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Abstract

We consider a variant of the two node tandem Jackson network
where the upstream server reduces its service rate when the down-
stream queue exceeds some prespecified threshold. The rare event
of interest is the overflow of the downstream queue. Based on a
game/subsolution approach, we rigorously identify the exponential de-
cay rate of the rare event probabilities and construct asymptotically
optimal importance sampling schemes.

1 Introduction

Consider a two-node tandem network where the downstream server is pro-
tected in such a way that the upstream server will drop its service rate when-
ever the downstream queue size exceeds a prespecified slow-down threshold.
This type of queueing model was introduced in [12], and has potential ap-
plications in manufacturing and Ethernet design.

The present paper is interested in the overflow probability of the down-
stream queue during a busy cycle, assuming the system is stable. Little
is known about the large deviation properties of this rare event and how
to design efficient importance sampling schemes for simulation. To our best
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knowledge, the only existing work is [10], where the authors proposed heuris-
tically the exponential decay rate of the overflow probability and the most
likely path leading to overflow. [10] also suggested an importance sampling
scheme based on the most likely path, which turned out to be efficient only
in certain cases.

The goal of the current paper is to provide a construction of asymptoti-
cally optimal importance sampling schemes for general parameter values and
also a rigorous analysis of the variational problem for the large deviations
rate. The analysis relies on a recently developed game/subsolution approach
toward importance sampling [6, 4], and utilizes the techniques in [1, 3] to
overcome the difficulties introduced by the discontinuous dynamics at the
slow-down threshold. We should remark that the current paper analyzes
only the most relevant case from [10], in which the second queue is the more
likely bottleneck without slowdown, and the first queue is the more likely
bottleneck with slowdown. However, the other cases can be dealt with in
an analogous fashion. The approach can also be extended to networks with
Markov modulated arrival/service rates [6].

The paper is organized as follows. In Sections 2 and 3 we describe the
model and system dynamics. Section 4 states the large deviations result
for the rare event probability of interest. Importance sampling schemes and
their performance criterion are given in Section 5. Sections 6 through 8 are
concerned with the Isaacs equation, construction of subsolutions, and the
optimality of the corresponding dynamic importance sampling algorithms.
The main result is stated in Section 9, numerical results are given in Section
10, and some technical proofs are collected in an appendix.

2 The model setup

We consider a variant of the standard two-node tandem Jackson network.
Suppose that the arrival process is Poisson with rate λ, and the downstream
service times are exponentially distributed with rate µ2. The distribution
of the upstream service times is as follows. Let Q = {(Q1(t), Q2(t)) : t ≥
0} denote the system state, that is, Q1(t) is the length of the upstream
queue at time t and Q2(t) is that of the downstream queue. Let n be the
overflow level of the downstream queue, and θn the slow-down threshold
[assuming θ ∈ (0, 1)] for the upstream queue. Then the upstream service
time distribution is exponential with rate µ1 if Q2 < θn and exponential
with a smaller rate ν1 if Q2 ≥ θn. The probability of interest is the overflow
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probability

pn
.= P {Q2 = n before Q = (0, 0), after starting from Q = (1, 0)} .
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Figure 1: The system dynamics

To illustrate the main idea of game/subsolution approach, we restrict
the analysis to the case where

λ < ν1 < µ2 ≤ µ1. (2.1)

Thus the downstream server is more likely to be the bottleneck when the
system is below the slow-down threshold, while the upstream server be-
comes the bottleneck once the slow-down threshold is breached. When the
slowdown mechanism is viewed as a control which tries to protect the down-
stream buffer from overflow, this is the most relevant case.

Remark 2.1. The paper [10] also considered two-node tandem Jackson
networks without any server slow-down. For such a model the probability
of interest pn is a special case of one that appears in [4, Section 4.3.1]
with B1 = ∞ and B2 = 1. One can use the subsolution there to build
asymptotically optimal importance schemes for both µ1 ≤ µ2 and µ1 > µ2.

3 The system dynamics

The state process Q is a continuous time pure jump Markov process defined
on some probability space (Ω, F, P). In the interior of the state space the
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possible jumps of Q belong to the set

V = {v1 = (1, 0), v2 = (−1, 1), v3 = (0,−1)}.

To describe the discontinuous dynamics on the boundary, we allow the pro-
cess Q to make fictitious jumps of size vi+1 on the boundary {Qi = 0}, but
they have to be accounted for by pushing back the state along the direction
of constraints

di = −vi+1,

so that the queue sizes remain non-negative [see Figure 1]. For every x =
(x1, x2) ∈ R2

+ and v ∈ V let

π[x, v] .=
{

0, if xi = 0 and v = vi+1 for some i = 1, 2,
v, otherwise.

(3.1)

The required projection on the boundary of the state space will be handled
by π. We also define the jump intensity function r(x, v) by

r(x, v1) = λ, r(x, v2) =
{

µ1, if x2 < θ
ν1, if x2 ≥ θ

, r(x, v3) = µ2,

and the total intensity function by

R(x) =
∑

v∈V
r(x, v).

Let {T1, T2, . . .} be the random jump times of the process Q with the
convention T0 = 0. The dynamics of Q are determined by the stochastic
transition kernel Θ[·|·] on R+ × V given R2

+, where

Θ[dt, v|x] .= P{Tj+1 − Tj ∈ dt, Q(Tj+1) = nx + π[x, v] |Q(Tj) = nx}
= r(x, v)e−R(x)tdt. (3.2)

In other words, the possible jumps of the process Q at state nx are {π[x, v] :
v ∈ V} and the jump intensity from nx to nx + π[x, v] is r(x, v).

Notation. We collect here some useful notation [see Figure 2].

S = {(x1, x2) : x1 > 0, θ < x2 < 1}.
D = {(x1, x2) : x1 > 0, 0 < x2 < θ}.
∂1 = {(x1, x2) : x1 = 0, x2 > 0}.
∂2 = {(x1, x2) : x1 > 0, x2 = 0}.
∂e = {(x1, x2) : x2 = 1}.
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Figure 2: Notation for the State Space Partition

4 A representation for the exponential decay rate

The approach to be developed below is based on relations between large de-
viation properties and certain nonlinear partial differential equations (PDE).
It will turn out that we will not need solutions to these PDE, but only sub-
solutions, and the PDE are simple enough that these subsolutions can be
explicitly constructed. The PDE are described in terms of so-called Hamil-
tonians, with one for each region of different statistical behavior. As noted
in the remark that follows, one can heuristically derive each Hamiltonian
from the corresponding dynamics of the queueing process.

Given an arbitrary α = (α1, α2) ∈ R2, the relevant Hamiltonians are
defined as follows.

1. Below the slow-down threshold [region D],

H(α) .= λ(eα1 − 1) + µ1(eα2−α1 − 1) + µ2(e−α2 − 1).

2. Above the slow-down threshold [region S],

Hs(α) .= λ(eα1 − 1) + ν1(eα2−α1 − 1) + µ2(e−α2 − 1).

3. On the boundary ∂1,

H∂1(α) .= λ(eα1 − 1) + µ2(e−α2 − 1).

4. On the boundary ∂2,

H∂2(α) .= λ(eα1 − 1) + µ1(eα2−α1 − 1).
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Remark 4.1. We will (heuristically) show how the function H occurs in a
PDE characterization of pn. In a similar manner one can relate the Hamil-
tonians to the optimal possible performance in importance sampling (see
[5]). We introduce the scaled process Xn(t) = Q(nt)/n, and for each x ∈ D
define

pn(x) = Px {Xn
2 exceeds 1 before Xn = 0} .

By conditioning on the value of the first jump (given that the process starts
at x), it follows that

(λ + µ1 + µ2)pn(x) = λpn

(
x +

v1

n

)
+ µ1pn

(
x +

v2

n

)
+ µ2pn

(
x +

v3

n

)
.

If the probabilities pn(x) decay at an exponential rate then one would expect
Wn(x) = − 1

n log pn(x) to converge to some function W (x). By rewriting the
previous display in terms of Wn we see

0 = λ [exp [−n (Wn(x + v1/n) − Wn(x))]− 1]
+µ1 [exp [−n (Wn(x + v2/n) − Wn(x))]− 1]
+µ2 [exp [−n (Wn(x + v3/n) − Wn(x))]− 1] .

For a smooth function W let DW denote its gradient. If each term of
the form n (Wn(x + vi/n) − Wn(x)) also converges to 〈DW (x), vi〉, then W
should satisfy the PDE

λ
(
e−〈DW,v1〉 − 1

)
+ µ1

(
e−〈DW,v2〉 − 1

)
+ µ2

(
e−〈DW,v3〉 − 1

)
= 0.

This is just H(−DW (x)) = 0, and the other Hamiltonians can be derived
similarly. The definition in a form similar to a moment generating function is
motivated by standard notation in large deviation theory, and is responsible
for the minus sign.

Denote by L, Ls, L∂1, and L∂2 the Legendre transforms of H , Hs, H∂1 ,
and H∂2, respectively. That is, for example,

L(β) = sup
α∈R2

[〈α, β〉 − H(α)] .

We continue by defining the so-called local rate function associated with the
scaled processes Xn(t) = Q(nt)/n, t ≥ 0. To ease exposition, we use the
notation L1 ⊕ · · · ⊕ Ld to denote the inf-convolution of convex functions
{L1, L2, . . . , Ld}, that is, for any β ∈ R2

[L1 ⊕ · · · ⊕ Ld](β) .= inf

{
d∑

i=1

ρiLi(βi) : ρi ≥ 0,

d∑

i=1

ρi = 1,

d∑

i=1

ρiβi = β

}
.
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The local rate function, denoted by L(x, β), is defined as follows.

1. For x ∈ S, L(x, β) .= Ls(β), and for x ∈ D, L(x, β) .= L(β).

2. For x ∈ ∂2, L(x, β) = [L⊕ L∂2 ](β) if β2 ≥ 0 and ∞ if β2 < 0.

3. For x ∈ ∂1,

L(x, β) .=





[Ls ⊕ L∂1 ](β), if x2 > θ, β1 ≥ 0,
[L ⊕ Ls ⊕ L∂1 ](β), if x2 = θ, β1 ≥ 0,

[L ⊕ L∂1 ](β), if x2 < θ, β1 ≥ 0,
∞, if β1 < 0.

4. For x = (0, 0), L(x, β) = [L ⊕ L∂1 ⊕ L∂2 ](β) if β1, β2 ≥ 0 and ∞
otherwise.

5. For x ∈ {(x1, θ) : x1 > 0}, L(x, β) .= [L ⊕ Ls](β).

Theorem 4.2.

lim
n

− 1
n

log pn = inf
∫ τ

0

L(φ(t), φ̇(t)) dt,

where the infimum is taken over all absolutely continuous functions φ :
[0,∞) → R2

+ such that

φ(0) = 0, τ
.= inf {t ≥ 0 : [φ(t)]2 = 1} < ∞.

The main difficulties in the proof of Theorem 4.2 are due to the discon-
tinuous dynamics of the prelimit process Xn. The discontinuities come in
two forms: those along the interface between the region D and the slow-
down region S, and those along the boundary of the state space due to
non-negativity constraints on queue length. The first type of discontinuity
is well understood in this particular setting (two regions of continuous behav-
ior separated by a single smooth interface). See for example [1, Chapter 7]
where the model discussed is a discrete time random walk, and [3, Theorem
3.1] for an application in a continuous time setting. In a very general setting
(as in [1, Chapter 7]), the local rate function appears to be more complicated
than it does here, since additional “stability-about-the-interface” constraints
not present in the inf-convolution must be added. However, owing to the
structure of the server slowdown dynamics these constraints are implicitly
contained in the inf-convolution formula.

The discontinuities along the boundary can be dealt with by considering
an unconstrained process which is mapped to the constrained process via a
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Skorokhod mapping Γ. It is easily shown that the mapping Γ is Lipschitz
[2]. With the continuity of Γ the proof is now a simple application of the
Contraction Principle.

5 The basics of importance sampling

Consider a family of events {An} in a probability space (Ω, F, P) such that

lim
n

− 1
n

logP(An) = γ

for some positive constant γ. In order to estimate P(An), importance sam-
pling generates samples under a different probability distribution Q (i.e.,
change of measure) such that P � Q, and forms an estimator by averaging
independent replications of

p̂n
.= 1An

dP
dQ

,

where dP/dQ is the Radon-Nikodým derivative or likelihood ratio. It is easy
to check that p̂n is unbiased.

The rate of convergence of the importance sampling estimator is de-
termined by the variance, or equivalently the second moment, of p̂n. The
smaller the second moment, the faster the convergence. However, by Jensen’s
inequality

lim sup
n

− 1
n

logEQ[p̂2
n] ≤ lim sup

n
− 2

n
logEQ[p̂n] = 2γ.

We say the importance sampling estimator p̂n or the change of measure Q
is asymptotically optimal if the upper bound is achieved, i.e., if

lim inf
n

− 1
n

log EQ[p̂2
n] ≥ 2γ.

Sometimes 2γ is referred to simply as the “optimal decay rate.”

Remark 5.1. The requirement that P be absolutely continuous with respect
to Q is more stringent than necessary. It is sufficient that P be absolutely
continuous with respect to Q on a sub-σ-algebra that contains An, in which
case the likelihood ratio is defined as the Radon-Nikodym derivative of P
and Q when they are restricted on this sub-σ-algebra. This fact is needed
in the present paper, since we consider events on a potentially unbounded
time interval.
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6 Dynamic importance sampling schemes

Dynamic, or state-dependent, importance sampling schemes can be charac-
terized by an alternative stochastic transition kernel Θ̄n[·|·] on R+×V given
R2

+. That is, the dynamics of Q under the sampling probability measure,
say Q, are determined by

Q{Tj+1 − Tj ∈ dt, Q(Tj+1) = nx + π[x, v] |Q(Tj) = nx} = Θ̄n[dt, v|x],

where {T1, T2, . . .} are jump times for the process Q with the convention
T0 = 0. The corresponding importance sampling estimator is as follows.
Let sj

.= Tj − Tj−1 (sojourn times) and Q(Tj) − Q(Tj−1)
.= π[Q(Tj−1),4j ]

(jump sizes). Here 4j is the direction of the jth jump. Note that the effect
of this jump may be negated by the boundary condition [see definition of
mapping π in (3.1)]. Define

N
.= inf{k ≥ 1 : Q2(Tk) = n or Q(Tk) = (0, 0)}. (6.1)

Then the importance sampling estimator is

p̂n
.= 1{Q2(TN)=n}

N∏

j=1

Θ[dsj ,4j |Q(Tj−1)/n]
Θ̄n[dsj ,4j |Q(Tj−1)/n]

. (6.2)

We should point out that p̂n will be used for the analysis of the asymptotic
optimality. However, the implementation will use a different version of p̂n.
See Remark 6.2 for more details.

Remark 6.1. From the point of view of implementation, a convenient choice
is to use stochastic transition kernels determined by an alternative jump
intensity function r̄(x, v), i.e.,

Θ̄n[dt, v|x] ≡ r̄(x, v)e−R̄(x)tdt, where R̄(x) =
∑

v∈V
r̄(x, v). (6.3)

The modified rates will depend on the large deviation parameter n, but for
ease of notation this dependence is omitted. As we will see, one can construct
asymptotically optimal importance sampling schemes by considering simple
mixtures of such transition kernels.

Remark 6.2. The likelihood ratio in the definition of p̂n is with respect to
continuous-time sample paths. However, most importance sampling litera-
ture uses the likelihood ratio defined on the embedded discrete-time sample
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paths, or more precisely, a conditional expectation of the continuous-time
likelihood ratio. To illustrate, consider the case where Θ̄n[dt, v|x] is defined
as in Remark 6.1. Under this transition kernel, the process Q is again a con-
tinuous time Markov process with r̄(x, v) as the jump intensity from state
nx to nx + π[x, v]. Then the importance sampling estimator based on the
embedded discrete time Markov chain Z = {Z(i) = Q(Ti) : i ≥ 0} is

p̄n
.= 1{Z2(N)=n}

N−1∏

j=0

r[Z(j)/n,4j+1]/R(Z(j)/n)
r̄[Z(j)/n,4j+1]/R̄(Z(j)/n)

.

Recalling the definitions of Θ and Θ̄ in equations (3.2) and (6.3)

EQ[p̂n|Q(T1), . . . , Q(TN)] = p̄n. (6.4)

This implies that p̄n is unbiased and its second moment is at most that of p̂n.
It is important to distinguish these two importance sampling estimators. p̂n

is more suitable for analysis, and p̄n is easier for implementation. We should
analyze the change of measure using p̂n, and use its discrete-time counter-
part p̄n for implementation. Note that if one can establish the asymptotic
optimality of p̂n, then p̄n is automatically asymptotically optimal.

7 The Isaacs equation

It has been established that importance sampling is closely related to dif-
ferential games and that subsolutions to the corresponding Isaacs equation
(a nonlinear PDE) can be used for constructing efficient importance sam-
pling schemes [6, 4]. The Isaacs equation can be stated in terms of the
Hamiltonians introduced in Section 4.

Define the function ` by

`(x) =
{

x logx − x + 1, if x ≥ 0,
∞ , if x < 0.

(7.1)

Let R be the collection of functions from V to (0,∞), and for every r̂ ∈ R

define
F(r̂) .=

∑

v∈V
r̂[v] · v.

For each α = (α1, α2) ∈ R2, the direct continuous time analogue of the
discrete time Hamiltonian used in [4] is

sup
r̄∈R

inf
r̂∈R

[
〈α, F(r̂)〉 +

∑

v∈V

(
r̂[v] log

(
r̄[v]

r(x, v)

)
+ r(x, v)− r̄[v]

)
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+
∑

v∈V
r(x, v)`

(
r̂[v]

r(x, v)

)]
.

We will find it convenient to rewrite the Hamiltonian in the form

H(x, α) .= sup
r̄∈R

inf
r̂∈R

[
〈α, F(r̂)〉+ 2

∑

v∈V
r(x, v)`

(
r̂[v]

r(x, v)

)
−

∑

v∈V
r̄[v]`

(
r̂[v]
r̄[v]

)]
.

Recall that DW denotes the gradient for a smooth function W . A (clas-
sical) solution to the Isaacs equation is a continuously differentiable function
W : R+ × [0, 1] → R satisfying

1. H(x, DW (x)) = 0 for x ∈ (0,∞)× (0, 1),

2. 〈DW (x), di〉 = 0 for x ∈ ∂i,

3. W (x) = 0 for x ∈ ∂e.

A formal derivation analogous to the one given in Section 4 shows that
this PDE should characterize the optimal decay rate among all importance
sampling schemes. In general one would not expect classical solutions to
exist, and thus one should work with a weaker notion of solution. However,
we will not need or use solutions, but rather only certain subsolutions whose
regularity properties will be specified when they are introduced.

We recall the functions H and Hs introduced in Section 4. Abusing the
notation, we define for every α

Hs(α) .= −2Hs(−α/2), H(α) .= −2H(−α/2).

We have the following result, whose proof is straightforward and thus omit-
ted.

Proposition 7.1. Fix an arbitrary α = (α1, α2) ∈ R2. Then for x =
(x1, x2) the Hamiltonian H(x, α) satisfies the following properties.

1. If x2 ≥ θ, H(x, α) = Hs(α) with the saddle point

r̄∗s(α) = r̂∗s(α) =
(
λe−α1/2, ν1e

(α1−α2)/2, µ2e
α2/2

)
.

2. If x2 < θ, H(x, α) = H(α) with the saddle point

r̄∗(α) = r̂∗(α) =
(
λe−α1/2, µ1e

(α1−α2)/2, µ2e
α2/2

)
.

11



Remark 7.2. The Isaacs equation is associated with a differential game
where the r̄-player represents the choice of change of measure and the r̂-
player is introduced through a representation formula for the large devia-
tion rate of decay. The explicit formula for the r̄-component of the saddle
point given in Proposition 7.1 is particularly useful in the construction of
importance sampling schemes. Roughly speaking, for a given subsolution
W̄ , depending on the state of the process, we use r̄∗s(DW̄ ) or r̄∗(DW̄ ) as
the alternative jump intensity function for simulation.

Remark 7.3. In general one should be more careful with the definition of
the Isaacs equation on the interface {(x1, x2) : x2 = θ}, and in fact if we were
considering a more general class of rare event estimation problems one would
use (Hs ∧ H)(DW ) = 0 on the interface. This observation is crucial for the
construction of subsolutions that lead to asymptotically optimal importance
sampling schemes, but only when the most likely path (i.e. a minimizer to
the variational problem in Theorem 4.2) leading to the rare event will spend
non-trivial time on the interface (i.e., the Lebesgue measure of the time the
minimizer is on the interface is positive). In the present setting, however, it
will turn out that the most likely path does not spend positive time on the
interface.

8 Subsolutions and importance sampling schemes

A classical subsolution to the Isaacs equation is a continuously differentiable
function W̄ : R+ × [0, 1] → R such that

1. H(x, DW̄(x)) ≥ 0 for all x ∈ (0,∞)× (0, 1),

2. 〈DW̄ (x), di〉 ≥ 0 for all x ∈ ∂i,

3. W̄ (x) ≤ 0 for all x ∈ ∂e.

Classical subsolutions can often be constructed from a mollification of piece-
wise affine subsolutions, see [4, 6] and the many examples therein.

We will associate importance sampling schemes to subsolutions. The
performance of the scheme will be measured by the value of the subsolution
at 0, with larger values of W̄ (0) indicating better performance. Note that
for any subsolution W̄ (0) is bounded above by the value of the solution at
the origin.
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8.1 Piecewise affine subsolutions

The goal of this section is to construct a piecewise affine subsolution whose
value at the origin is maximal. Consider the variational problem introduced
in the statement of Theorem 4.2, but with a general initial condition x ∈
[0, 1]× R+:

V (x) = inf
{∫ τ

0
L(φ(t), φ̇(t))dt : φ(0) = x, [φ(τ)]2 = 1, τ ≥ 0

}
. (8.1)

It can be shown formally by a dynamic programming argument that H(x, 2DV (x)) =
0, which suggests that the large deviations most likely path might be useful
in constructing subsolutions. In [10, Proposition 10] the authors propose
that the most likely path to overflow will travel along the boundary ∂1 from
(0, 0) to (0, θ) pushing against the boundary during this leg of the journey.
What is meant by “pushing against the boundary” is that in the absence
of non-negativity constraints on queue length, the (large deviation) change
of jump rates would lead to a trajectory whose velocity has a negative first
component. This velocity is projected back along the direction d1 at no cost.
From (0, θ) to (0, 1) the path will also travel along ∂1 but this time gliding
along the boundary. What is meant here is that the change of rates produces
exactly velocity zero in the first component, and no projection is needed. If
the conjecture of [10] is correct, these statements give important information
on the gradient of the solution in a neighborhood of the optimal trajectory.
If the subsolution we construct is to be close to the solution at x = 0, then
it must be close all along the optimal trajectory. Hence we obtain necessary
conditions on the gradient of the subsolution along the optimal trajectory.

We next formally derive constraints on the gradient of the function V
along the proposed optimal trajectory. We say “formal” since it is not known
if V is sufficiently smooth to justify all the calculations. However, our goal
is to simply motivate the construction of a particular subsolution. As noted
above, in region D the optimal trajectory pushes into the boundary and
is returned along the direction d1 at no cost. This implies that the value
function V should be constant along this direction. We thus obtain two
constraints on α[1] = 2DV (x):

H(α[1]) = 0, 〈d1, α
[1]〉 = 0.

In region S 2DV (x) should satisfy the corresponding part of the PDE that
applies on the interior of the domain. At the same time, the linking of the
optimal velocity with the gradient via dynamic programming implies that
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α[0] = 2DV (x) should be dual (in the sense of convex duality) to a point
whose first component is zero. Thus we obtain the constraints

Hs(α[0]) = 0,
∂Hs

∂α1
(α[0]) = 0. (8.2)

There are two roots with this property, and the correct (i.e., useful) root
also satisfies α

[0]
1 , α

[0]
2 < 0 [see Lemma 8.1].

This identifies constraints on the gradient of a subsolution in the neigh-
borhood of the optimal trajectory. In order to satisfy the boundary condition
along the boundary ∂2 we need the gradients α[2] = 2 log(µ2/λ)(−1, 0), and
α[3] = (0, 0). As we will see, these choices allow the construction of a func-
tion which satisfies the subsolution property at all points in the domain and
with a nearly optimal value at zero. Figure 3 shows how these vectors relate
to the Hamiltonians.

�
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�
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�
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�

α[1]

α[3]

H(α) ≥ 0

α1

α2
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α2

Hs(α) ≥ 0

α[2]

H(α) = 0

Hs(α) = 0

α[0]

Figure 3: The gradients of the subsolution

In terms of the problem data we find α[1] = 2 log(µ2/λ)(−1,−1), α[2] =
2 log(µ2/λ)(−1, 0), and α[3] = (0, 0). The existence of α[0] is dealt with in
the following lemma.

Lemma 8.1. There exists a unique z > 1 that satisfies the equation

2
√

λν1z +
µ2

z
= λ + ν1 + µ2. (8.3)

Furthermore, the unique solution α[0] to equation (8.2) with α
[0]
1 , α

[0]
2 < 0

can be expressed as

α[0] = (α[0]
1 , α

[0]
2 ) = (− log(ν1z/λ),−2 logz) . (8.4)

We also have

Hs(α[1]) = 0, α
[0]
2 < α

[1]
1 < α

[0]
1 , 〈α[0], d1〉 ≥ 0.
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The proof is deferred to an appendix. Note that the equation (8.3) for
z is the same as equation (31) in [10] with z replaced by z−1. We also let

γ = (1− θ) log z + θ log(µ2/λ). (8.5)

The first term is the cost of the optimal trajectory between (0, θ) and (0, 1),
the second term is the cost of the trajectory traveling between (0, 0) and
(0, θ). Fix an arbitrary small δ > 0, and define the affine functions

W̄ δ
0 (x) = 〈x, α[0]〉 + 2 logz,

W̄ δ
1 (x) = 〈x, α[1]〉 + 2γ,

W̄ δ
2 (x) = 〈x, α[2]〉 + 2γ − δ,

W̄ δ
3 (x) = 〈x, α[3]〉 + 2γ − 2δ.

Let W̄ δ .= W̄ δ
0 ∧ W̄ δ

1 ∧ W̄ δ
2 ∧ W̄ δ

3 . Figure 4 depicts the gradients of W̄ δ in
different regions of the state space, with W̄ δ = W̄ δ

i in region Gi.

�
�
�
�

∂e

d1

x1

x2

∂2

∂1

1

d2

α[0]

α[2]

α[1]

α[3]

θn

G3

G2

G0

G1

Figure 4: The subsolution

Lemma 8.1 and a simple computation show that W̄ δ indeed defines a
piecewise affine subsolution, that is, W̄ δ satisfies the definition of classical
subsolution in the regions where it is smooth.

Remark 8.2. In Remark 7.3 it was mentioned that the subsolution would be
more complicated if the optimal trajectory spent significant amount of time
on the interface. In particular this would require that an additional affine
function W̄ δ

4 be constructed such that (H ∧ Hs)(DW̄ δ
4 ) ≥ 0. In addition

it would be necessary that W̄ δ = W̄ δ
4 for x in an O(δ) strip around the

interface.
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8.2 The mollification

In the proof of asymptotic optimality of the estimator p̂n it is essential that
the subsolutions we work with have a bounded second derivative. As far
as the authors know this boundedness condition is indispensable. Since
the function W̄ δ is not smooth, this problem is resolved by mollifying the
function. As we will see, the implementation of the algorithm corresponding
to the mollified function is only slightly more computationally demanding
than it would be for the corresponding un-mollified version.

A natural mollification technique for this problem is exponential weight-
ing. See [6, 4] for a discussion of the benefits of this method and a comparison
with other standard mollifications. Let ε be a small positive number, and
define

W ε,δ(x) .= −ε log
3∑

i=0

exp
{
−1

ε
W̄ δ

i (x)
}

.

The function W ε,δ is continuously differentiable, and

DW ε,δ(x) =
3∑

i=0

ρε,δ
i (x)α[i], ρε,δ

i (x) .=
exp

{
−W̄ δ

i (x)/ε
}

∑3
k=0 exp

{
−W̄ δ

k (x)/ε
} .

Note that for every x, {ρε,δ
i (x) : i = 0, 1, 2, 3} forms a probability vector

since

ρε,δ
i (x) > 0,

3∑

i=0

ρε,δ
i (x) = 1.

8.3 The importance sampling algorithm

For each i = 0, 1, 2, 3, let

r̄[i]
s

.= r̄∗s(α
[i]), r̄[i] .= r̄∗(α[i]). (8.6)

Explicit formulas for {r̄[i]
s , r̄[i]} can be found in Remark 8.3. For each i, also

define the jump intensity functions {r̄i(x, v) : v ∈ V} and total intensity
function R̄i(x) by

r̄i(x, vk)
.=

{ [
r̄
[i]
s

]
k

if x2 ≥ θ
[
r̄[i]

]
k

if x2 < θ
, R̄i(x) .=

3∑

k=0

r̄i(x, vk).

The corresponding stochastic transition kernel on R+ ×V given R+ × [0, 1],
denoted by Θ̄[i], is

Θ̄[i][dt, v|x] .= r̄i(x, v)e−R̄i(x)tdt.
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That is, the stochastic transition kernel Θ̄[i] corresponds to a continuous time
Markov process whose jump intensity from nx to nx + π[x, v] is r̄i(x, v).

The dynamic importance sampling scheme corresponding to W ε,δ uses a
mixture of {Θ̄[i]}:

Θ̄n[·|x] = Θ̄ε,δ[·|x] =
3∑

i=0

ρε,δ
i (x)Θ̄[i][·|x],

and the corresponding importance sampling estimator p̂n is just as defined
in (6.2). In other words, the importance sampling simulates the process
Q in the following fashion. Given that the current state of Q is nx, the
algorithm selects a random index I taking values in {0, 1, 2, 3} according
to the weights {ρε,δ

i (x) : i = 0, 1, 2, 3}. Then the algorithm simulates the
sojourn time according to the exponential distribution with rate R̄I(x) and
the jump size π[x, v] with probability r̄I(x, v)/R̄I(x).

In general one can allow ε, δ to depend on n, and denote them by εn, δn.
The corresponding stochastic transition kernel will be Θ̄n[·|x] = Θ̄εn,δn[·|x],
and the corresponding importance sampling estimator will still be denoted
by p̂n when no confusion is incurred.

Remark 8.3. Using Proposition 7.1, Lemma 8.1 and (8.6) it follows that

r̄[0]
s = (

√
λν1z,

√
λν1z, µ2/z), r̄[0] = (

√
λν1z, µ1

√
λz/ν1, µ2/z),

r̄[1]
s = (µ2, ν1, λ), r̄[1] = (µ2, µ1, λ),

r̄[2]
s = (µ2, λν1/µ2, µ2), r̄[2] = (µ2, λµ1/µ2, µ2),

r̄[3]
s = (λ, ν1, µ2), r̄[3] = (λ, µ1, µ2).

9 The main results

We recall the definition of γ in (8.5).

Theorem 9.1. Suppose δn → 0, εn/δn → 0 and nεn → ∞. Then the
corresponding importance sampling estimator p̂n satisfies

lim inf
n

− 1
n

log [2nd moment of p̂n] ≥ 2γ.

This theorem can be shown by a verification argument analogous to [4,
Theorem 3.18]. Since by Lemma 8.1 H(α[1]) = Hs(α[1]) = 0, the subsolution
inequality holds on both sides of the slow-down interface (see Figure 4).
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Hence the only major distinction is that in [4] the domain is assumed to
be compact so that the exit time can be shown to have bounded moment
generating function in a small neighborhood of origin. This compactness
condition turns out to be unnecessary, and a proof of this fact is given in
Appendix B.

Theorem 9.2. We have the large deviation result

lim
n

− 1
n

log pn = γ.

Proof. Since EQ[p̂2
n] ≥ (EQ[p̂n])2 = p2

n, Theorem 9.1 implies the large devi-
ations upper bound

lim inf
n

− 1
n

log pn ≥ γ. (9.1)

Note that this upper bound can also be shown by applying a direct verifica-
tion argument [7] to the control representation of the large deviations rate
function [see Theorem 4.2], using the classical subsolution W εn,δn/2.

We now consider the lower bound. By Theorem 4.2, we only need to
show that there exists an absolutely continuous function φ∗ : R+ → R2

+

such that
∫ τ

0
L(φ∗(t), φ̇∗(t)) dt ≤ γ, where τ

.= inf {t ≥ 0 : [φ∗(t)]2 = 1} < ∞.

Theorems 4.2 and 9.1 imply that if such a φ∗ exists it will be an optimal
path.

The construction of φ∗ is based on the change of measure determined by
r̄
[0]
s and r̄[1] [see Remark 8.3]. In other words, let

β∗
s

.=
3∑

i=1

[
r̄[0]
s

]
i
vi = (0,

√
λν1z − µ2/z),

and

β∗ .=
3∑

i=1

[
r̄[1]

]
i
vi = (µ2 − µ1, µ1 − λ).

Since [β∗]1 = µ2 − µ1 ≤ 0, we further define, abusing the notation, π[β∗] to
be the projection of β∗ onto ∂1 along the direction of constraint d1 = (1,−1).
Thus

π[β∗] = β∗ − [β∗]1 d1 = (0, µ2 − λ).
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To ease exposition, write β∗
s

.= (0, us) and π[β∗] .= (0, u), where

us
.=

√
λν1z − µ2/z, u

.= µ2 − λ.

Note that us > 0 thanks to (A.1) and u > 0 since µ2 > λ. Define φ∗(t) such
that

φ̇∗(t) =
{

π[β∗], if 0 ≤ t < θu−1,
β∗

s , if θu−1 ≤ t ≤ θu−1 + (1 − θ)u−1
s .

Then φ∗ is a vertical path passing through (0, 0) → (0, θ) → (0, 1), and by
the definition of L [see Section 4],
∫ τ

0
L(φ∗(t), φ̇∗(t)) dt = θu−1 · [L⊕ L∂1 ](π[β∗]) + (1− θ)u−1

s · [Ls ⊕L∂1 ](β
∗
s).

However, note that Ls and Hs are conjugate functions and β∗
s is conjugate

to −α[0]/2, since by direct computation

DαHs(−α[0]/2) = (0, us) = β∗
s .

Therefore, observing Hs(−α[0]/2) = −Hs(α[0])/2 = 0, we have

[Ls ⊕ L∂1 ](β
∗
s) ≤ Ls(β∗

s) = 〈−α[0]/2, β∗
s〉 − Hs(−α[0]/2) = us log z.

The local rate functions L, Ls, L∂1 , L∂2 , and their inf-convolutions have
standard representations in terms of the ` function as defined in (7.1) [3, 11].
In particular,

[L ⊕ L∂1 ](β) = inf

{
λ`

(
λ̄

λ

)
+ ρ̄µ1`

(
µ̄1

µ1

)
+ µ2`

(
µ̄2

µ2

)
:

ρ̄ ∈ [0, 1], λ̄v1 + ρ̄µ̄1v2 + µ̄2v3 = β

}
.

Since
π[β∗] = λ̄v1 + ρ̄µ̄1v2 + µ̄2v3

where
ρ̄

.= µ2/µ1 ∈ [0, 1], λ̄ = µ2, µ̄1 = µ1, µ̄2 = λ,

it follows that

[L ⊕ L∂1 ](π[β∗]) ≤ ρ̄µ1`

(
µ̄1

µ1

)
+ λ`

(
λ̄

λ

)
+ µ2`

(
µ̄2

µ2

)

= λ`
(µ2

λ

)
+ µ2`

(
λ

µ2

)

= u log(µ2/λ).
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Therefore,
∫ τ

0
L(φ∗(t), φ̇∗(t)) dt ≤ θ log(µ2/λ) + (1 − θ) log z = γ.

This completes the proof.

Corollary 9.3. Suppose δn → 0, εn/δn → 0 and nεn → ∞. Then the
corresponding importance sampling estimator p̂n is asymptotically optimal.

Remark 9.4. Analogous to [4, Theorem 3.6], a near asymptotic optimality
result can be shown for the case where εn ≡ ε and δn ≡ δ. It also suggests
that a good strategy is to set δn = −εn log εn [4, Remark 3.7].

Remark 9.5. Our results show that the heuristically derived exponential
decay rate of pn and the limit most likely path to overflow in [10] are indeed
correct.

10 Numerical results

As discussed in Remark 6.2, the numerical implementation in this section is
carried out using the embedded discrete-time Markov chain Z = {Z(j) =
Q(Tj) : j ≥ 0}. That is, given that the current state of Z(j) is nx, the
algorithm selects a random index I taking values in {0, 1, 2, 3} according to
the weights {ρε,δ

i (x) : i = 0, 1, 2, 3}. Then the algorithm generates Z(j+1) =
Z(j) + π[x,4j+1] with Q(4j+1 = v) = r̄I(x, v)/R̄I(x). The corresponding
importance sampling estimator is

p̄n
.= 1{Z2(N)=n}

N−1∏

j=0

r[Z(j)/n,4j+1]/R(Z(j)/n)
∑3

i=0 ρε,δ
i (Z(j)/n)r̄i[Z(j)/n,4j+1]/R̄i(Z(j)/n)

,

where
N

.= inf{k ≥ 0 : Z2(k) = n or Z(k) = 0}.

As noted previously (6.4) holds, which says that p̄n is a conditional expec-
tation of p̂n. Therefore, if p̂n is asymptotically optimal, so is p̄n.

We present simulations for the two cases (λ, µ1, µ2, ν1) = (0.1, 0.7, 0.2, 0.15)
and (0.3, 0.36, 0.34, 0.32), with n = 20, 50, 100. These cases are distinguished
in that, according to [10], a variant on the standard “open loop” approach
to importance sampling can be expected to be efficient for the first but not
the second. Numerical results are also presented in [10] using such a scheme.
A comparison of the numerical data supports the statements of [10]. Indeed,
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both algorithms perform well on the data of Table 1 with the state inde-
pendent scheme producing slightly smaller confidence intervals, while only
the state dependent algorithm appears to be asymptotically optimal for the
data of Table 2.

For each case, we let the mollification parameter take the form εn
.=

c/
√

n for a constant c, and set δn
.= −εn log εn as suggested by Remark 9.4.

Asymptotic optimality of p̄n follows from Corollary 9.3 and the discussion
in the preceding paragraph.

The constant c is determined so that when n = 20, δn ≈ 0.05γ, where
γ is the corresponding large deviation rate [see (8.5)]. It follows that the
value of the piecewise affine subsolution W̄ δn at the origin is W̄ δn(0, 0) =
2γ − 2δn ≈ 0.95 · 2γ when n = 20. We wish to point out that the algorithm
is fairly robust in that different small values of c yield similar simulation
results. As in [10], a sample size of one million is used for each estimate,
and the slowdown threshold θ = 0.8.

The theoretical values were obtained by finding that for the related ques-
tion of what is the probability that either queue 1 has n customers or queue
2 has m customers before emptying. The theoretical value for the finite
state space problem can be found by a first step analysis, and then solving
the resulting numerical system. This problem is then solved for increasing
values of m, until the overflow probability given is constant for at least 4
significant figures.

n = 20 n = 50 n = 100
Theoretical value 3.80× 10−7 1.27× 10−16 3.55× 10−32

Estimate 3.82× 10−7 1.27× 10−16 3.53× 10−32

Std. Err. 0.01× 10−7 0.01× 10−16 0.07× 10−32

95% C.I. [3.80,3.84]× 10−7 [1.25,1.29]× 10−16 [3.36,3.67]× 10−32

Table 1. (λ, µ1, µ2, ν1) = (0.1, 0.7, 0.2, 0.15), c = 0.03. Sample size 1 million.

n = 20 n = 50 n = 100

Theoretical value 5.63× 10−2 1.19× 10−3 1.63× 10−6

Estimate 5.62× 10−2 1.18× 10−3 1.61× 10−6

Std. Err. 0.03× 10−2 0.01× 10−3 0.02× 10−6

95% C.I. [5.56,5.68]× 10−2 [1.16,1.20]× 10−3 [1.57,1.65]× 10−6

Table 2. (λ, µ1, µ2, ν1) = (0.3, 0.36, 0.34, 0.32), c = 0.004. Sample size 1 million.

A Appendix. Proof of Lemma 8.1

We first show the existence and uniqueness of z. Define h : [1,∞) → R by

h(y) .= 2
√

λν1y +
µ2

y
− (λ + ν1 + µ2).
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Let y∗
.=

[
µ2

2/(λν1)
]1/3. Note that y∗ > 1 thanks to (2.1). Since

h′(y) =
1
y2

[
y
√

λν1y − µ2

]
,

it follows that h′(y) < 0 for 1 ≤ y < y∗ and h′(y) > 0 for y > y∗. Further-
more,

h(1) = 2
√

λν1 − λ − ν1 = −(
√

λ− √
ν1)2 < 0, h(∞) = ∞.

Therefore there exists a unique z > 1 such that h(z) = 0. Indeed, we must
have

z > y∗ =
[
µ2

2/(λν1)
]1/3 (A.1)

and that h(y) < 0 if and only if 1 ≤ y < z. A discussion of the above
material can also be found in [8]. We now consider equation (8.2). Since
Hs(α) = −2Hs(−α/2),

Hs(α) = −2
[
λ(e−α1/2 − 1) + ν1(e(α1−α2)/2 − 1) + µ2(eα2/2 − 1)

]
,

∂Hs

∂α1
(α) = λe−α1/2 − ν1e

(α1−α2)/2.

Simple algebra yields that equation (8.2) amounts to

h(e−α2/2) = 0, α1 = − log(ν1e
−α2/2/λ).

Equation (8.4) follows immediately.
Finally, Hs(α[1]) = 0 is just simple calculation, and thus omitted. It

remains to show α
[0]
2 < α

[1]
1 < α

[0]
1 , from which 〈α[0], d1〉 ≥ 0 follows im-

mediately since d1 = (1,−1). Plugging the formulae for α[0] and α[1], the
inequalities reduce to

µ2

λ
< z <

µ2
2

λν1
.

But h(µ2/λ) = −(
√

µ2 −
√

ν1)2 < 0 and

h

(
µ2

2

λν1

)
=

1
µ2

(µ2 − ν1)(µ2 − λ) > 0.

This completes the proof.
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B Appendix. Exponential bounds on TN

We recall the definition of N from (6.1). In the proof of Theorem 9.1 one
needs to establish an exponential bound on the exit time TN , namely, there
exists a strictly positive constance c such that

lim sup
n

1
n

logE0[exp{cTN}] < ∞. (B.1)

The proof in [4, Proposition A.1], which deals with a similar problem for
the tandem queue networks, is not applicable here since it assumes that the
domain is compact. However, this compactness assumption is not necessary
and the goal of this appendix is to show a slightly stronger result, namely,
there exists a strictly positive constant c such that

E0[exp{cTN0}] < ∞, (B.2)

where TN0 is the first time the process returns to origin, that is,

N0
.= inf{k ≥ 1 : Q(Tk) = 0}.

Note that N0 is independent of n and TN ≤ TN0. Therefore the exponential
bound (B.1) is clearly implied by (B.2).

In order to show (B.2), we first observe the following. Consider a stan-
dard tandem queue network with no server slowdown and with arrival rate λ

and consecutive service rates ν1 and µ2. For this network, similarly to TN0 ,
define τ0 the first time the state process return to origin. It is not difficult
to show, by a pathwise argument, that τ0 stochastically dominates TN0 , that
is,

P (τ0 ≥ t) ≥ P (TN0 ≥ t) (B.3)

for all t ≥ 0. Indeed, consider a Poisson arrival process with arrival rate λ,
and suppose that the i-th arrival is associated with a random vector Ui

.=
(U (1)

i , U
(2)
i , W

(1)
i ). The vectors {Ui} are iid, and U

(1)
i , U

(2)
i , and W

(1)
i are all

exponentially distributed with respective rates ν1, µ2, and µ1. Furthermore,
U

(1)
i ≥ W

(1)
i and U

(2)
i is independent of (U (1)

i , W
(1)
i ). Such vectors always

exist since exponential distribution with rate ν1 stochastically dominates
exponential distribution with rate µ1. Consider the following two scenarios:
(1) The i-th arrival always uses U

(1)
i as the service time at node 1; (2) The

i-the arrival uses U
(1)
i as the service time at node 1 if the second queue is

larger than θn and uses W
(1)
i otherwise. In both cases, the service time for

the i-th arrival at node 2 is assumed to be U
(2)
i . Clearly, the first scenario
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yields the standard tandem network with arrival λ and service rates ν1 and
µ2, while the second scenario yields the tandem queue with server slowdown
as studied in this paper. Since U

(1)
i ≥ W

(1)
i for every i, it is clear that the

return time to the origin for the first scenario is pathwise bounded from
below by that of the second scenario. This implies the stochastic dominance
(B.3).

Thanks to the stochastic dominance (B.3), it suffices to show that there
exists a strictly positive constant c such that E0[exp{cτ0}] < ∞. To this
end, we consider the discrete time embedded Markov chain of the standard
tandem network and (abusing notation) let {Z(k) ∈ Z2

+, k = 0, 1, . . .} denote
the queue lengths at the transition epochs of the network. We also, without
loss of generality, assume λ + ν1 + µ2 = 1. Let {Y (k)} be an iid sequence of
random vectors taking values in V with

P (Y (k) = v1) = λ, P (Y (k) = v2) = ν1, P (Y (k) = v3) = µ2.

Then the dynamics of Z can be represented by the evolution

Z(k + 1) = Z(k) + π[Z(k), Y (k + 1)].

Define
σ0

.= inf{k ≥ 1 : Z(k) = 0}.

Note that τ0 can be written as

τ0 =
σ0∑

i=1

si

where {si} denote the time elapse between transition epochs in the contin-
uous time model, and {si} are iid exponential random variables with rate
λ + ν1 + µ2, independent of σ0. Therefore, it suffices to show that there
exists a strictly positive constant c such that

E0[exp{cσ0}] < ∞.

Indeed, we have a stronger result [9].

Lemma B.1. There exist a constant c > 0 such that Ez[exp{cσ0}] is finite
for all z ∈ Z2

+.

Proof. Define the stopping time σ̂0
.= inf{k ≥ 0 : Z(k) = 0}. Note that

σ0 = σ̂0 as long as Z(0) 6= 0 and σ̂0 = 0 if Z(0) = 0. Define h(z) .= Ez [σ̂0]
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for each z ∈ Zd
+. Since the network is positive recurrent by assumption

λ < ν1 ≤ µ2, h(z) is finite for every z. Define the process

S(k) .=
{

h(Z(k)) if k ≤ σ̂0,

σ̂0 − k if k > σ̂0.

There are two key properties of S [4, Lemmas A.2, A.4, and A.5].

(i) Let {Fk = σ(Z(0), Y (1), . . . , Y (k))} be the filtration. Then

Ez[S(k + 1)− S(k)|Fk] = −1

for all z ∈ Z2
+ and all k ≥ 0.

(ii) The increments of the process S are uniformly bounded, say by M <
∞.

Note that there exists a ε0 > 0 such that, for all |x| ≤ ε0,

ex ≤ 1 + x + x2.

Define ε̄
.= min

{
ε0/M, 1/(2M2)

}
. Then for every k ≥ 0, thanks to property

(ii) and that ε̄M ≤ ε0,

eε̄(S(k+1)−S(k)) ≤ 1 + ε̄(S(k + 1) − S(k)) + ε̄2(S(k + 1)− S(k))2

≤ 1 + ε̄(S(k + 1) − S(k)) + ε̄2M2.

But by property (i) and that ε̄2M2 ≤ ε̄/2, it follows that

E
[
eε̄(S(k+1)−S(k))

∣∣∣Fk

]
≤ 1 − ε̄/2.

This is equivalent to that the process {(1 − ε̄/2)−keε̄S(k), Fk} is a super-
martingale. In particular, given Z(0) = z 6= 0, the Optional Sampling
Theorem, σ̂0 = σ0, and h(0) = 0 imply that

eε̄h(z) = eε̄S(0) ≥ Ez

[
(1 − ε̄/2)−σ0

]
.

Letting c
.= − log(1− ε̄/2) > 0, we have

Ez [ecσ0 ] < ∞

for all z ∈ Z2
+ and z 6= 0. For Z(0) = 0, we only need to note that since the

first jump away from 0 must be to e1, there is C < ∞ such that

E0 [ecσ0 ] = CEe1 [ecσ0 ] < ∞.

This completes the proof.
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