ≤ T , and let S ≡ S0,T .

4. Utility function. A function U : (0,∞) −→ R will be called utility function
if it is strictly increasing, strictly concave, continuously differentiable, and satisfies

U ′(0+)
�
= lim

x↓0
U ′(x) = ∞, U ′(∞)

�
= lim

x↑∞
U ′(x) = 0.(4.1)

We shall denote by I(·) the (continuous, strictly decreasing) inverse of the marginal-
utility function U ′(·); this function maps (0,∞) onto itself and satisfies I(0+) =
∞, I(∞) = 0. We also introduce the Legendre–Fenchel transform

Ũ(y)
�
= max

x>0
[U(x) − xy] = U(I(y)) − yI(y), 0 < y < ∞,(4.2)

of −U(−x); this function Ũ(·) is strictly decreasing, strictly convex, and satisfies

Ũ ′(y) = −I(y), 0 < y < ∞,(4.3)

U(x) = min
y>0

[Ũ(y) + xy] = Ũ(U ′(x)) + xU ′(x), 0 < x < ∞.(4.4)

The inequality

U(I(y)) ≥ U(x) + y[I(y) − x] ∀ x > 0, y > 0,(4.5)

is a direct consequence of (4.2).
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5. The optimization problem. The agent in our model has time-dependent
utility of the form

∫ t
0
e−βsU1

(
c(s)

)
ds + e−βtU2(x), with β ≥ 0 a real constant. The

utility functions U1(·), U2(·) measure his utility from consumption and wealth, re-
spectively, whereas β stands for a discount factor. If the agent uses the portfo-
lio/consumption strategy (π, c) available at initial capital x > 0, and the stopping
rule τ ∈ S, his expected discounted utility is

J(x;π, c, τ)
�
= E

[∫ τ

0

e−βtU1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
.(5.1)

The optimization problem considered in this paper is the following: to maximize
the expected discounted utility in (5.1), over the class A(x) of triples (π, c, τ) as above,
for which the expectation in (5.1) is well defined, i.e.,

E

[∫ τ

0

e−βtU−
1

(
c(t)

)
dt + e−βτU−

2 (Xx,π,c(τ))

]
< ∞.(5.2)

(Here and in what follows, x− denotes the negative part of the real number x, namely,
x− = max(−x, 0).) The value-function of this problem will be denoted by

V (x)
�
= sup

(π,c,τ)∈A(x)

J(x;π, c, τ), x ∈ (0,∞).(5.3)

We say that the value V (x) is “attainable” if we can find a triple (π̂, ĉ, τ̂) ∈ A(x) with
V (x) = J(x, π̂, ĉ, τ̂); such a triple is then called “optimal” for problem (5.3). To ensure
that this problem is meaningful, we impose the following assumption throughout.

Standing Assumption 5.1. V (x) < ∞ ∀x ∈ (0,∞).
It is fairly straightforward that the function V (·) is increasing on (0,∞). However, it
is not clear at this stage whether V (·) is concave or not. We shall discuss this issue
in section 8.

Remark 5.2. A sufficient condition for Standing Assumption 5.1 is that

max{U1(x), U2(x)} ≤ k1 + k2x
δ ∀ x ∈ (0,∞)(5.4)

holds for some k1 > 0, k2 > 0, δ ∈ (0, 1); cf. Remark 3.6.8 in Karatzas and Shreve
(1998).

6. Duality approach. For any fixed stopping time τ ∈ S, we denote by Πτ (x)
the set of portfolio/consumption process pairs (π, c) for which (π, c, τ) ∈ A(x). The
solution of the utility maximization problem

Vτ (x)
�
= sup

(π,c)∈Πτ (x)

J(x;π, c, τ)(6.1)

can be derived as in KLS (1987). We review briefly the results in this section. For
any triple (π, c, τ) ∈ A(x) and any real number λ > 0, it follows from (4.2), (3.6) that

J(x;π, c, τ) = E

[∫ τ

0

e−βtU1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]

≤ E

[∫ τ

0

e−βtŨ1(λeβtH(t)) dt + e−βτ Ũ2(λeβτH(τ))

]

+λ · E
[
H(τ)Xx,π,c(τ) +

∫ τ

0

H(t)c(t) dt

]

≤ E

[∫ τ

0

e−βtŨ1(λeβtH(t)) dt + e−βτ Ũ2(λeβτH(τ))

]
+ λx,
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with equality if and only if

Xx,π,c(τ) = I2(λeβτH(τ)) and c(t) = I1
(
λeβtH(t)

) ∀ 0 ≤ t ≤ τ a.s.,(6.2)

E

[
H(τ)Xx,π,c(τ) +

∫ τ

0

H(t)c(t) dt

]
= x(6.3)

hold. It develops that we have Vτ (x) ≤ infλ>0

[
J̃(λ; τ) + λx

]
∀ τ ∈ S, as well as

V (x) = sup
τ∈S

Vτ (x) ≤ sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
(6.4)

with the notation

J̃(λ; τ)
�
= E

[∫ τ

0

e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2(λeβτH(τ))

]
.(6.5)

In order to proceed, we shall need the following assumption (see Remark 6.7 for
discussion).

Assumption 6.1. E

[
sup0≤t≤T

(
H(t) · I2(λeβtH(t)

)
+
∫ T
0

H(t)I1(λeβtH(t)) dt
]

< ∞ ∀λ ∈ (0,∞).
Under this assumption, for any given τ ∈ S, the function Xτ : (0,∞) → (0,∞)

defined by

Xτ (λ)
�
= E

[∫ τ

0

H(t)I1
(
λeβtH(t)

)
dt + H(τ) · I2(λeβτH(τ))

]
, 0 < λ < ∞,(6.6)

is a continuous, strictly decreasing mapping of (0,∞) onto itself with Xτ (0+) =
∞, Xτ (∞) = 0; thus Xτ (·) has a continuous, strictly decreasing inverse Yτ (·) from
(0,∞) onto itself. We define

ξx(τ)
�
= I2

(Yτ (x)eβτH(τ)
)

and ηx(t)
�
= I1

(Yτ (x)eβtH(t)
)
, 0 ≤ t ≤ T,(6.7)

so that, in particular,

E

[
H(τ)ξx(τ) +

∫ τ

0

H(t)ηx(t) dt

]
= x.(6.8)

Lemma 6.2. For any τ ∈ S, the random variables of (6.7) satisfy

E

[
e−βτU−

2

(
ξx(τ)

)
+

∫ τ

0

e−βtU−
1

(
ηx(t)

)
dt

]
< ∞,(6.9)

and for every portfolio/consumption pair (π, c) ∈ Πτ (x) we have

E

[∫ τ

0

U1

(
c(t)

)
dt + e−βτU2(Xx,π,c(τ))

]
(6.10)

≤ E

[∫ τ

0

U1

(
ηx(t)

)
dt + e−βτU2(ξx(τ)

)]
.



312 IOANNIS KARATZAS AND HUI WANG

Lemma 6.2 can be proved by arguments similar to those used in the proof of
Theorem 3.6.3 in Karatzas and Shreve (1998). We conclude from Lemma 6.2 that,
if there exists a portfolio π̂τ (·) such that (π̂τ , ĉτ ) is available at initial capital x > 0,

where ĉτ (·) �
= ηx(·)1[[0,τ [[(·), and if

Xx,π̂τ ,ĉτ (τ) = ξx(τ)(6.11)

holds a.s., then the pair (π̂τ , ĉτ ) belongs to Πτ (x) and is optimal for the utility max-
imization problem (6.1). The existence of such a portfolio will need the assumption
of market completeness, as we shall see in the next lemma.

Lemma 6.3. For any τ ∈ S, any Fτ -measurable random variable B with P[B >
0] = 1, and any progressively measurable process c(·) ≥ 0 that satisfies c(·) ≡ 0 almost

everywhere (a.e.) on [[τ, T ]] as well as E

[
H(τ)B +

∫ T
0

H(t)c(t) dt
]

= x, there exists a

portfolio process π(·) such that, a.s.

Xx,π,c(t) > 0, 0 ≤ t ≤ T, and Xx,π,c(τ) = B.

Proof. We begin with the strictly positive, continuous process X(·) defined by

X(t)
�
=

1

γ(t)
· E0

[
γ(τ)B +

∫ τ

t∧τ
γ(s)c(s) ds

∣∣∣∣Ft
]
, 0 ≤ t ≤ T.

This process satisfies

X(0) = E0

[
γ(τ)B +

∫ τ

0

γ(s)c(s) ds

]
= E

[
H(τ)B +

∫ τ

0

H(s)c(s) ds

]
= x,

and X(τ) = B a.s. On the other hand, the P0-martingale

M(·) �
= γ(·)X(·) +

∫ ·

0

γ(s)c(s) ds = E0

[
γ(τ)B +

∫ τ

0

γ(s)c(s) ds|F·

]

admits the stochastic integral representation

M(t) = x +

∫ t

0

ψ∗(s) dW0(s), 0 ≤ t ≤ T,

for some F-adapted process ψ(·) that satisfies
∫ T
0
‖ψ(s)‖2 ds < ∞ a.s. (e.g., Karatzas

and Shreve (1998), Lemma 1.6.7). Define π(t)
�
= (σ∗(t))−1ψ(t)/M(t), 0 ≤ t ≤ T, and

check from (3.3) that X(·) = Xx,π,c(·) a.e. on [0, T ] × Ω.
Remark 6.4. Note that the martingale M(·) is constant, and thus we have

ψ(·) ≡ 0, π(·) ≡ 0 a.e. on the stochastic interval [[τ, T ]]; in particular, Xx,π,c(t, ω) =

B(ω)e

∫ t

τ(ω)
r(u,ω) du

a.e. on [[τ, T ]]. In other words, at the stopping time τ all invest-
ment in the stock market ceases, and all proceeds are invested in the money-market
from then on.

We have proved the following result.
Proposition 6.5. Under Assumption 6.1, for any τ ∈ S we have

Vτ (x) = inf
λ>0

[
J̃(λ; τ) + λx

]
= J̃(Yτ (x); τ) + xYτ (x),(6.12)
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and the supremum in (6.1) is attained by the consumption strategy ĉτ (t) = I1
(Yτ (x)eβt

H(t)
)
1[0,τ)(t) and some portfolio π̂τ (·) that satisfies (6.11). Moreover,

V (x) = sup
τ∈S

Vτ (x) = sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
= sup

τ∈S

[
J̃(Yτ (x); τ) + xYτ (x)

]
.

(6.13)

Example 6.6 (logarithmic utility functions). U1(x) = δ log x, U2(x) = log x for
x > 0 and some δ ∈ [0, 1]. In this case, Assumption 6.1 is satisfied, and we have
I1(y) = δ/y, Ũ1(y) = δ log δ − δ[1 + log y], and I2(y) = 1/y, Ũ2(y) = −1 − log y.
Hence, with

Q(t)
�
=

∫ t

0

θ∗(s) dW (s) +

∫ t

0

(
r(s) +

‖θ(s)‖2

2
− β

)
ds

and with the convention δ log δ ≡ 0 for δ = 0, we have

J̃(λ; τ) = E
[
e−βτ (Q(τ) − (1 + log λ))

]
+ δ · E

∫ τ

0

e−βt
(
Q(t) − (1 + log λ)

)
dt

+δ log δ · E
∫ τ

0

e−βt dt

for any stopping time τ . It develops that Xτ (λ) = Kτ/λ and thus Yτ (x) = Kτ/x,
where

Kτ
�
= E

[
e−βτ + δ

∫ τ

0

e−βt dt
]
.

From Proposition 6.5, the value-function of problem (5.3) is given by

V (x) = sup
τ∈S

E

[
e−βτ

{
log

(
x/Kτ

)
+ Q(τ)

}
+ δ ·

∫ τ

0

e−βt
{

log
(
x/Kτ

)
+ Q(t)

}
dt

]
,

a quantity that is, in general, very difficult to compute. It is not even clear whether the
supremum in this expression is attained (see Example 9.3 in this regard). However,
in the special case β = 0 and δ = 0, the above expression can be reduced significantly
to

V (x) = log x + sup
τ∈S

E

∫ τ

0

[
r(u) +

1

2
‖θ(u)‖2

]
du

and amounts to solving a standard optimal stopping problem. The latter has the
trivial solution τ∗ ≡ T for r(·) ≥ 0.

Remark 6.7. A sufficient condition for Assumption 6.1 is that

I1(y) + I2(y) ≤ k1 + k2y
−α ∀ y ∈ (0,∞)(6.14)

holds for some constants k1 > 0, k2 > 0, and α > 0. Indeed, under (6.14) we have

E

[
sup

0≤s≤T

(
H(s) · Ij(λeβsH(s))

)]
≤ k1E

[
sup

0≤s≤T
(H(s))

]
+ k2λ

−α
E

[
sup

0≤s≤T
(H(s))

1−α
]

< ∞



314 IOANNIS KARATZAS AND HUI WANG

for j = 1, 2, as is easy to check using Hölder’s inequality, Doob’s maximal inequality,
and the boundedness of market coefficients. This is because, for any ρ ∈ R, there
exist positive constants C1, C2 such that

E

[
sup

0≤t≤T

(
H(t)

)ρ]
= E

[
sup

0≤t≤T

(
γ(t)Z0(t)

)ρ] ≤ C1 · E
[

sup
0≤t≤T

(Z0(t))
ρ

]

≤ C1 · E
[

sup
0≤t≤T

(
e
−ρ

∫ t

0
θ∗(s) dW (s)− ρ2

2

∫ t

0
‖θ(s)‖2 ds

)

· sup
0≤t≤T

(
e

ρ(ρ−1)
2

∫ t

0
‖θ(s)‖2 ds

)]

≤ C2 · E
[

sup
0≤t≤T

(
e
−ρ

∫ t

0
θ∗(s) dW (s)− ρ2

2

∫ t

0
‖θ(s)‖2 ds

)]
< ∞.

7. Pure optimal stopping problems. The representation (6.13) for the solu-
tion of the utility maximization problem in section 5 is not entirely satisfactory. It
is not clear how the quantities Yτ (x) are related to each other for different stopping
times τ ∈ S, except in some very special cases. Furthermore, it is not easy to compute
the last supremum in (6.13), or even to decide whether it is attained or not. All these
points are illustrated in Example 6.6 of a logarithmic utility function. In this section,
we shall try to convert the original problem into a family of pure optimal stopping
problems, for which we can obtain a better understanding. To this end, we define, for
every λ ∈ (0,∞), the dual optimization problem

Ṽ (λ)
�
= sup

τ∈S
J̃(λ; τ) = sup

τ∈S
E

[∫ τ

0

e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2

(
λeβτH(τ)

)](7.1)

of pure optimal stopping type, in the notation of (6.5), (4.2), (2.6). To ensure that
the problem of (7.1) is meaningful, we impose the following assumption throughout.

Standing Assumption 7.1. For any λ ∈ (0,∞) we have Ṽ (λ) < ∞, and there exists
some stopping time τ̂λ which is optimal in (7.1), i.e., such that Ṽ (λ) = J̃(λ; τ̂λ).

Here and in what follows, we denote by Ŝλ the set of stopping times that attain
the supremum in (6.5) for every given λ > 0. It follows from (6.4) that we have, in
the notation of (7.1),

V (x) ≤ sup
τ∈S

inf
λ>0

[
J̃(λ; τ) + λx

]
≤ inf

λ>0

[
sup
τ∈S

J̃(λ; τ) + λx

]
= inf

λ>0

[
Ṽ (λ) + λx

]
.

(7.2)

We wish that the inequalities in (7.2) would always hold as equalities. Unfortunately,
it turns out that the second inequality in (7.2) might be strict, depending on the
coefficients of the model and on the initial capital x. We shall see this more clearly
in the following sections.

Remark 7.2. Standing Assumption 7.1 holds if condition (5.4) is satisfied. This is

because the continuous process Y λ(t)
�
=
∫ t
0
e−βsŨ1

(
λeβsH(s)

)
+ e−βtŨ2(λeβtH(t)),

0 ≤ t ≤ T, satisfies in this case E[sup0≤t≤T |Y λ(t)|] < ∞ . Indeed, it is easy to check
that (5.4) implies

max{Ũ1(y), Ũ2(y)} ≤ k1 + k3y
−α ∀ 0 < λ < ∞(7.3)
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with α = δ/(1 − δ), k3 = (1 − δ)(k2δ
δ)1/(1−δ) (cf. KLSX (1991)), and it follows from

Remark 6.7 that Ṽ (λ) ≤ E
[
sup0≤t≤T |Y λ(t)|] ≤ k4 + k5λ

−α ·E[sup0≤t≤T
(
H(t)

)−α]
< ∞. Standard results in the theory of optimal stopping (e.g., Theorem D.12 in
Karatzas and Shreve (1998)) guarantee then the existence of an optimal stopping
time.

8. Analysis of the optimal stopping problem. In this section we shall derive
our main results for the optimization problem of (5.3), by first establishing several
properties of the “dual” value function Ṽ (·) defined in (7.1). It is not a trivial matter
to decide whether the value function V (·) of our “primal” problem (5.3) inherits the
concavity of U(·). Indeed, even the continuity of V (·) is not quite clear a priori.
However, properties of convexity and monotonicity are relatively straightforward for
the dual value function Ṽ (·) of (7.1).

Lemma 8.1. The function Ṽ (·) of (7.1) is strictly convex and strictly decreasing.
In particular, it is continuous and a.e. differentiable.

Proof. For any 0 < λ1 < λ2 < ∞, 0 < s < 1, and λ0
�
= sλ1 + (1 − s)λ2,

we have Ṽ (λ2) = J̃(λ2; τ̂2) < J̃(λ1; τ̂2) ≤ Ṽ (λ1) from Standing Assumption 7.1,
where τ̂i ∈ Ŝλi

, i = 0, 1, 2 are optimal stopping times, and Ṽ (λ0) = J̃(λ0; τ̂0) <
sJ̃(λ1; τ̂0) + (1 − s)J̃(λ2; τ̂0) ≤ sṼ (λ1) + (1 − s)Ṽ (λ2).

It follows from Lemma 8.1 that the right- and left-derivatives

�±Ṽ (λ)
�
= lim

h→0±
1

h
[Ṽ (λ + h) − Ṽ (λ)](8.1)

of the convex function Ṽ (·) exist, and are finite for every λ ∈ (0,∞). Furthermore,
the strict convexity of Ṽ (·) implies

�+Ṽ (λ1) < �−Ṽ (λ2) ≤ �+Ṽ (λ2) ≤ 0 ∀ 0 < λ1 < λ2 < ∞,(8.2)

and �+Ṽ (·) (respectively, �−Ṽ (·)) is right- (respectively, left-) continuous.
Lemma 8.2. For every λ ∈ (0,∞) and any optimal stopping time τ̂λ ∈ Ŝλ, we

have

�−Ṽ (λ) ≤ −Xτ̂λ(λ) ≤ �+Ṽ (λ).(8.3)

Proof. The convexity of Ũj(·), j = 1, 2, gives

Ũ
′
j(y)(x− y) ≤ Ũj(x) − Ũj(y) ≤ Ũ

′
j(x)(x− y) ∀ 0 < x, y < ∞,(8.4)

and for any real number h with |h| < λ we obtain

Ṽ (λ + h) − Ṽ (λ) = Ṽ (λ + h) − J̃(λ; τ̂λ) ≥ J̃(λ + h; τ̂λ) − J̃(λ; τ̂λ)

≥ h · E
[∫ τ̂λ

0

H(t)Ũ
′
1

(
λeβtH(t)

)
dt + H(τ̂λ)Ũ

′
2(λeβτ̂λH(τ̂λ))

]

= −hXτ̂λ(λ).

The last equality follows from (4.3) and the definition (6.6) of Xτ̂ (·). Letting h → 0,
we deduce for arbitrary λ ∈ (0,∞):

�+Ṽ (λ) = lim
h→0+

1

h
[Ṽ (λ + h) − Ṽ (λ)]

≥ −Xτ̂λ(λ) ≥ lim
h→0−

1

h
[Ṽ (λ + h) − Ṽ (λ)]

= �−Ṽ (λ).
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Corollary 8.3. If Ṽ (·) is differentiable at λ > 0, then Ṽ ′(λ) = −Xτ̂λ(λ).
Lemma 8.4. We have limλ↓0 �±Ṽ (λ) = −∞. Moreover, if Assumption 6.1

holds, we also have limλ↑∞�±Ṽ (λ) = 0.
Proof. From the decrease of the function I(·), the monotone convergence theorem,

and I(0+) = ∞, it follows that

lim
λ↓0

Xτ̂λ(λ) ≥ lim
λ↓0

E

[
inf

0≤s≤T

(
H(s) · I2

(
λeβT sup

0≤s≤T
H(s)

))]
= ∞,

and so by Lemma 8.2 and the inequality (8.2) we obtain limλ↓0 �±Ṽ (λ) = −∞. Now
suppose that Assumption 6.1 holds; we have then

0 ≤ lim
λ↑∞

Xτ̂λ(λ)

≤ lim
λ↑∞

E

[
sup

0≤s≤T

(
H(s) · I2

(
λeβsH(s)

))
+

∫ T

0

H(s) · I1
(
λeβsH(s)

)
ds

]
= 0

from the decrease of the functions Ij(·), the dominated convergence theorem, and

Ij(∞) = 0, j = 1, 2. It follows again from Lemma 8.2 and (8.2) that limλ↑∞�±Ṽ (λ) =
0.

We shall define, for each given λ > 0, the subset

Gλ �
=
{
Xτ̂λ(λ)

/
τ̂λ is optimal in (7.1), i.e., τ̂λ ∈ Ŝλ

}
(8.5)

of R
+. It follows from (8.2) and (8.3) that the sets {Gλ}λ>0 satisfy the following

properties:
(i) Gλ is nonempty for every λ > 0,
(ii) Gλ ∩ Gν = ∅, if λ �= ν, and
(iii) for any 0 < ν < λ < ∞ and x ∈ Gλ, y ∈ Gν , we have x < y.

Let us also introduce the set

G �
=

⋃
λ>0

Gλ.(8.6)

We can state now the main result of the paper. This explains, in particular, when
we can expect to find an optimal triple in (5.3) and to have equality in (7.2).

Theorem 8.5. For any x ∈ G, the value V (x) of (5.3) is attainable and we have

V (x) = inf
λ>0

[
Ṽ (λ) + λx

]
.(8.7)

Conversely, for any x ∈ (0,∞) that satisfies (8.7) and for which the value V (x) of
(5.3) is attainable, we have x ∈ G, provided that Assumption 6.1 holds.

Proof. Suppose x ∈ Gν for some ν > 0, and x = Xτ̂ν (ν) for some stopping time
τ̂ν ∈ Ŝν which is optimal in (7.1) with λ = ν, i.e., with

Ṽ (ν) = J̃(ν; τ̂ν) = E

[ ∫ τ̂ν

0

e−βtŨ1

(
νeβtH(t)

)
dt + e−βτ̂ν Ũ2

(
νeβτ̂νH(τ̂ν)

)]
.(8.8)

Then we claim

V (x) = Ṽ (ν) + νx = inf
λ>0

[Ṽ (λ) + λx].(8.9)
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Indeed, by Lemma 8.2, we have −x ∈ [�−Ṽ (ν),�+Ṽ (ν)], so that Ṽ (λ) − Ṽ (ν) ≥
(−x) · (λ− ν), or, equivalently, Ṽ (λ) + λx ≥ Ṽ (ν) + νx ∀λ > 0.

Since x = Xτ̂ν (ν) = E
[
H(τ̂ν)I2(νeβτ̂νH(τ̂ν)) +

∫ τ̂ν
0

H(t)I1
(
νeβtH(t)

)
dt
]
, it fol-

lows from Lemma 6.3 and Lemma 6.2 that there exists a portfolio process π̂(·) with

Xx,π̂,ĉ(τ̂ν) = I2(νeβτ̂νH(τ̂ν)), where ĉ(t)
�
= I1

(
νeβtH(t)

)
1[0,τ)(t). The expected util-

ity J(x; π̂, ĉ, τ̂ν), under the portfolio/consumption strategy (π̂, ĉ) and the stopping
time τ̂ν , is thus

V (x) ≥ J(x; π̂, ĉ, τ̂ν) = E

[∫ τ̂ν

0

e−βtU1

(
I1(νeβtH(t))

)
dt + e−βτ̂νU2(I2(νeβτ̂νH(τ̂ν)))

]

= E

[∫ τ̂ν

0

e−βtŨ1

(
νeβtH(t)

)
+ e−βτ̂ν Ũ2(νeβτ̂νH(τ̂ν))

]

+ ν · E
[
H(τ̂ν)Xx,π̂,ĉ(τ̂ν) +

∫ τ̂ν

0

H(t)ĉ(t) dt

]

= Ṽ (ν) + νx = inf
λ>0

[Ṽ (λ) + λx],

and (8.9) follows then from (7.2). In particular, the triple (π̂, ĉ, τ̂ν) in A(x) is optimal
for the original optimization problem of (5.3).

Conversely, suppose that (8.7) holds for some positive real number x, for which
the value V (x) of (5.3) is attained by some optimal triple (π∗, c∗, τ∗) ∈ A(x). In other
words,

V (x) = inf
λ>0

[ Ṽ (λ) + λx ] = J(x;π∗, c∗, τ∗) ≤ Vτ∗(x)(8.10)

in the notation of (6.1). Suppose also that Assumption 6.1 holds. By Lemma 8.1
the function λ �−→ Ṽ (λ) + λx =: G(λ) is strictly convex, with G(0+) = Ṽ (0+) and
G(∞) = ∞. Thus, either there exists a unique ν > 0 such that

Ṽ (ν) + νx = inf
λ>0

[ Ṽ (λ) + λx ],(8.11)

or else we have Ṽ (0+) ≤ Ṽ (λ) + λx ∀λ > 0. This latter possibility can be ruled
out easily; it cannot hold if Ṽ (0+) = ∞, whereas with Ṽ (0+) < ∞ it leads to
limλ↓0

(−�+Ṽ (λ)
) ≤ x, which is impossible by Lemma 8.4. Therefore, (8.11) holds

for a unique ν > 0 and leads, with (8.10) and Proposition 6.4, to

V (x) = Ṽ (ν) + νx ≥ J̃(ν; τ∗) + νx ≥ inf
λ>0

[J̃(λ; τ∗) + λx] = Vτ∗(x) ≥ V (x).(8.12)

We obtain Ṽ (ν) = J̃(ν; τ∗) as well as J̃(ν; τ∗) + νx = infλ>0 [J̃(λ; τ∗) + λx] from
(8.10), (8.12), or, equivalently, τ∗ ∈ Ŝν and ν = Yτ∗(x). Thus x = Xτ∗(ν) ∈ Gν ,
which concludes the proof.

Corollary 8.6. Under Assumption 6.1, for any x �∈ G ≡ ⋃
λ>0 Gλ, we have the

strict inequality (“duality gap”) V (x) < infλ>0 [Ṽ (λ) + λx].
Corollary 8.7. Under Assumption 6.1, and if Ṽ (·) is differentiable everywhere,

the value V (x) of (5.3) is attainable and (8.7) holds for every x ∈ (0,∞).
Proof. Since every differentiable convex function is continuously differentiable (cf.

Rockafellar (1970), Corollary 25.5.1), Ṽ
′
(·) is continuous. By Lemma 8.4, the range
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of Ṽ ′(·) is (−∞, 0). It follows from Corollary 8.3 that G = (0,∞), and Theorem 8.5
applies.

Corollary 8.8. Under Assumption 6.1, suppose that for any λ ∈ (0,∞) there

exist two sequences {λ(±)
n } with λ

(+)
n ↓ λ, λ

(−)
n ↑ λ, as well as stopping times τ̂ ∈ Ŝλ,

τ̂
(±)
n ∈ Ŝ

λ
(±)
n

such that τ̂
(±)
n → τ̂ a.s.; then the value V (x) of (5.3) is attainable and

(8.7) holds for every x > 0.
Proof. By Corollary 8.7, we need only show that Ṽ (·) is differentiable everywhere.

From (8.4) and (4.3) we have

Ṽ (λ(±)
n ) − Ṽ (λ) ≤ J̃(λ(±)

n ; τ̂ (±)
n ) − J̃(λ; τ̂ (±)

n )

≤ −(λ(±)
n − λ) · E

[∫ τ̂±
n

0

H(t)I1
(
λ(±)
n eβtH(t)

)
dt + H(τ̂ (±)

n )I2(λ(±)
n eβτ̂

(±)
n H(τ̂ (±)

n ))

]

= −(λ(±)
n − λ) · X

τ̂
(±)
n

(λ(±)
n ),

which implies

�+Ṽ (λ) = lim
λ

(+)
n ↓λ

Ṽ (λ
(+)
n ) − Ṽ (λ)

λ
(+)
n − λ

≤ lim sup
λ

(+)
n ↓λ

(−X
τ̂
(+)
n

(λ(+)
n )

)
= −Xτ̂ (λ),

�−Ṽ (λ) = lim
λ

(−)
n ↑λ

Ṽ (λ
(−)
n ) − Ṽ (λ)

λ
(−)
n − λ

≥ lim inf
λ

(−)
n ↓λ

(−X
τ̂
(−)
n

(λ(−)
n )

)
= −Xτ̂ (λ)

by the dominated convergence theorem. From (8.2), Ṽ
′
(λ) = �+Ṽ (λ) = �−Ṽ (λ) =

−Xτ̂ (λ).
Corollaries 8.7 and 8.8 provide simple sufficient (but not necessary) conditions,

under which there is no “duality gap” in (7.2), i.e., its leftmost and rightmost members
are equal. The following proposition will characterize this kind of interchangeability
of “inf” and “sup” operations from another point of view, namely, the concavity of
the “primal” value function V (·).

Proposition 8.9. Under Assumption 6.1, the following two statements are equiv-
alent:

(A) V (·) is concave on (0,+∞),
(B) V (x) = infλ>0 [Ṽ (λ) + λx] holds for every x ∈ (0,∞).
Proof of (B) =⇒ (A). Under condition (B), the number −V (x) is the pointwise

supremum of the affine functions g(λ) = −λx − µ such that (x, µ) belongs to the
epigraph of Ṽ (·). Hence −V (·) is a convex function (Rockafellar (1970), Theorem
12.1), or, equivalently, V (·) is concave.

Proof of (A) =⇒ (B). By Lemma 8.4 and (8.2), it is sufficient to show that for
any (ν, x) ∈ (0,∞) × (0,∞) such that −�+Ṽ (ν) ≤ x ≤ −�−Ṽ (ν), we have V (x) =
Ṽ (ν) + νx.

Let x0
�
= −�+Ṽ (ν), x1

�
= −�−Ṽ (ν). Since Ṽ (·) is strictly convex and differ-

entiable except on a countable set, we can find a sequence of positive real numbers
{λn}, such that λn ↓ ν as n → ∞, and Ṽ (·) is differentiable at each λn. Define

yn
�
= −Ṽ

′
(λn). It follows from the right-continuity of �+Ṽ (·) that −yn = �+Ṽ (λn) ↓

�+Ṽ (ν) = −x0. However, Theorem 8.5 and Corollary 8.3 assert that

V (yn) = inf
λ>0

[Ṽ (λ) + λyn] = Ṽ (λn) + λnyn.(8.13)
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Letting n → ∞, we obtain

V (x0) = Ṽ (ν) + νx0,(8.14)

thanks to the continuity of V (·) (which is concave by assumption (A)) and of Ṽ (·)
(which is convex by Lemma 8.1). Furthermore, we claim that �−V (x0) ≤ ν. Indeed,
it follows from (8.13) and (8.14) that

V (yn) − V (x0) = Ṽ (λn) + λnyn − Ṽ (ν) − νx0 ≥ �+Ṽ (ν)(λn − ν) + λnyn − νx0

= λn(yn − x0),

and hence

�−V (x0) = lim
n→∞

V (yn) − V (x0)

yn − x0
≤ lim

n→∞λn = ν.(8.15)

Similarly, we obtain

V (x1) = Ṽ (ν) + νx1 and �+V (x1) ≥ ν.(8.16)

However, �−V (x0) ≥ �+V (x1) holds from the concavity of V (·). It follows from
(8.15) and (8.16) that �−V (x0) = ν = �+V (x1), or equivalently, �−V (x) =
�+V (x) = V

′
(x) = ν ∀ x0 ≤ x ≤ x1. It is clear now that V (x) = Ṽ (ν) + νx =

infλ>0 [Ṽ (λ) + λx] holds for any x0 ≤ x ≤ x1.

9. Examples. Using the technique developed in the preceding section, we study
here several examples, including one which shows that optimal strategies need not
always exist (see Example 9.3). The first of these examples can also be treated using
the methods of section 6, but for the second and third examples the methodology
of section 8 is indispensable. The reader of this section should not fail to notice the
rarity of a setting where utility functions of power-type are much easier to handle
than logarithmic ones.

Example 9.1 (utility functions of power-type). Uj(x) = xα/α, where 0 < α <
1, j = 1, 2. In this case, condition (5.4) is satisfied and we have Ij(y) = y−1/(1−α)

and Ũj(y) = y−γ/γ with γ = α/(1 − α), j = 1, 2, so that Assumption 6.1 is also
satisfied (see Remark 6.7) and implies K < ∞ in (9.2) below. We obtain easily

Ṽ (λ) = sup
τ∈S

E

[∫ τ

0

e−βtŨ1

(
λeβtH(t)

)
dt + e−βτ Ũ2(λeβτH(τ))

]
=

K

γ
λ−γ ,

(9.1)

with

K
�
= sup

τ∈S
Kτ := sup

τ∈S
E

[∫ τ

0

e−(1+γ)βt
(
H(t)

)−γ
dt + e−(1+γ)βτ

(
H(τ)

)−γ]
.(9.2)

Clearly Ṽ (·) is differentiable everywhere, and it follows from Corollary 8.7 that V (x) =
infλ>0 [Ṽ (λ)+λx] = K1−α xα/α. In other words, with utility functions of power-type,
the original optimization problem is reduced to the pure optimal stopping problem
(9.2). We can arrive at this conclusion also using Proposition 6.5, since we have
Xτ (λ) = Kτλ

−1/(1−α), Yτ (x) = (Kτ/x)1−α, J̃(λ; τ) = Kτ

γ λ−γ , and thus V (x) =
xα

α K1−α from (6.12), (6.13).
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The optimal stopping time τ̂ for the original problem is also optimal for the prob-
lem of (9.2); the corresponding optimal consumption ĉ(·) and wealth-level Xx,π̂,ĉ(τ̂) ≡
ξx(τ̂) are given as

ĉ(t) =
x

K
e−

βt
1−α

(
H(t)

)− 1
1−α , 0 ≤ t ≤ τ̂ , ξx(τ̂) =

x

K
e−

βτ̂
1−α (H(τ̂))

− 1
1−α

by (6.11), and the optimal portfolio process π̂(·) can then be obtained from Lemma
6.3.

It is straightforward to check that τ̂ ≡ 0, K = 1 if

β ≥ γ

[
r(t)

1 + γ
+

1

2
‖θ(t)‖2

]
∀ 0 ≤ t ≤ T

holds a.s., and that τ̂ ≡ T, K = KT if

β ≤ γ

[
r(t)

1 + γ
+

1

2
‖θ(t)‖2

]
∀ 0 ≤ t ≤ T

holds a.s. This observation provides a complete solution to the optimal stopping
problem of (9.2) in the case of constant interest-rate r(t) ≡ r ∈ R and relative risk

θ(t) ≡ θ ∈ R
m; in particular, if β = γ

(
r

1+γ + ‖θ‖2

2

)
, every stopping time τ ∈ S0,T is

optimal in (9.2) and K = Kτ = 1.
Example 9.2 (logarithmic utility function from terminal wealth only, with β > 0).

U2(x) = log x for x > 0 and U1(·) ≡ 0. This is the setting of Example 6.6 with δ = 0;
Assumption 6.1 is now satisfied trivially.

(i) b(·) ≡ r(·)1m. Since we have θ(·) ≡ 0 in this case, it follows that J̃(λ; τ) =
−E[e−βτ (1 + log λ + A(τ))], where

A(t, ω)
�
= βt−

∫ t

0

r(s, ω) d s ∀ 0 ≤ t ≤ T.

We claim that

if dA(t,ω)
dt − βA(t, ω) is strictly increasing for almost every ω ∈ Ω

(e.g., if r(t) ≡ r > β), then (8.7) holds.

In order to check this, let τ̂λ
�
= inf {t ≥ 0 / dA(t)

dt − βA(t) ≥ β(1 + log λ)} ∧ T.

It is not difficult to see that τ̂λ ∈ Ŝλ, since −e−βτ̂λ(ω)(1 + log λ + A(τ̂λ(ω), ω)) is
then the minimum of the path e−βt(1 + log λ + A(t, ω)), 0 ≤ t ≤ T . Moreover, the
condition of Corollary 8.8 is satisfied, and τ̂λn → τ̂λ if λn → λ. It follows that

V (x) = inf
λ>0

[J̃(λ; τ̂λ) + λx].

The optimal stopping time for the original optimization problem is τ̂ ≡ τ̂λ̂, where

λ̂ > 0 attains the infimum in the above expression. The corresponding optimal level
of wealth Xx,π̂,0(τ̂) ≡ ξx(τ̂) is given by (6.11) as

ξx(τ̂) =
x

E (e−βτ̂ )
e

∫ τ̂

0
r(s) ds−βτ̂

,

and the optimal portfolio process π̂(·) can be derived from Lemma 6.3.
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(ii) A general result for the logarithmic utility function (from terminal wealth
only) seems difficult to obtain, as we saw already in Example 6.6. Nevertheless, using
the theory of section 8, we shall establish the following property:

(9.3)

{
V (x) is attainable and (8.7) holds for every x > 0, if there exists a
unique optimal stopping time solving problem (7.1) for every λ > 0

}
.

The rest of this paragraph is dedicated to the proof of statement (9.3). Consider the
continuous process

Y λ(t)
�
= e−βtŨ(λeβtH(t)) = −e−βt(1 + log λ + βt + log H(t))

and its Snell envelope, given as a right continuous with limits from the left (RCLL)
modification of the supermartingale

Zλ(t)
�
= esssupτ∈St,T

E[Y λ(τ)|Ft], 0 ≤ t ≤ T,

with Zλ(0) = supτ∈S0,T
EY λ(τ) = Ṽ (λ). We claim that Zλ(·) is actually con-

tinuous. Indeed, since the random variable sup0≤t≤T Y λ(t) is integrable by Re-

mark 7.2, the Snell envelope Zλ(·) admits the Doob–Meyer decomposition Zλ(·) =
Zλ(0) + Mλ(·) − Aλ(·) (Karatzas and Shreve (1998), Theorem D.13), where Mλ(·)
is an RCLL martingale and Aλ(·) is continuous and nondecreasing. But any RCLL
martingale of the Brownian filtration is continuous (Karatzas and Shreve (1991),
Problem 3.4.16); hence Mλ(·) is continuous, and thus so is Zλ(·). The stopping time

τ∗
λ

�
= inf

{
t ∈ [0, T )

/
Zλ(t) = Y λ(t)

} ∧ T is the smallest optimal stopping time in

Ŝλ, whereas the stopping time ρ∗λ
�
= inf

{
t ∈ [0, T )

/
Aλ(t) > 0

} ∧ T is the largest

optimal stopping time in Ŝλ (Karatzas and Shreve (1998), Theorems D.12 and D.9; El
Karoui (1981)). In particular, the uniqueness property (9.3) amounts to the statement
P[τ∗

λ = ρ∗λ] = 1 ∀ 0 < λ < ∞.
Moreover, λ �→ τ∗

λ is increasing ; that is, for any λ ≥ ν we have τ∗
λ ≥ τ∗

ν a.s. To
see this, observe that Y λ(t) − Y ν(t) = −e−βt log(λ/ν) and obtain

Zλ(t) − Zν(t) = esssupτ∈St,T
E[Y λ(τ)|Ft] − esssupτ∈St,T

E

[
Y λ(τ) + e−βτ log

(
λ

ν

) ∣∣∣∣Ft
]

≥ esssupτ∈St,T
E[Y λ(τ)|Ft] − esssupτ∈St,T

E[Y λ(τ)|Ft] − e−βt log

(
λ

ν

)
= Y λ(t) − Y ν(t)

a.s. for any given 0 ≤ t ≤ T . By the continuity of Z(·) and Y (·), it follows that

P
[
Zλ(t) − Y λ(t) ≥ Zν(t) − Y ν(t) ∀ 0 ≤ t ≤ T

]
= 1,

which implies that τ∗
λ ≥ τ∗

ν a.s., since Z(·) always dominates Y (·). It is not difficult

to see that τ±
λ

�
= limn→∞ τ∗

λ± 1
n

are stopping times, thanks to the continuity of the

filtration F. Moreover, they both belong to Ŝλ, which is an easy exercise on the
dominated convergence theorem (we omit the details).

Now we can prove our assertion (9.3). Clearly it must hold that τ∗
λ = τ+

λ = τ−
λ

by uniqueness of optimal stopping time. It follows from Corollary 8.8 that V (x) is
attainable and (8.7) holds for every x > 0.



322 IOANNIS KARATZAS AND HUI WANG

Example 9.3 (a case where no optimal strategy exists). We present now an
example which shows that optimal strategies need not always exist for every initial
capital x ∈ (0,∞).

Consider the logarithmic utility functions as in Example 6.6 with δ = 0, i.e.,
U1(·) ≡ 0 and U2(x) = log x, discount factor β = 1, and model parameters m =
1, r(·) ≡ 0, b(·) ≡ 0, σ(·) ≡ 1 in (2.1), (2.2). In this case we may take c(·) ≡ 0
since there is no utility from consumption, and for a given initial capital x > 0 the
wealth-process Xx,π(·) ≡ Xx,π,0(·) corresponding to a portfolio π(·) satisfies

dXx,π(t) = Xx,π(t)π(t) dW (t), Xx,π(0) = x.(9.4)

It is not difficult to check that

Ṽ (λ) = sup
τ∈S

J̃(λ; τ) = sup
τ∈S

E
[−e−τ (1 + log λ + τ)

]
= max

0≤t≤T
F (λ; t),(9.5)

where F (λ; t)
�
= −e−t(1 + log λ + t), λ > 0, t > 0. Note that the function t �→

F (λ; t) attains its maximum on the interval [0, T ] at one of its endpoints; that is,
max0≤t≤T F (λ; t) = max{F (λ; 0), F (λ;T )}, since et dFdt (λ; t) = log λ + t is increasing.
It follows then from (9.5) that

Ṽ (λ) =

{ −(1 + log λ), 0 < λ ≤ λ∗(T )
−e−T (1 + log λ + T ), λ∗(T ) ≤ λ < ∞

}
,(9.6)

where λ∗(s)
�
= exp

{(
s/(es − 1)

)− 1
} ∈ (0, 1) is determined by the equation

1 + log λ∗(s) = e−s(1 + log λ∗(s) + s).(9.7)

Clearly, Ṽ (·) is not differentiable at λ = λ∗(T ). Moreover, it is easy to verify that
Gλ = {1/λ} for 0 < λ < λ∗(T ) and that Gλ =

{
e−T /λ

}
for λ > λ∗(T ), and thus

G =
⋃
λ>0

Gλ =
(
0, x0(T )

] ∪ [
x1(T ),∞)

(9.8)

with x0(s)
�
= e−s

λ∗(s) ∈ (0, 1) and x1(s)
�
= 1

λ∗(s) ∈ (1,∞); we omit the details of these

computations. It should be noted that x1(·) is increasing with x1(0+) = 1, x1(∞) = e,
whereas x0(·) is decreasing with x0(0+) = 1, x0(∞) = 0.

Now with V0(x)
�
= e−T log x and V1(x)

�
= log x, let us consider the concave

function

G(x)
�
= inf

λ>0
[Ṽ (λ) + λx]

=




V0(x), 0 < x ≤ x0(T )

V0(x0(T )) x1(T )−x
x1(T )−x0(T ) + V1(x1(T )) x−x0(T )

x1(T )−x0(T ) , x0(T ) < x < x1(T )

V1(x), x1(T ) ≤ x < ∞




(see Remark 9.4 for discussion). We have V (x) = G(x) for x ∈ G from Theorem 8.5,
or

V (x) =

{
V0(x), 0 < x ≤ x0(T )
V1(x), x1(T ) ≤ x < ∞

}
.(9.9)
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In particular, the optimal strategy is to keep all the wealth in the money-market (i.e.,
π(·) ≡ 0) and to wait until the terminal time T , if the initial capital x is in (0, x0(T )],
whereas the optimal strategy for x ≥ x1(T ) is to stop immediately.

But how about an initial capital x ∈ (x0(T ), x1(T ) )? From Theorem 8.5 and
Proposition 8.9, we know that either V (x) < G(x) for some x ∈ (x0(T ), x1(T ) )
(which will give us a nonconcave value function V (·)), or else V (x) ≡ G(x) ∀x ∈
(x0(T ), x1(T ) ) (in which case no optimal strategy exists).

We claim that the latter is the case. In other words, V (x) ≡ G(x) ∀x ∈ R+,
but no optimal strategy exists for x ∈ (x0(T ), x1(T ) ). Actually, for every x ∈
(x0(T ), x1(T ) ), a maximizing sequence of strategy pairs {(πn, τn)}∞n=1 can be con-
structed so that J(x;πn, τn) → G(x) as n → ∞; this proves, in particular, that
V (·) ≡ G(·) on

(
x0(T ), x1(T )

)
. Indeed, consider the wealth-process dXx,n(t) =

nXx,n(t) dW (t), Xx,n(0) = x, and let

Tn0
�
= inf

{
t ≥ 0

/
Xx,n(t) ≤ x0(T − t)

} ∧ T,(9.10)

Tn1
�
= inf

{
t ≥ 0

/
Xx,n(t) ≥ x1(T − t)

} ∧ T.(9.11)

Recall x0(0+) = x1(0+) = 1, so that Tn0 ∧Tn1 < T holds a.s. We define the portfolio/
stopping time pair (πn, τn) by

πn(t)
�
= n · 1{t<Tn

1 ∧Tn
0 } and τn

�
= Tn1 · 1{Tn

1 <T
n
0 } + T · 1{Tn

1 ≥Tn
0 }.(9.12)

This means if the wealth reaches the curve x1(T−·) before reaching the curve x0(T−·),
stop immediately when this happens; if the wealth reaches the curve x0(T − ·) before
reaching the curve x1(T − ·), then put all the money in the bank account and wait
until the terminal time T ; and up until the first time that one of these curves is
reached, keep an amount of n dollars invested in stock. Clearly,

Xx,πn(τn) = x0(T − Tn0 ) · 1{Tn
0 <T

n
1 } + x1(T − Tn1 ) · 1{Tn

1 <T
n
0 }.(9.13)

Moreover, since πn(·) is bounded, the wealth process Xx,πn(·) is a martingale, and
the optional sampling theorem gives

x = E [Xx,πn(τn)] .(9.14)

Because Tn0 = inf
{
t ≥ 0

/
W (t) ≤ 1

2nt + 1
n log

(x0(T−t)
x

)} ∧ T −→ 0 a.s. as n → ∞,
it follows from (9.13) and (9.14) that x0(T )pn + x1(T )(1 − pn) −→ x as n → ∞,

where pn
�
= P(Tn0 < Tn1 ) = 1 − P(Tn1 < Tn0 ), or, equivalently,

pn → x1(T ) − x

x1(T ) − x0(T )
as n → ∞.(9.15)

On the other hand, the expected discounted utility corresponding to (πn, τn) of
(9.12) is

J(x;πn, τn) = E
[
e−T log (x0(T − Tn0 )) · 1{Tn

0 <T
n
1 } + log

(
e−T

n
1 x1(T −Tn1 )

) · 1{Tn
1 <T

n
0 }
]
.

We conclude the proof by noting from (9.15) and the dominated convergence theorem,
that

lim
n→∞J(x;πn, τn) = e−T log x0(T ) · x1(T ) − x

x1(T ) − x0(T )
+log x1(T ) · x− x0(T )

x1(T ) − x0(T )
= G(x).
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Remark 9.4. The tangent to the graph of V0(·) at x = x0
�
= x0(T ) and the

tangent to the graph of V1(·) at x = x1
�
= x1(T ) coincide. Indeed, V ′

1(x) = 1
x so that

the tangent f1(·) to the graph of V1(·), at the point x = x1, is given by

f1(x) =
x− x1

x1
+ f1(x1) =

(
x

x1
− 1

)
+ log x1 = λ∗(T )x− (1 + log λ∗(T )).

On the other hand, V ′
0(x) = 1

xe
−T so that the tangent f0(·) to the graph of V0(·), at

the point x = x0, is given by

f0(x) =
x− x0

x0
e−T + f0(x0) = e−T

(
xλ∗(T )eT − 1

)
+ e−T log x0

= λ∗(T )x− e−T (1 + log λ∗(T ) + T ).

Thanks to (9.7), these two expressions are the same.

Appendix A. In this section we provide an example which illustrates briefly, in
a Markovian setting and with logarithmic utility from wealth (we set c(·) ≡ 0 and
write Xx,π(·) ≡ Xx,π,0(·) throughout), how the optimization problem of (5.3) can be
cast in the form of a free-boundary problem for a suitable HJB equation, which can
then be solved explicitly.

In order to obtain such an explicit solution, we place ourselves on an infinite
time-horizon so that all stopping times τ ∈ S0,∞ are admissible, and we denote the
corresponding value function by

V∞(x) = sup
(π,τ)∈A(x)

E
[
e−βτ log Xx,π(τ) · 1{τ<∞}

]
(A.1)

with β > 0, for a given initial capital x > 0 in the notation of (9.4). Furthermore, we
assume that the coefficients of the model r(·) ≡ r > 0, b(·) ≡ b, σ(·) ≡ σ > 0 are all
constant, and we impose the assumption b �= r1m, or, equivalently, θ(·) ≡ θ �= 0. For
the measure-theoretic subtleties associated with working on an infinite time-horizon,
we refer the reader to section 1.7 in Karatzas and Shreve (1998).

Consider the differential operator

Lu (x)
�
= −βu(x) + rxu′(x) + max

π∈Rm

(
xu′(x)π∗σθ +

1

2
x2u′′(x) ‖ π∗σ ‖2

)
(A.2)

= −βu(x) + rxu′(x) − (u′(x))2Θ2

2u′′(x)
,

acting on functions u : (0,∞) → R which are twice continuously differentiable with

u′′(·) < 0; here Θ
�
= ‖ (σ∗)−1θ ‖= ‖ (σσ∗)−1(b − r1m) ‖> 0. By analogy with

section 2.7 in Karatzas and Shreve (1998), we cast the original optimization problem
of (A.1) as a variational inequality, relying on the familar “principle of smooth–fit.”

Variational Inequality A.1. Find a number b ∈ (1,∞) and an increasing
function g(·) in the space C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞) \ {b}), such that

Lg (x) = 0 , 0 < x < b,(A.3)

Lg (x) < 0 , x > b,(A.4)

g(x) > log x , 0 < x < b,(A.5)

g(x) = log x , x ≥ b,(A.6)

g(x) > 0 , x > 0,(A.7)

g′′(x) < 0 , x ∈ (0,∞) \ {b}.(A.8)
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Theorem A.2. Suppose that the pair (b, g(·)) solves the Variational Inequality
A.1, that the ratio |g′(x)/(xg′′(x))| is bounded away from both zero and infinity on
(0,∞), and that the stochastic differential equation

dX̂(t) = X̂(t)

[
r dt− g′(X̂(t))

X̂(t)g′′(X̂(t))
θ∗ dW0(t)

]
, X̂(0) = x > 0,(A.9)

has a pathwise unique, strictly positive strong solution X̂(·). In terms of this process,
define

π̂(·) �
= −(σ∗)−1

θ
g′(ξ)

ξg′′(ξ)

∣∣∣∣
ξ=X̂(·)

, τ̂
�
= inf

{
t ≥ 0

/
X̂(t) ≥ b

}
.(A.10)

Then the function g(·) coincides with the optimal expected utility V∞(·) of (A.1), the
pair

(
π̂(·), τ̂) attains the supremum in (A.1), and we have X̂x,π̂(·) ≡ X̂(·).

Proof. Fix x ∈ (0,∞). For any available portfolio process π(·), an application of

Itô’s rule to Gx,π(t)
�
= e−βtg(Xx,π(t)), 0 ≤ t < ∞, yields, in conjunction with (3.1),

(A.3), and (A.4),

e−βtg(Xx,π(t)) − g(x) −
∫ t

0

e−βsπ∗σ · ξg′(ξ)
∣∣
ξ=Xx,π(s)

dW (s)(A.11)

=

∫ t

0

e−βs
(

(π∗σθ + r) · ξg′(ξ) +
1

2
g′′(ξ)ξ2 ‖ π∗σ ‖2 −βg(ξ)

)∣∣∣∣
ξ=Xx,π(s)

ds

≤
∫ t

0

e−βsLg(Xx,π(s)) ds ≤ 0.

It follows that the process Gx,π(t) = e−βtg(Xx,π(t)), 0 ≤ t < ∞ is a local super-
martingale under P, hence also a true supermartingale because it is positive. In par-

ticular, Gx,π(∞)
�
= lim supt→∞ Gx,π(t) ≥ 0 exists a.s., and {Gx,π(t), 0 ≤ t ≤ ∞} is

a P-supermartingale. Thus

E[e−βτ log Xx,π(τ) · 1{τ<∞}] ≤ E[e−βτg
(
Xx,π(τ)

) · 1{τ<∞}](A.12)

≤ E[Gx,π(τ))] ≤ g(x)

holds for any stopping time τ ∈ S0,∞, by the optional sampling theorem and (A.5)–
(A.6); in other words, V∞(x) ≤ g(x). We complete the proof upon noticing that,
thanks to (A.3) and (A.6), all the inequalities in (A.11) and (A.12) hold as equalities
for the choice

π̂(t)
�
= − g′(X̂(t))

X̂(t)g′′(X̂(t))
(σ∗)−1θ, τ̂b

�
= inf

{
t ≥ 0

/
X̂(t) ≥ b

}
,(A.13)

since we have 0 < g(X̂(τ̂b)) ≤ log b and e−βτ̂b g(X̂(τ̂b)) = 0 on the event
{τ̂b = ∞}.

We have now to construct the solution of Variational Inequality A.1 and to verify
the properties for (A.9) assumed in Theorem A.2.

Proposition A.3. Let α be the unique solution of the quadratic equation

α2 −
(

1 +
Θ2

2r
+

β

r

)
α +

β

r
= 0(A.14)
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in the interval (0, 1), set b
�
= e1/α, and consider the function

g(x)
�
=

{
xα
/
eα, 0 ≤ x < b

log x, b ≤ x < ∞
}

.(A.15)

Then the pair (b, g(·)) solves Variational Inequality A.1, and the stochastic differential
equation (A.9) has a pathwise unique, strictly positive strong solution X̂(·).

Proof. Note that the function

F (u)
�
= u2 −

(
1 +

Θ2

2 + β

r

)
u +

β

r
, 0 ≤ u < ∞,(A.16)

is convex with F (0) = β/r > 0, F (1) = −Θ2/2r < 0. Thus F (·) has exactly one
root in the interval (0, 1). It is clear now that (A.6)–(A.8) are satisfied since b > 1.
Furthermore, notice from (A.15) that

g′(x) =

{
xα−1/e, 0 < x < b

1/x, b < x < ∞
}

(A.17)

is continuous across x = b (principle of smooth-fit), which implies that the func-
tion g(·) belongs to the space of functions C([0,∞)) ∩ C1((0,∞)) ∩ C2((0,∞) \ {b}).
It is fairly straightforward to check that (A.3) holds for 0 < x < b, and that
|g′(x)/(xg′′(x))| is bounded away from both zero and infinity on (0,∞) (cf. (A.19)
below). As for (A.4), we need to prove that −β log x + r + Θ2/2 < 0 ∀x > b. Since

log b = 1/α and β > 0, it is sufficient to verify α < α∗ �
= β/(r + Θ2

2 ). Indeed

F (α∗) = α∗
(
α∗ −

Θ2

2 + β

r
− 1

)
+

β

r

< α∗
(

β

r
−

Θ2

2 + β

r
− 1

)
+

β

r
= α∗

(
−

Θ2

2 + r

r

)
+

β

r
= 0,

which yields α < α∗. Finally, (A.5) follows readily from

g′(x) − (log x)′ =
1

x

(
1

e
xα − 1

)
<

1

x

(
1

e
bα − 1

)
= 0, 0 < x < b.

It is now clear that the pair (b, g(·)) solves Variational Inequality A.1.
For the function g(·) of (A.15), the optimal wealth-process X̂(·) of Theorem A.2

satisfies the stochastic differential equation (A.9), namely,

dX̂(t) = X̂(t)
[
r dt + ν

(
X̂(t)

)
θ∗ dW0(t)

]
, X̂(0) = x > 0,(A.18)

where

ν(x)
�
= − g′(x)

xg′′(x)
=

{
1
/

(1 − α), 0 < x < b
1, b ≤ x < ∞

}
.(A.19)

Equivalently, the process Ŷ (·) �
= log X̂(·) solves the stochastic differential equation

dŶ (t) =

[
r − ||θ||2

2
· ν2

(
eŶ (t)

)]
dt + ν

(
eŶ (t)

)
θ∗ dW0(t), Ŷ (0) = log x,(A.20)
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which has a pathwise unique, strong solution (cf. Nakao (1972)). This, in turn,

means that (A.15) for X̂(·) ≡ eŶ (·) also has a strictly positive, pathwise unique
strong solution, as postulated in Theorem A.2.

Remark A.4. For x ≥ b, we have τ̂ ≡ 0; on the other hand, for 0 < x < b, we can

write the stopping time τ̂
�
= inf

{
t ≥ 0

/
X̂(t) ≥ x

}
= inf

{
t ≥ 0

/
Ŷ (t) ≥ log b

}
in

the form of the time

τ̂ = inf

{
t ≥ 0

/(
r +

||θ||2
2

1 − 2α

(1 − α)2

)
t +

θ∗

1 − α
W (t) ≥ log

(
b

x

)}

of first-passage to a positive level by a Brownian motion with drift. Clearly, we have
P[τ̂ < ∞] = 1 if and only if (1 − α)2 + ||θ||2(1 − 2α)/2r ≥ 0, and in light of (A.14)
this last condition is equivalent to(

β − r − ||θ||2 +
Θ2

2

)
· α ≥

(
β − r − ||θ||2

2

)
.(A.21)

In particular, if σ = Im, the condition (A.21) amounts to

β ≤ r + ||b− r1m||2.(A.22)

Remark A.5. From (A.13), the optimal portfolio process is actually given as

π̂(t) ≡ (σ∗)−1

1 − α
θ =

(σσ∗)−1

1 − α
[b− r1m], 0 ≤ t < τ̂ ;(A.23)

this means that the optimal strategy is to invest a fixed proportion of total wealth in
every stock, given by (A.3), up to the optimal stopping time τ̂ .

Remark A.6. The assumption θ �= 0 is crucial for solving Variational Inequality
A.1. When θ = 0, we can have situations, as in Example 9.3, for which no optimal
strategy exists. Actually, for θ = 0 and β > r, it is easy to show that Variational
Inequality A.1 has no solution (see Example 9.2 for discussion of the case θ = 0, β <
r).

Appendix B. As the referee points out, it would be very interesting to study
optimization over a consumption stream that extends beyond the stopping time τ .
Consider, for instance, the situation of an investor who remains in the stock-market
up until a “retirement” time τ of his choice. At that point he consumes a lump-
sum amount ξ ≥ 0 of his choice (say, to buy a new house, or to finance some other
“retirement-related” activity); and from then on he keeps his holdings in the money-
market, making withdrawals for consumption at some rate, up until t = T .

We can capture such a situation by changing the wealth-equation of (3.1) to read

dX(t) = r(t)X(t)dt + X(t)π∗(t)σ(t)dW0(t) − dC(t), X(0) = x > 0.(B.1)

Here

C(t) =

∫ t

0

c(u) du + ξ · 1[τ,T ](t), 0 ≤ t ≤ T,(B.2)

is the “cumulative consumption up to time t.” This process consists of a stopping
time τ ∈ S, a consumption-rate process c(·) as before, and an Fτ -measurable random
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variable ξ : Ω → [0,∞) representing lump-sum consumption at time τ . We say that
a portfolio/cumulative-consumption process pair (π,C) is “available” to an investor
with initial capital x, if the portfolio process π(·) and the wealth-process X(·) ≡
Xx,π,C(·) of (B.1) satisfy

π(t) = 0, τ ≤ t ≤ T,(B.3)

Xx,π,C(t) > 0 ∀ 0 ≤ t < T, and Xx,π,C(T ) ≥ 0 ,(B.4)

a.s. For any such pair (π,C), the investor’s expected discounted utility is given as

J∗(x;π,C)
�
= E

[
α

∫ τ

0

e−βtU1

(
c(t)

)
dt + e−βτU2(ξ) + γ

∫ T

τ

e−βtU1

(
c(t)

)
dt

]
(B.5)

for some given constants α ≥ 0, γ ≥ 0 and utility functions U1(·), U2(·). With
α = 1, γ = 0, we recover the problem of section 5. With α = 0, γ = 1, the expression
of (B.5) tries to capture the situation of an investor who consumes nothing up until
retirement, consumes a lump-sum amount ξ at that time, and afterwards keeps all
holdings in the money-market while consuming at some rate c(·). The objective now
is to maximize the expression of (B.5) over the class A∗(x) of pairs (π,C) that satisfy
the analogue

E

[
α

∫ τ

0

e−βtU−
1

(
c(t)

)
dt + e−βτU−

2 (ξ) + γ

∫ T

τ

e−βtU−
1

(
c(t)

)
dt

]
< ∞(B.6)

of (5.2), and to see whether the value-function

V ∗(x)
�
= sup

(π,C)∈A∗(x)

J∗(x;π,C), x ∈ (0,∞),(B.7)

is attained by some optimal (π̂, Ĉ) ∈ A∗(x). We have not yet been able to obtain a
satisfactory answer to these questions and would like to suggest their resolution as an
interesting open problem.
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