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Abstract

We consider the problem of optimal stopping for a one dimensional diffusion process.
Two classes of admissible stopping times are considered. The Þrst class consists of all
non-anticipating stopping times that take values in [0,∞], while the second class further
restricts the set of allowed values to the discrete grid {nh : n = 0, 1, 2, · · · ,∞} for some
parameter h > 0. The value functions for the two problems are denoted by V (x) and
V h(x), respectively. We identify the rate of convergence of V h(x) to V (x) and the
rate of convergence of the stopping regions, and provide simple formulas for the rate
coefficients.

Keywords. Optimal stopping, continuous time, discrete time, diffusion process, rate of
convergence, local time.

1 Introduction

One of the classical formulations of stochastic optimal control is that of optimal stopping.
In optimal stopping, the only decision to be made is when to stop the process. When the
process is stopped, a beneÞt is received (or a cost is paid), and the objective is to maximize
the expected beneÞt (or minimize the expected cost). Although the problem formulation
is very simple, this optimization problem has many practical applications. Examples in-
clude the pricing problems in investment theory, the valuation of American options, the
development of natural resources, etc.; see, e.g., [1, 2, 4, 5, 6, 9, 10, 15, 16, 17, 18].

The formulation of the optimal stopping problem requires the speciÞcation of the class
of allowed stopping times. Typically, one assumes these to be non-anticipative in an appro-
priate sense, so that the control does not have knowledge of the future. Another important
restriction is with regard to the actual time values at which one can stop, and here there
are two important cases: continuous time and discrete time. In the Þrst case, the stopping
time is allowed to take values in the interval [0,∞], with ∞ corresponding to the decision
to never stop. In the second case there is a Þxed discrete set of times D ⊂ [0,∞], and the
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stopping time must be selected from this set. Typically, this discrete set is a regular grid,
e.g., Dh

.
= {nh : n ∈ IN0}, where h > 0 is the grid spacing.

In the present paper we focus exclusively on the one dimensional case. Although the
statement of precise assumptions is deferred to Section 2.1, a rough description of the
continuous and discrete time problems we consider is as follows.

Continuous time optimal stopping. We use the stochastic process model

dSt
St

= b(St) dt+ σ(St) dWt

where b and σ are bounded continuous functions from IR to IR. Although the results can
be extended to cover other diffusion models as well, we focus on this model because of its
wide use in optimal stopping problems that occur in economics and Þnance. We consider a
payoff deÞned in terms of a convex nondecreasing function φ : IR→ [0,∞). The payoff from
stopping at time t is φ(St), and the decision maker wants to maximize the expected present
value by judiciously choosing a stopping time. This is modeled by the optimal stopping
problem with value function

V (x) = sup
τ∈S

IE
£
e−rτφ(Sτ )

¯̄
S0 = x

¤
,

where r is the discount rate and S is the set of all admissible stopping times, which are
allowed to take values in [0,∞]. The dynamic programming equation for this problem is as
follows. Let

LV (x) = 1

2
σ2(x)x2V 00(x) + b(x)xV 0(x).

Then

max [φ(x)− V (x),LV (x)− rV (x)] = 0. (1.1)

In the case where φ is convex and nondecreasing, it is often optimal to stop when the process
St Þrst exceeds some Þxed threshold x∗. In this case, the value function V (x) equals φ(x) for
x ≥ x∗, and it satisÞes the ordinary differential equation −rV (x) + LV (x) = 0 for x < x∗.
For the case where σ and b are constants, V (x) takes the form Axβ for x < x∗. Here β is the
positive root of some quadratic equation, and (A, x∗) are constants that can be computed
explicitly using the principle of smooth Þt, i.e., the value function is C1 across the optimal
exercise boundary x∗.

Discrete time optimal stopping. In this case the process model is the same as before,
but the set of possible stopping times is restricted to those that take values in the time grid
Dh

.
= {nh, n ∈ IN0}. The optimal strategy is often similar to the continuous time case: stop

the Þrst time Snh exceeds some Þxed threshold x
h∗ . Let V h(x) denote the value function.

The pair
¡
V h(x), xh∗

¢
satisfy the dynamic programming equation [21]

V h(x) =

½
φ(x) , x ∈ [xh∗ ,∞)

e−rhIE
£
V h(Sh)|S0 = x

¤
, x ∈ (0, xh∗).
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Closed-form solutions to this dynamic programming equation are not usually available.

The aim of the present paper is to examine the connection between these two optimal
stopping problems as h→ 0. There are two questions of main interest:

� What is the convergence rate of the optimal exercise boundary xh∗ to x∗, and what is
the rate coefficient?

� What is the convergence rate of the value function V h(x) to V (x), and what is the
rate coefficient?

As we will see in Section 2, the optimal exercise boundaries converge with rate
√
h,

while the value functions converge with rate h. In both cases there is a well deÞned rate
coefficient. The coefficient in the case of the exercise boundary is deÞned in terms of
the expected value of a functional of local time of Brownian motion, while the coefficient
for the value function involves both local time and excursions of Brownian motion. For
problems where the continuous time problem can be more or less solved explicitly (e.g.,
the one dimensional problems considered in the present work), these results allow one to
explicitly compute accurate approximations for the discrete time problem. For problems
where the continuous time problem does not have an explicit solution (e.g., multidimensional
problems), the analogous information could possibly be used to improve the quality of
approximation obtained using numerical approximations.

Few existing results are concerned with the rate of convergence of approximations for
this class of problems. Lamberton [14] considers the binomial tree approximation for pricing
American options and obtains upper and lower bounds (though not a rate of convergence) for
the value function. In his approximation both the time and state variables are discretized.
References to a few papers giving qualitatively similar results also appear in [14].

The outline of the paper is as follows. In Section 2 we introduce notation and deÞne the
basic optimization problems. We state the main result, give an illustrative example, and
then lay out the main steps in the proof of the approximation theorem. The proofs of two
key approximations which are intimately connected with the local time and excursions of
Brownian motion are given in Section 3. The paper concludes with an Appendix in which
a result on a conditional distribution of the exit time is proved.

2 The Approximation Theorem

2.1 Notation, assumptions and background

Consider a probability space (Ω,F , IP; IF) with Þltration IF = (Ft) satisfying the usual
conditions: right-continuity and completion by IP-negligible sets. The state process S =
(St,Ft) is modeled by

dSt
St

= b(St) dt+ σ(St) dWt, S0 ≡ x. (2.1)

Here W = (Wt,Ft) is a standard IF-Brownian motion.
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DeÞne value function

V (x) = sup
τ∈S

IE
£
e−rτφ(Sτ )

¯̄
S0 = x

¤
,

where the supremum is over all stopping times with respect to the Þltration IF. DeÞne

V h(x) = sup
τ∈Sh

IE
£
e−rτφ(Sτ )

¯̄
S0 = x

¤
,

where Sh is the set of all stopping times that take values in Dh.
The following assumptions will be used throughout the paper.

Condition 2.1. 1. The coefficients b : IR→ IR and σ : IR→ IR are bounded and contin-
uous, with infx∈IR σ(x) > 0. Furthermore xb(x) and xσ(x) are Lipschitz continuous.

2. φ : IR → [0,∞) is non-decreasing, and both φ and its derivative φ0 are of polynomial
growth. Furthermore

sup
t≥0

e−rtφ(St) ∈ IL1, lim
t→∞ e

−rtφ(St) = 0, a.s.

3. The �continuation� region for the continuous-time optimal stopping problem takes the
form {x : V (x) > φ(x)} = (0, x∗).

4. The �continuation� region for the discrete-time optimal stopping problem takes the
form {x : V h(x) > φ(x)} = (0, xh∗).

5. The payoff function φ is twice continuously differentiable in a neighborhood of x∗.

6. The smooth-Þt-principle holds, that is, the value function V is C1 across the optimal
exercise boundary x∗.

As noted in the Introduction, V satisÞes the dynamic programming equation

max [φ(x)− V (x),LV (x)− rV (x)] = 0.
Note that usually V is only once continuously differentiable across the optimal exercise
boundary x = x∗. Since φ(x) = V (x) if x ∈ [x∗,∞) and φ(x) < V (x) if x ∈ (0, x∗), it
follows that V 00(x∗−) ≥ φ00(x∗), where the − denotes limit from the left. DeÞne

A
.
=
V 00(x∗−)− φ00(x∗)

φ(x∗)
≥ 0. (2.2)

Although one can construct examples where A = 0, it is typically the case that A > 0.
We will assume this condition below, and merely note that the rate of convergence of the
optimal threshold does not depend on A at all.

Remark 2.1. The change of variable t = − log x can be used to transform the ordinary
differential equation (ODE) Lf(x)− rf(x) = 0 on (0,∞) into the ODE

1

2
σ(e−t)W 00(t) +

∙
1

2
σ(e−t)− b(e−t)

¸
W 0(t)− rW (t) = 0
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on IR. Since σ(x) > 0 for x > 0, the classical theory for solutions of ODEs [3] can be
used to show that the general solution to LV (x) − rV (x) = 0 can be written in the form
c1f1(x) + c2f2(x), where f1(x) is positive and bounded as x ↓ 0 and f2(x) is unbounded as
x ↓ 0. Under Condition 2.1, the function f1 is twice continuously differentiable on (0,∞).
V (x) is then equal to c1f1(x) for x ∈ (0, x∗] and equal to φ(x) for x ∈ [x∗,∞), where c1 and
x∗ are determined by the principle of smooth Þt, i.e.,

c1f1(x∗) = φ(x∗) and c1f 01(x∗) = φ
0(x∗).

Remark 2.2. In the case that S is a geometric Brownian motion with b(x) ≡ b and σ(x) ≡
σ, and φ(x) = (x − k)+ for some constant k, then Condition 2.1 holds when r > b. For
r ≤ b, the value function for the optimal stopping problem is +∞, and there is no optimal
stopping time; see [6].

Remark 2.3. It is usually not a prior clear if parts 3 and 4 of Condition 2.1 hold for a
general state process. Here we give a sufficient condition that is very easy to verify in the
case φ(x) = (x− k)+. Suppose parts 1 and 2 of Condition 2.1 hold, and in addition that

r ≥ sup
x∈(0,∞)

©
b(x) + xb0(x)

ª
.

We claim that parts 3 and 4 of Condition 2.1 hold. We will show that part 3 holds and
omit the analogous proof for 4. DeÞne VT (x)

.
= supτ≤T IEx [e−rτφ(Sτ )]. Let Sx stand for

the state process starting from S0 ≡ x. A small modiÞcation of the proof of Theorem 5.2
[7] shows that the collection of random variables

sup
0≤t≤T

¯̄̄̄
Sx(t)− Sy(t)

x− y
¯̄̄̄
, y ∈ (x− δ, x+ δ)

is uniformly integrable for Þxed x, small δ > 0 and terminal time T . It follows immediately
that VT (x) is a continuous function, since for any stopping τ ≤ T , we have

IE
¯̄
e−rτφ

¡
Sx(τ)

¢− e−rτφ¡Sy(τ)¢¯̄ ≤ IE sup
0≤t≤T

|Sx(t)− Sy(t)| ≤ c|x− y|

for some constant c. Furthermore, the upper left Dini derivate of VT is always bounded by
one, i.e.,

lim sup
y↑x

VT (x)− VT (y)
x− y ≤ 1.

To see this, let τ∗ be the optimal stopping time when S0 ≡ x. The existence of τ∗ is
guaranteed by the classical theory of Snell envelop; see [11]. We have

VT (y) ≥ IE
£
e−rτ∗φ(Syτ∗)

¤
,

which implies that

VT (x)− VT (y)
x− y ≤ IE

"
e−rτ∗φ(Sxτ∗)− e−rτ

∗
φ(Syτ∗)

x− y

#
.
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However, if x ≥ y, then Sx(t) ≥ Sy(t) for all t by strong uniqueness. Since φ is non-
decreasing and

φ(x)− φ(y) = (x− k)+ − (y − k)+ ≤ x− y ∀ x ≥ y,

we have
VT (x)− VT (y)

x− y ≤ IE
"
e−rτ∗

¡
Sxτ∗ − Syτ∗

¢
x− y

#
.

Using the uniform integrability, it follows that

lim sup
y↑x

VT (x)− VT (y)
x− y ≤ IE

"
lim
y↑x

e−rτ∗
¡
Sxτ∗ − Syτ∗

¢
x− y

#
= IE

h
e−rτ

∗
Dx(τ∗)

i
,

where Dx(t)
.
= ∂

∂xS
x(t) satisÞes the SDE

dDx(t)

Dx(t)
=
£
b(Sxt ) + S

x
t b
0(Sxt )

¤
dt+

£
σ(Sxt ) + S

x
t σ

0(Sxt )
¤
dWt, Dx(0) = 1.

See, e.g., [12, 19]. Since by assumption r ≥ supx∈(0,∞) [b(x) + xb0(x)], it is easy to check
that

lim sup
y↑x

VT (x)− VT (y)
x− y ≤ IE

h
e−rτ

∗
Dx(τ∗)

i
≤ 1.

It follows from a standard result in real analysis (see [20, Proposition 5.1.2]) that

VT (x)− VT (y) ≤ x− y ∀ x ≥ y.

This implies that
{x : VT (x) = φ(x)} = [x∗T ,∞)

for some real number x∗T . Indeed, if VT (y) = φ(y) = (y − k)+, then since VT > 0 we must
have y > k. It follows that for all x ≥ y,

VT (x) ≤ VT (y) + (x− y) = (y − k) + (x− y) = x− k = φ(x).

But VT ≥ φ trivially, whence VT (x) = φ(x) for all x ≥ y.
It remains to show that part 3 of Condition 2.1 holds. It suffices to observe that for all

x
VT (x) ↑ V (x)

as T →∞. This completes the proof.
Remark 2.4. If S is a geometric Brownian motion with b(x) ≡ b, and σ(x) ≡ σ, and
φ(x) = (

P
iAix

αi − k)+ for some positive constants (Ai,αi) and k ≥ 0, then one can show
that V (x) − φ(x) is decreasing, which in turn implies that parts 3 and 4 of Condition 2.1
hold. A similar argument can be found in [9].
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2.2 Rates of convergence: value function and stopping region

Let u ∈ [0, 1), letW be a Brownian motion withWu = 0, and deÞneN
.
= inf {n ∈ IN :Wn ≥ 0}.

Note that N <∞ w.p.1. DeÞne

H(u)
.
= IEW 2

N and M(u)
.
= IEWN . (2.3)

In terms of these functions we deÞne the constants

C =

Z 1

0
H(u) du and K =

Z 1

0
M (u) du. (2.4)

These quantities are shown to be Þnite in Lemma 3.2. Note that H(u) > M2(u), and
therefore

C =

Z 1

0
H(u) du >

Z 1

0
M2(u) du ≥

µZ 1

0
M(u) du

¶2
= K2.

Our main result is the following.

Theorem 2.1. Assume Condition 2.1, and deÞne the constants A,C, and K by (2.2) and
(2.4). Assume that A > 0. The following conclusions hold for all x ∈ (0, x∗).
1.

V h(x)− V (x)
V (x)

= −1
2
Ax2∗σ

2(x∗)(C −K2)h+ o(h)

2.

xh∗ = x∗ −Kx∗σ(x∗)
√
h+ o(

√
h).

Remark 2.5. Using an elementary argument by contradiction, one can show that the
asymptotic expansion in the preceding theorem holds uniformly in any compact subset of
(0, x∗).

Example: Consider the special case where b(x) ≡ b and σ(x) ≡ σ. Assume r > b and
φ(x) = (x−k)+ for some constant k > 0. It follows that the value function for the continuous
time optimal stopping problem is

V (x) =

½
Bxα ; x < x∗
x− k ; x ≥ x∗

where

α =

µ
1

2
− b

σ2

¶
+

sµ
1

2
− b

σ2

¶2
+
2r

σ2
B =

x∗ − k
xα∗

,

and
x∗ =

α

α− 1k.
It follows that

xh∗ = x∗(1−Kσ
√
h) + o(

√
h) =

αk

α− 1(1−Kσ
√
h) + o(

√
h)

7



and

A =
V 00(x∗−)− φ00(x∗)

x∗ − k =
Bα(α− 1)(x∗)α−2

x∗ − k ,

which implies that

V h(x)− V (x)
V (x)

= −1
2
Ax2∗σ

2(C −K2)h+ o(h) = −1
2
α(α− 1)(C −K2)σ2h+ o(h).

2.3 Overview of the proof

In this subsection we outline and prove the main steps in the proof of Theorem 2.1. The
proofs of two key asymptotic expansions are deferred to the next section.

For the simplicity of future analysis, we Þrst introduce a bounded modiÞcation of the
payoff function φ. This modiÞcation will not affect the asymptotics at all; see Proposition
2.1.

Let φ̄ ≤ φ be an increasing function satisfying

φ̄(x) =

½
φ(x), if x ≤ x∗ + a
k , if x ≥ x∗ + 2a. (2.5)

Here a and k are two positive constants, whose speciÞc values are not important. Without
loss of generality, we assume that φ̄ is twice continuously differentiable in the region [x∗,∞).
Suppose h and δ are two positive constants, and let xδ

.
= x∗− δ. We consider the quantities

W̄δ(x)
.
= IEx

£
e−rτδ φ̄

¡
Sτδ
¢¤

and Wδ(x) = IE
x
£
e−rτδφ

¡
Sτδ
¢¤
,

where
τδ
.
= inf {t ≥ 0 : St ≥ xδ} ,

and IEx denotes expectation conditioned on S0 = x. Note that Wδ(x) = W̄δ(x) for all
x ≤ xδ. We also deÞne

W̄h
δ (x)

.
= IEx

h
e−rτ

h
δ φ̄
¡
Sτhδ

¢i
and W h

δ (x)
.
= IEx

h
e−rτ

h
δ φ
¡
Sτhδ

¢i
,

where
τhδ

.
= inf {nh ≥ 0 : Snh ≥ xδ} .

Main idea of the proof. The main idea for proving the rates of convergence is as follows.
Write

Wh
δ (x)− V (x) =

h
W h
δ (x)− W̄ h

δ (x)
i
+
h
W̄ h
δ (x)− W̄δ(x)

i
+
£
W̄δ(x)− V (x)

¤
.

For each term, we will obtain approximations as h and δ tend to zero. It turns out the
leading term has the following form:

−1
2
a1δ

2 + a2δ
√
h+ a3h+ higher order term.
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Here a1, a2, and a3 are constants (some of which depend on x), with a1 > 0. Since the func-
tion Wh

δ (x) attains its maximum at δ∗ = x∗ − xh∗ , one would expect that δ∗ approximately
maximizes the leading term, or

δ∗ =
a2
a1

√
h+ o(

√
h). (2.6)

Furthermore, substituting this back in one would expect

V h(x) =Wh
δ∗(x) =

µ
−a

2
2

a1
+ a3

¶
h+ o(h).

This is in fact how the argument will proceed. We begin with the estimation of the Þrst
term, which turns out to be negligible for small h and δ. DeÞne the quantity

4δ,h
.
=W h

δ (x)− W̄ h
δ (x) = IE

x
h
e−rτ

h
δ

³
φ(Sτhδ

)− φ̄(Sτhδ )
´i
. (2.7)

We have the following result.

Proposition 2.1. DeÞne 4δ,h by (2.7). There exist constants L <∞ and ε > 0 such that

|4δ,h| ≤ Le− ε
h

for all sufficiently small δ and h.

Proof. The proof of the proposition is based on the following bound. Let a be as in the
characterization (2.5) of φ̄. Then for any x ≤ x∗ and y ≥ x∗ + a,

IP
¡
Sh > y

¯̄
S0 = x

¢ ≤ exp(− ∙log y
x∗
− c1h

¸2,
c2h

)
, (2.8)

where the Þnite constants c1, c2 depend only on the coefficients b,σ. To prove this bound
we use the expression

Sh = S0 exp

½Z h

0

∙
b(St)− 1

2
σ2(St)

¸
dt+

Z h

0
σ(St) dWt

¾
.

DeÞne c1
.
= kbk∞ + 1

2kσ2k∞. Since x ≤ x∗

p
.
= IPx (Sh > y) ≤ IPx

³
e
R h
0 σ(St) dWt ≥ elog y

x∗−c1h
´
.

However, if B
.
= log y

x∗ − c1h and c2
.
= 2kσ2k∞, then for θ > 0

p ≤ IPx
³
eθ
R h
0 σ(St) dWt ≥ eθB

´
≤ IPx

³
eθ
R h
0 σ(St) dWt− 1

2
θ2
R h
0 σ(St)

2 dt ≥ eθB− 1
4
θ2c2h

´
≤ e−θB+

1
4
θ2c2h.
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The last inequality follows from Chebychev�s inequality. Minimizing the right hand side
over θ completes the proof of (2.8).

We now complete the proof of the proposition. To ease the exposition, we use τ in lieu
of τhδ throughout the proof. We have

4δ,h =

∞X
n=1

e−rnhIEx
£¡
φ(Snh)− φ̄(Snh)

¢
1{τ=n}

¤
≤

∞X
n=1

e−rnh
Z ∞

a+x∗

¯̄
φ0(y)− φ̄0(y)¯̄ IPx(Snh > y, τ = n) dy.

We also have, for any y > x∗ + a, that

IPx(Snh > y, τ = n)

= IPx(Snh > y | τ = n)IPx(τ = n)
= IPx(Snh > y |Snh ≥ xδ, S(n−1)h < xδ, · · · , S0 < xδ)IPx(τ = n).

DeÞne the stopping time
σ
.
= inf{t ≥ (n− 1)h : St ≥ xδ}.

Then

IPx(Snh > y | τ = n)
= IPx(Snh > y |σ ≤ nh, Snh ≥ xδ, S(n−1)h < xδ, · · · , S0 < xδ)

=

Z h

0
IPx(Snh > y | σ = nh− t, Snh ≥ xδ, S(n−1)h < xδ, · · · , S0 < xδ)

· IPx(σ ∈ nh− dt |σ ≤ nh, Snh ≥ xδ, S(n−1)h < xδ, · · · , S0 < xδ).
However, the strong Markov property implies for all t ∈ [0, h] that

IPx(Snh > y |σ = nh− t, Snh ≥ xδ, S(n−1)h < xδ, · · · , S0 < xδ)
= IP(St > y |S0 = xδ, St ≥ xδ)
=
IP(St > y |S0 = xδ)
IP(St ≥ xδ |S0 = xδ) .

The denominator in this display is uniformly bounded from below away from zero for t ∈
[0, 1]:

IP(St ≥ xδ |S0 = xδ) ≥ α > 0, ∀ t ∈ [0, 1];

see Lemma 3.4 for a proof. Using (2.8), for all small h > 0 and t ∈ (0, h)

IP(St > y |S0 = xδ) ≤ exp
(
−
∙
log

y

x∗
− c1t

¸2,
c2t

)
≤ exp

(
−
∙
log

y

x∗
− c1h

¸2,
c2h

)
.

Now since φ0 is of polynomial growth and φ̄0(x) is zero for large x, it follows that there
are Þnite constants R and m such that¯̄

φ0(y)− φ̄0(y)¯̄ ≤ Rym−1 for all y > x∗ + a.
10



Hence, for all small δ > 0, the change of variable x = log y
x∗ − c1h gives

4δ,h ≤ R

α

∞X
n=1

e−rnhIPx(τ = n)
Z ∞

a+x∗
ym−1 exp

(
−
∙
log

y

x∗
− c1h

¸2,
c2h

)
dy

=
R

α
(x∗)memc1h

∞X
n=1

e−rnhIPx(τ = n)
Z ∞

log
³
1+ a

x∗
´
−c1h

e
mx− x2

c2h dx.

For h small enough, there exists positive numbers ā, C̄, c̄ such that

4δ,h ≤ C̄

∞X
n=1

e−rnhIPx(τ = n)
Z ∞

log
³
1+ ā

x∗
´ e−x2

c̄h dx

= C̄
√
2πc̄ · Φ

µ
− log

µ
1 +

ā

x∗

¶Á√
c̄h

¶
·
√
h

∞X
n=1

e−rnhIPx(τ = n)

≤ C̄
√
2πc̄ · Φ

µ
− log

µ
1 +

ā

x∗

¶Á√
c̄h

¶
·
√
h.

Here Φ is the cumulative distribution function for the standard normal distribution. We
complete the proof of the proposition by using the asymptotic relation

Φ(−x) ∼ 1√
2πx

e−
x2

2

as x→∞. 2

The bound just proved shows that
£
Wh
δ (x)− W̄h

δ (x)
¤
is exponentially small as h →

0, uniformly for all small δ > 0. We now consider the terms
£
W̄h
δ (x)− W̄δ(x)

¤
and£

W̄δ(x)− V (x)
¤
. When considering the asymptotic behavior of these terms, it is often

convenient to scale δ with h as h→ 0 in the manner suggested by (2.6). For the remainder
of this proof, unless explicitly stated otherwise, we will assume that

δ = c
√
h+ o(

√
h) as h→ 0 (2.9)

for a non-negative parameter c. With an abuse of notation, the quantities W̄h
δ (x) and W̄δ(x)

will be denoted by W̄ h
c (x) and W̄c(x) when the relation (2.9) holds.

We next estimate
£
W̄c(x)− V (x)

¤
as h→ 0.

Proposition 2.2. Assume Condition 2.1 and deÞne A by (2.2). Assume also that A > 0.
Then

W̄c(x)− V (x) =
∙
−1
2
Ac2h+ o(h)

¸
V (x).

Proof. Recall that V (x) can be characterized, for x ≤ x∗, as a multiple of the bounded
(in a neighborhood of zero) solution f1 to Lf(x) − rf(x) = 0; see Remark 2.1. W̄c(x)
can be likewise characterized, with the constant determined by the boundary condition
W̄c(xδ) = φ̄(xδ). Thus

W̄c(x) =
φ̄(xδ)

V (xδ)
V (x) for all x ∈ (0, xδ].

11



We now expand for small δ ≥ 0, and use xδ .= x∗ − δ, V (x∗) = φ̄(x∗), V 0(x∗) = φ̄0(x∗), and
the deÞnition of A to obtain

W̄c(x)− V (x)
V (x)

=

µ
φ̄

V

¶0 ¯̄̄̄
¯
x∗

· (−δ) + 1

2

µ
φ̄

V

¶00 ¯̄̄̄
¯
x∗

· (−δ)2 + o(δ2) = −1
2
Aδ2 + o(δ2).

The proof is completed by using (2.9). 2

In the next proposition we state the expansion for
£
W̄ h
δ (x)− W̄δ(x)

¤
. This estimate

deals with the critical comparison between the discrete and continuous time problems. The
proof of this expansion is detailed, and therefore deferred to the next section.

Proposition 2.3. Assume Condition 2.1 and deÞne A, C, and K by (2.2) and (2.4).
Assume also that A > 0. Then

W̄ h
c (x)− W̄c(x) =

∙
Kx∗σ(x∗)Ach− 1

2
ACx2∗σ

2(x∗)h+ o(h)
¸
V (x).

Proof of Theorem 2.1. Recall that xh∗ is the optimal boundary for the stopping problem
with value function V h. On the stopping region, we always have V h(x) = φ(x). Also, since
V h(x) is deÞned by supremizing over a subset of the stopping times allowed in the deÞnition
of V (x), it follows that V h(x) ≤ V (x). Since V (x) ≥ φ(x) for all x, it follows that xh∗ ≤ x∗.

According to Propositions 2.1, 2.2 and 2.3, for each Þxed c ∈ [0,∞)
Wh
c (x)− V (x)
V (x)

=

∙
−1
2
Ac2h+Kx∗σ(x∗)Ach− 1

2
ACx2∗σ

2(x∗)h+ o(h)
¸
.

This suggests the choice c∗
.
= Kx∗σ(x∗). Inserting this into the last display gives

Wh
c∗(x)− V (x)
V (x)

=

∙
1

2
A(K2 − C)x2∗σ(x∗)2h+ o(h)

¸
,

and since V h(x) ≥W h
c∗(x) it follows that

lim inf
h↓0

V h(x)− V (x)
V (x)h

≥ 1

2
A(K2 −C)x2∗σ(x∗)2. (2.10)

Now deÞne ch by xh∗ = x∗ − ch
√
h. Since xh∗ ≤ x∗ we know that ch ∈ [0,∞). By

taking a convergent subsequence, we can assume that ch → c̄ ∈ [0,∞]. Using an elementary
weak convergence argument, one can show that xh∗ → x∗. First assume that c̄ ∈ (0,∞). If
c̄ 6= Kx∗σ(x∗), then by Propositions 2.1, 2.2 and 2.3 we have

lim sup
h↓0

V h(x)− V (x)
V (x)h

<
1

2
A(K2 − C)x2∗σ(x∗)2,

which contradicts (2.10). If c̄ =∞, then Propositions 2.1 and 2.3 and an argument analo-
gous to the one used in Proposition 2.2 shows that

V h(x)− V (x)
V (x)

= −A(ch)2h[1 + o(1)].

Since (ch)2 → +∞, this again contradicts (2.10), and thus c̄ = Kx∗σ(x∗). We extend to the
original sequence by the standard argument by contradiction, and Theorem 2.1 follows. 2
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3 Approximations and Expansions in Terms of Local Time
and the Excursions of a Brownian Motion

In this section we prove Proposition 2.3, which is the expansion W̄h
δ (x) − W̄δ(x) for small

h > 0. We will use the fact that W̄δ has the representation

W̄δ(x) =

½
φ̄(x) , for x ≥ xδ

−ε(x) + e−rhIE £W̄δ(Sh)
¯̄
S0 = x

¤
, for x < xδ.

Here ε(x) is an error term that can be given explicitly in terms of the value function W̄δ

and the transition probabilities of Snh, and xδ
.
= x∗ − δ. From the last display, we have

ε(x) = IEx
h
e−rhW̄δ(Sh)− W̄δ(x)

i
, ∀ x < xδ.

It follows from the generalized It�o formula that

e−rhW̄δ(Sh)− W̄δ(x) =

Z h

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt (3.1)

+4W̄ 0
δ(xδ)

Z h

0
e−rtdLSt (xδ) +

Z h

0
e−rtW̄ 0

δ(St)Stσ(St) dWt.

Here LS is the local time for process S, and

4W̄ 0
δ(xδ)

.
= W̄ 0

δ(xδ+)− W̄ 0
δ(xδ−).

Lemma 3.1. For every x ∈ (0, xδ),

ε(x) = IExe−rhW̄δ(Sh)− W̄δ(x)

= IEx
Z h

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt+ IEx4W̄ 0

δ(xδ)

Z h

0
e−rtdLSt (xδ).

Proof. The result follows from (3.1) if the stochastic integral is zero. We recall that W̄δ(x)
is equal to φ̄(x) for x ≥ xδ and V (x)φ̄(xδ)/V (xδ) for x ≤ xδ. Since W̄δ(x) is equal to φ̄(x)
for large x and hence constant, W̄ 0

δ(x) = 0 for all large x. Also, W̄
0
δ(x) is clearly bounded

in a neighborhood of xδ. For µ > 0, let σµ
.
= inf{t : St ≤ µ} ∧ h. Then the boundedness of

xW̄ 0
δ(x) for x ≥ µ implies

IExe−rσµW̄δ(Sσµ)− W̄δ(x) = IEx
Z σµ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt

+ IEx4W̄ 0
δ(xδ)

Z σµ

0
e−rtdLSt (xδ).

The lemma follows by letting µ ↓ 0, and using dominated convergence for all terms but the
last, which uses monotone convergence. 2
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Let τhδ
.
= inf{nh : Snh ≥ xδ}. Then the discounting and (3.1) imply the formula

W̄δ(x) = −IEx
τhδ /h−1X
n=0

e−rnhε(Snh) + IExe−rτ
h
δ φ̄(Sτhδ

)

= − IEx
Z τhδ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt

−4W̄ 0
δ(xδ)IE

x

Z τhδ

0
e−rtdLSt (xδ) + IE

xe−rτ
h
δ φ̄(Sτhδ

)

for all x < xδ. We recall the deÞnition

W̄ h
δ (x)

.
= IExe−rτ

h
δ φ̄(Sτhδ

).

It follows that

W̄h
δ (x)− W̄δ(x) = IEx

Z τδ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt

+4W̄ 0
δ(xδ)IE

x

Z τhδ

0
e−rtdLSt (xδ).

The proof of Proposition 2.3 is thereby reduced to proving the following two results.

Proposition 3.1. Assume Condition 2.1 and deÞne A and C by (2.2) and (2.4). Assume
also that A > 0. Then

IEx
Z τhδ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt =

∙
−1
2
ACx2∗σ

2(x∗)h+ o(h)
¸
V (x). (3.2)

Proposition 3.2. Assume Condition 2.1 and deÞne A and K by (2.2) and (2.4). Assume
also that A > 0. Then

4W̄ 0
δ(xδ)IE

x

Z τhδ

0
e−rtdLSt (xδ) = [Kx∗σ(x∗)Ach+ o(h)]V (x). (3.3)

The proofs of Propositions 3.1 and 3.2 use estimates on the excursions and local time
of Brownian motion, respectively, and are given in the next two subsections. We will need
to relate the constants that appear in these approximations to the simple constants deÞned
by (2.3) and (2.4). The following lemma gives this relationship.

Lemma 3.2. Let W be a standard Brownian motion that satisÞes Wu = 0 for some u ∈
[0, 1). DeÞne H(u) and M (u) by (2.3). Then

H(u) = IE

Z N

u
1{Wt≥0} dt and M(u) = IELWu,N(0),

where N
.
= inf {n ∈ IN : Wn ≥ 0} and LWu,N(0) is the local time of W on the interval [u,N ].
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Proof. We Þrst prove H(u) = IE
R N
u 1{Wt≥0} dt. Consider the continuously differentiable

convex function

f(x)
.
=
1

2
(x+)2 =

½
0 , if x ≤ 0
1
2x
2, if x ≥ 0.

It follows from It�o�s formula that

f(WN∧n) = f(Wu) +

Z N∧n

u
f 0(Wt) dWt +

1

2

Z N∧n

u
f 00(Wt) dt

=

Z N∧n

u
Wt1{Wt≥0} dWt +

1

2

Z N∧n

u
1{Wt≥0} dt

for all integers n ∈ IN. This yields

IE
¡
W+
N∧n

¢2
= IE

Z N∧n

u
1{Wt≥0} dt ∀ n ∈ IN.

Letting n → ∞, the right hand side converges to IE R Nu 1{Wt≥0} dt by the monotone con-
vergence theorem. Since W+

N∧n ≤ WN , the result will follow by dominated convergence if
IEW 2

N is Þnite.
To show IEW 2

N is Þnite, we consider the conditional probability

Pn+1(x)
.
= IP

¡
WN ≥ x

¯̄
N = n+ 1

¢
= IP

¡
Wn+1 ≥ x

¯̄
Wn+1 ≥ 0,Wn < 0, · · · ,W1 < 0

¢
for all n ∈ IN0 and x ≥ 0. DeÞne the following stopping time

σ
.
= inf {t ≥ n : Wt = 0} .

Then

Pn+1(x) = IP
¡
Wn+1 ≥ x

¯̄
σ ≤ n+ 1,Wn+1 ≥ 0,Wn < 0, · · · ,W1 < 0

¢
=

Z 1

0
IP
¡
Wn+1 ≥ x

¯̄
σ = n+ t,Wn+1 ≥ 0,Wn < 0, · · · ,W1 < 0

¢
· IP ¡σ ∈ n+ dt ¯̄ σ ≤ n+ 1,Wn+1 ≥ 0,Wn < 0, · · · ,W1 < 0

¢
.

However, by strong Markov Property, for all t ∈ [0, 1]
IP
¡
Wn+1 ≥ x

¯̄
σ = n+ t,Wn+1 ≥ 0,Wn < 0, · · · ,W1 < 0

¢
= IP

¡
W1 ≥ x

¯̄
Wt = 0,W1 ≥ 0

¢
= 2Φ

µ
− x√

1− t
¶

≤ 2Φ(−x).
Here Φ is the cumulative distribution function for the standard normal. Hence,

Pn+1(x) ≤ 2Φ(−x)
Z 1

0
IP
¡
σ ∈ n+ dt ¯̄σ ≤ n+ 1,Wn+1 ≥ 0,Wn < 0, · · · ,W1 < 0

¢
= 2Φ(−x).
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It follows that

IEW 2
N =

∞X
n=1

IE(W 2
N1{N=n})

=

∞X
n=1

Z ∞

0
2xIP(WN ≥ x,N = n) dx

=
∞X
n=1

Z ∞

0
2xIP(WN ≥ x

¯̄
N = n)IP(N = n) dx

≤
∞X
n=1

IP(N = n)

Z ∞

0
4xΦ(−x) dx

=

Z ∞

0
4xΦ(−x) dx

< ∞.
As for the equality M(u) = IELWu,N(0), it follows from Tanaka�s formula that

WN =W
+
N =

Z N

u
1{Wt≥0} dWt + L

W
u,N(0).

However, since the preceding proof already implies that IE
R N
u 1{Wt≥0} dt <∞,

IEWN = IEL
W
u,N (0) =M(u).

This completes the proof. 2

3.1 Proof of Proposition 3.1

In this subsection we prove

IEx
Z τhδ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt =

∙
−1
2
ACx2∗σ

2(x∗)h+ o(h)
¸
V (x).

We recall the deÞnition

H(u)
.
= IE

Z N

u
1{Wt≥0} dt,

where W is a standard Brownian motion with Wu = 0, and N
.
= inf {n ∈ IN :Wn ≥ 0}.

Lemma 3.3. H(u) is continuous and bounded on the interval [0, 1).

Proof. DeÞne

Zu
.
=

Z N

u
1{Wt≥0} dt

where W is a Brownian motion with Wu = 0. We Þrst show that the family {Zu, u ∈ [0, 1)}
is uniformly integrable (and in particular, that H(u) is bounded). Indeed, deÞne

c0
.
=

Z 1

u
1{Wt≥0} dt, cj

.
=

Z j+1

j
1{Wt≥0} dt, j ∈ IN.
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The key observation is that if cj > 0, then W must spend some time during the interval
[j, j + 1] to the right of zero, therefore the probability that Wj+1 > 0 is at least half. Thus
for all j ∈ IN0

IP(N = j + 1
¯̄
N > j, cj > 0) ≥ 1

2
.

Let Xu
.
=
PN−1
j=0 1{cj>0}. Clearly Xu dominates Zu. Furthermore, the strong Markov

property implies that

IP(Xu ≥ j + 1
¯̄
Xu ≥ j) ≤

µ
1− 1

2

¶
=
1

2
.

This, in turn, implies that

IP(Xu ≥ n) ≤ 1

2n−1
,

and thus

IE(X2
u) =

∞X
n=1

2nIP(Xu ≥ n) ≤
∞X
n=1

n

2n−2
<∞.

Therefore {Zu, u ∈ [0, 1)} is uniformly integrable.
As for the continuity, we write

H(u) = IE

Z Nu

u
1{Bt−Bu≥0} dt = IEZu.

where B is some standard Brownian motion with B0 ≡ 0 and

Nu
.
= inf {n ∈ IN0 : Bn −Bu ≥ 0} .

Let u ∈ [0, 1) and let {un} be an arbitrary sequence in [0, 1) with un → u. Since for any
Þxed n IP(Bn −Bu = 0) = 0,

Zun → Zu

with probability one. Since the Zun are uniformly integrable, we have

H(un)→ H(u),

which completes the proof. 2

Now for any u ∈ [0, 1) and h > 0, deÞne the function

G(h;u)
.
= IE

Z Nhh

uh
e−r(t−uh)

£−rφ̄(St) + Lφ̄(St)¤1{St≥xδ} dt,
where

dSt
St

= b(St) dt+ σ(St) dWt, Suh = 0

and
Nh .= inf {n ∈ IN : Snh ≥ xδ} .
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Let bac denote the integer part of a. It follows from strong Markov property that

IEx
Z τhδ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt = IEx

h
e−rτδG

³
h;
τδ
h
−
jτδ
h

k´i
.

The change of variable t 7→ th and the transformation

Y
(h)
t

.
=
Sth − xδ√

h

yield

G(h;u) = hF (h; u)
.
= hIE

Z Nh

u
e−r(t−u)h

£−rφ̄+ Lφ̄¤(√hY (h)t + xδ)1{Y (h)t ≥0} dt,

where Y (h) follows the dynamics

dY
(h)
t = (

√
hY

(h)
t + xδ)

h√
hb(
√
hY

(h)
t + xδ) + σ(

√
hY

(h)
t + xδ) dWt

i
, Y (h)u = 0.

Therefore

IEx
Z τhδ

0
e−rt[−rφ̄(St) + Lφ̄(St)]1{St≥xδ} dt = hIEx

h
e−rτδF

³
h;
τδ
h
−
jτδ
h

k´i
. (3.4)

We have the following result regarding F (h;u). Although part of the proof is similar to
that of Lemma 3.3, we provide the details for completeness.

Lemma 3.4. 1. F (h;u) is uniformly bounded for small h and all u ∈ [0, 1).
2.

lim
h→0

F (h; u) = [−rφ̄+ Lφ̄](x∗)H(u),

and the convergence is uniform on any compact subset of [0, 1).

Proof. Consider the family of random variables {Zh,u : u ∈ [0, 1), h ∈ (0, 1)} where

Zh,u
.
=

Z Nh

u
e−r(t−u)h

£−rφ̄+ Lφ̄¤(√hY (h)t + xδ)1{Y (h)t ≥0} dt

and

dY
(h)
t = (

√
hY

(h)
t + xδ)

h√
hb(
√
hY

(h)
t + xδ) + σ(

√
hY

(h)
t + xδ) dWt

i
, Y (h)u = 0.

We Þrst show this family is uniformly integrable. Since (−rφ̄+Lφ̄) is bounded, it is sufficient
to show that

Xh,u
.
=

Z Nh

u
1{Y (h)t ≥0} dt (3.5)
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are uniformly integrable. DeÞne

c
(h)
0

.
=

Z 1

u
1{Y (h)t ≥0} dt, c

(h)
j

.
=

Z j+1

j
1{Y (h)t ≥0} dt, j ∈ IN

As in the proof of Lemma 3.3, if c
(h)
j > 0, then Y

(h)
t spends some time to the right of zero in

interval [j, j + 1]. Therefore the probability Y
(h)
j+1 ≥ 0 is bounded from below by a positive

constant:

IP
³
Nh = j + 1

¯̄
Nh > j, c

(h)
j > 0

´
≥ α > 0, ∀ u ∈ [0, 1), h ∈ (0, 1).

A proof is as follows. To show a lower bound α > 0 exists, it suffices to show that for some
α > 0

pt,h
.
= IP(Y

(h)
t ≥ 0 ¯̄Y (h)0 ≥ 0) ≥ α > 0, ∀ t ∈ [0, 1].

However, it is easy to see that

pt,h = IP(Sth ≥ xδ |S0 ≥ xδ)

≥ IP

µ
exp

½Z th

0

£
b(Su)− 1

2
σ2(Su)

¤
du+

Z th

0
σ(Su) dWu

¾
≥ 1

¶
≥ IP

µZ th

0
σ(Su) dWu ≥ c1th

¶
,

where c1
.
= kbk∞ + 1

2kσ2k∞. We can view the stochastic integral Qt
.
=
R t
0 σ(Su) dWu a

time-changed Brownian motion. Indeed, there exists a Brownian motion B such that

Qt = BhQit .

Let
σ
.
= inf

x
σ(x) σ̄

.
= sup

x
σ(x).

Then
σ2h ≤ hQit ≤ σ̄2h.

It follows that

pt,h ≥ IP (Qth ≥ c1th) ≥ IP
µ

min
σ2th≤s≤σ̄2th

Bs ≥ c1th
¶
= IP

µ
min

σ2≤s≤σ̄2
Bs ≥ c1

√
th

¶
,

where the last equality follows since
n

1√
th
Bths, s ≥ 0

o
is still a standard Brownian motion.

For h ∈ (0, 1), we can choose

α = IP

µ
min

σ2≤s≤σ̄2
Bs ≥ c1

¶
> 0,

which will serve as a lower bound.
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Now deÞne

Mh,u
.
=

Nh−1X
j=0

1{c(h)j >0},

which clearly dominates Xh,u. By the strong Markov property,

IP(Mh,u > j + 1
¯̄
Mh,u > j) ≤ 1− α,

and thus
IP(Mh,u ≥ j) ≤ (1− α)j−1.

This implies that

IE(M2
h,u) =

∞X
j=0

2jIP(Mh,u ≥ j) ≤
∞X
j=0

2j(1− α)j−1 <∞,

which implies the uniform integrability of {Zh,u, u ∈ [0, 1), h ∈ (0, 1)}. In particular,
F (h;u) is uniformly bounded for u ∈ [0, 1) and h ∈ (0, 1).

For the uniform convergence, it suffices to show that for any u ∈ [0, 1) and any sequence
uh ∈ [0, 1) converging to u,

F (h; uh) = IEZh,uh → [−rφ̄+ Lφ̄](x∗)H(u).

Let Y (h) be the process with Y
(h)

uh
= 0. As h → 0, we have that Y (h) converges weakly to

Y , where Y is deÞned as
Yt = x∗σ(x∗)(Wt −Wu).

By the Skorohod representation, we can assume Y (h) → Y with probability one. Using the
uniform integrability, it suffices to show that

Zh,uh → Z
.
=

Z N

u
1{Yt≥0} dt

with probability one. Note N is almost surely Þnite, and that

Nh → N

with probability one. The almost sure convergence of Zh,uh to Z then follows from the
dominated convergence theorem, which completes the proof. 2

Returning to the proof of Proposition 3.1, we claim that

lim
h→0

IEx
h
e−rτδF

³
h;
τδ
h
−
jτδ
h

k´i
= C[−rφ̄+ Lφ̄](x∗)IEx

£
e−rτ∗

¤
(3.6)

where C
.
=
R 1
0 H(u) du. To ease notation, let

Uh
.
=
τδ
h
−
jτδ
h

k
.

20



It suffices to show that

lim
h→0

IEx
£
e−rτδF (h;Uh)

¤
= C[−rφ̄+ Lφ̄](x∗)IEx

£
e−rτ∗

¤
.

We can write

IEx
£
e−rτδF (h;Uh)

¤
= IEx

£
e−rτδF (h;Uh)

¤− [−rφ̄+ Lφ̄](x∗)IEx £e−rτδH(Uh)¤
+ [−rφ̄+ Lφ̄](x∗)IEx

£
e−rτδH(Uh)

¤
.

In Proposition 4.1 in the Appendix we show, roughly speaking, that (τδ, Uh) converges in
distribution to (τ∗, U) as h and δ tend to zero, where U is uniformly distributed and inde-
pendent of τ∗. This is not strictly true, in that we ignore what happens on the unimportant
event τ∗ =∞. It follows from Proposition 4.1 that

IEx
£
e−rτδH(Uh)

¤ → IEx
£
e−rτ∗

¤ Z 1

0
H(u) du = CIEx

£
e−rτ∗

¤
.

Therefore, to prove (3.6) we must show that

4 .
= IEx

£
e−rτδF (h;Uh)

¤− [−rφ̄+ Lφ̄](x∗)IEx £e−rτδH(Uh)¤ → 0.

Due to the uniform boundedness of F and H, there exists R ∈ (0,∞) such that¯̄
F (h, u)

¯̄
+
¯̄
[−rφ̄+ Lφ̄](x∗)H(u)

¯̄ ≤ R ∀ u ∈ [0, 1)
when h is small enough. Since Uh ⇒ U , for h small enough,

IP (Uh > 1− ε) ≤ 2ε.
Also, by Lemma 3.4 for h small enough

sup
u∈[0,1−ε]

¯̄
F (h, u)− [−rφ̄+ Lφ̄](x∗)H(u)

¯̄ ≤ ε.
It follows that, for h small enough,

4 ≤ εIP(Uh ≤ 1− ε) +RIP(Uh > 1− ε) ≤ (2R+ 1)ε,
which completes the proof of (3.6).

It follows directly from the deÞnitions of V (x) and τ∗ that

IEx
£
e−rτ∗

¤
= V (x)/φ̄(x∗). (3.7)

Also, the deÞnition of A in (2.2) and the fact that (−rV + LV )(x∗−) = 0 imply that

(−rφ̄+ Lφ̄)(x∗) = (−rV + LV )(x∗−) + 1
2
σ2(x∗)x2∗

£
φ̄00(x∗)− V 00(x∗−)

¤
=

1

2
σ2(x∗)x2∗

£
φ̄00(x∗)− V 00(x∗−)

¤
=

1

2
σ2(x∗)x2∗Aφ̄(x∗).

The proposition follows by combining the last display with (3.4), (3.6), and (3.7).
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3.2 Proof of Proposition 3.2

In this subsection we verify equation (3.3):

4W̄ 0
δ(xδ)IE

x

Z τhδ

0
e−rtdLSt (xδ) = [Kx∗σ(x∗)Ach+ o(h)]V (x).

We recall the notation xδ = x∗ − δ, where δ = c
√
h+ o(

√
h). It follows from the deÞnition

(2.2) of A that

4W̄ 0
δ(xδ) = φ̄0(xδ)− φ̄(xδ)

V (xδ)
V 0(xδ)

=

µ
φ̄0 − φ̄

V
V 0
¶0 ¯̄̄̄
¯
x∗

· (−δ) + o(δ)

= [V 00(x∗−)− φ̄00(x∗)]δ + o(δ)
= cAφ(x∗)

√
h+ o(

√
h).

As a consequence, the main difficulty in proving (3.3) lies with the term

IEx
Z τhδ

0
e−rtdLSt (xδ).

As in the previous subsection, we consider the transformation

Y
(h)
t

.
=
Sth − xδ√

h
.

Then Y (h) satisÞes the SDE

dY
(h)
t = (

√
hY

(h)
t + xδ)

h√
hb(
√
hY

(h)
t + xδ) + σ(

√
hY

(h)
t + xδ) dWt

i
.

We have the following lemma, whose proof is trivial from the deÞnition of the local time
and thus omitted.

Lemma 3.5. Suppose X is a semimartingale, and Yt
.
= aXbt + v where a > 0, b > 0, v are

arbitrary constants. Let LY and LX denote the local times for Y and X, respectively. Then
for all t ≥ 0

LYt (ax+ v) = aL
X
bt (x).

It follows from the lemma that

IEx
Z τhδ

0
e−rtdLSt (xδ) =

√
hIEx

Z Nh

0
e−rthdLY

(h)

t (0).

For any u ∈ [0, 1), deÞne the process
Y ∗t = x∗σ(x∗)Wt, Y ∗u = 0.

Also deÞne
Q(u)

.
= IELY

∗
u,N(0), where N

.
= inf {n ∈ IN : Y ∗n ≥ 0}

We have the following result.
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Proposition 3.3.

lim
h→0

IEx
Z Nh

0
e−rthdLY

(h)

t (0) = IEx
£
e−rτ∗

¤ Z 1

0
Q(u) du

Before giving the proof, we show how the proposition will follow from Proposition 3.3.
We have IExe−rτ∗ = V (x)/φ̄(x∗), and the deÞnitions of Q and M imply

R 1
0 Q(u)du =

(x∗)2σ(x∗)2
R 1
0 M(u)du. When combined with the expansion given above for ∆W

0
δ(xδ), the

left hand side of (3.3) is equal to

cAφ̄(x∗)
V (x)

φ̄(x∗)
(x∗)2σ(x∗)2

Z 1

0
M(u)du+ o(h),

and thus (3.3) follows from Lemma 3.2.

Proof of Proposition 3.3. We consider the test function

f(x)
.
=


0, if x ≤ 0
x, if 0 ≤ x ≤ 1
k, if x ≥ 2.

We require f(x) to be increasing, and smooth except at the point x = 0 (the speciÞc choice
of k is not important). It follows from the generalized It�o formula and the integration by
parts formula that

d
h
e−rthf(Y (h)t )

i
= −rhe−rthf(Y (h)t ) dt+ e−rthD−f(Y (h)t ) dY

(h)
t

+
1

2
e−rthf 00(Y (h)t )dY

(h)
t · dY (h)t + e−rthdLX

(h)

t (0).

Without loss of generality, we let f 00(0) = 0. Now we integrate both sides from 0 to Nh and
take expected value. The stochastic integral on the right hand sideZ Nh

0
e−rthD−f(Y (h)t )(

√
hY

(h)
t + xδ)σ(

√
hY

(h)
t + xδ) dWt

has expectation 0 since

D−f(Y (h)t )(
√
hY

(h)
t + xδ)

is bounded (note that D−f(x) = 0 for x ≥ 2) and σ is bounded by assumption.
The Þrst term on the right hand side will contribute

−rhIEx
Z Nh

0
e−rthf(Y (h)t ) dt = −rhIEx

Z Nh

τδ
h

e−rthf(Y (h)t ) dt

since f(x) = 0 for x ≤ 0. We recall the deÞnition (3.5) of Xh,u. It follows from the strong
Markov property that

IEx
Z Nh

τδ
h

e−rthf(Y (h)t ) dt ≤ kIEx
Z Nh

τδ
h

1{Y (h)t ≥0} dt = kIE
xG(h, Uh)
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where
Uh

.
=
τδ
h
−
jτδ
h

k
and

G(h, u)
.
= IEXh,u.

By the uniform integrability of Xh,u for small h and u ∈ [0, 1), IExG(h, Uh) is uniformly
bounded for small h. Therefore the expectation of the Þrst term in the right hand side goes
to zero as h→ 0. The second term in the right hand side contributes

√
hIEx

Z Nh

0
e−rthD−f(Y (h)t )(

√
hY

(h)
t + xδ)b(

√
hY

(h)
t + xδ) dt.

Note that the integrand is bounded by 1{Y (h)t ≥0} up to a proportional constant. It follows
exactly as in the case of the Þrst term that the contribution of the second term goes to zero.
The third term in the right hand side contributes

IEx
Z Nh

0

1

2
e−rthf 00(Y (h)t )(

√
hY

(h)
t + xδ)

2σ2(
√
hY

(h)
t + xδ) dt.

Since f 00(x) = 0 for x < 0, expected value equals

IEx
Z Nh

τδ
h

1

2
e−rthf 00(Y (h)t )(

√
hY

(h)
t + xδ)

2σ2(
√
hY

(h)
t + xδ) dt.

It follows from strong Markov property that the expectation can also be written

IEx
£
e−rτδF (h;Uh)

¤
,

where

F (h;u)
.
= IE

Z Nh

u

1

2
e−r(t−u)hf 00(Y (h)t )(

√
hY

(h)
t + xδ)

2σ2(
√
hY

(h)
t + xδ)1{Y (h)t ≥0} dt

and where Y (h) satisÞes the same dynamics with Y
(h)
u = 0. Since the integrand is bounded

due to the fact that f 00(x) = 0 for all x ≥ 2, it follows from an analogous argument to the
one given in the proof of Lemma 3.4 that:

1. F (h;u) is uniformly bounded for small h and all u ∈ [0, 1);
2.

J(u)
.
= lim
h→0

F (h; u) =
1

2
IE

Z N

u
f 00(Y ∗t )x

2
∗σ
2(x∗) dt

and the convergence is uniform on any compact subset of [0, 1).

The uniform convergence (on compact sets) of F and Proposition 4.1 in the Appendix imply
that the expectation of the third term converges to

IEx
£
e−rτ∗

¤ Z 1

0
J(u) du.
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We omit the details here since an analogous argument is used in the proof of Proposition
3.1.

It remains to calculate the contribution from the term

IEx
h
e−rτ

h
δ f(Y

(h)

Nh )
i
= IEx

£
e−rτδK(h,Uh)

¤
where

K(h;u)
.
= IE

h
e−r(N

h−u)hf(Y (h)
Nh )

i
with Y

(h)
u = 0. However, the boundedness and continuity of f ensure that

1. K(h;u) is uniformly bounded for all h and all u ∈ [0, 1).
2.

I(u)
.
= lim
h→0

K(h;u) = IE[f(Y ∗N)|Y ∗u = 0]

and the convergence is uniform on any compact subset of [0, 1).

Indeed, the Þrst claim is trivial. As for the second claim, let uh → u. Then as h → 0,
Y (h) ⇒ Y ∗. By the Skorohod representation theorem we can assume Y (h) → Y ∗ with
probability one, which also implies that Nh → N with probability one. Therefore,

Y
(h)

Nh → Y ∗N

with probability one. The claim now follows from the dominated convergence theorem.
Hence similarly we have

IEx
h
e−rτ

h
δ f(Y

(h)

Nh )
i

→ IEx
£
e−rτ∗

¤ Z 1

0
I(u) du,

as h→ 0. It is now sufficient to prove

I(u)− J(u) = Q(u) ∀ u ∈ [0, 1).

This is the same showing

IE

∙
f(Y ∗N)−

1

2

Z N

u
f 00(Y ∗t )x

2
∗σ
2(x∗) dt− LY ∗u,N(0)

¸
= 0,

where
Y ∗t = x∗σ(x∗)Wt, Y ∗u = 0.

To prove this, we apply It�o�s formula to f(Y ∗) to obtain

f(Y ∗N)− f(Y ∗u ) =
Z N

u
D−f(Y ∗t )x∗σ(x∗) dWt +

1

2

Z N

u
f 00(Y ∗t )x

2
∗σ
2(x∗) dt+ LY

∗
u,N(0).

But f(Yu) = f(0) = 0. Furthermore the integrand of the stochastic integral is dominated
by 1{Y ∗t ≥0} up to a proportional constant, which implies that the stochastic integral has
expectation 0. This completes the proof. 2
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4 Appendix: Weak convergence of (τδ, Uh)

For an arbitrary y > 0, deÞne the function

P y(x, t)
.
= IP

µ
max
0≤u≤t

Su ≥ y
¯̄
S0 = x

¶
.

We have the following lemmata.

Lemma 4.1. For every Þxed y > 0, function P y ∈ C1,2¡(0, y)× (0,∞)¢∩ C¡(0, y)× [0,∞)¢
and satisÞes the parabolic equation

−∂P
y

∂t
(x, t) + LP y(x, t) = 0 (x, t) ∈ (0, y)× (0,∞).

Proof: It follows from a standard weak convergence argument that P y is a continuous
function; see, e.g., [13]. Let (x0, t0) ∈ (0, y)× (0,∞) and deÞne the region

D
.
= (x0 − ε, x0 + ε)× (t0 − ε, t0).

Consider the parabolic equation

−∂u
∂t
(x, t) + Lu(x, t) = 0 (x, t) ∈ D,

with boundary condition u = P y on its parabolic boundary. It follows from standard PDE
theory that there exists a classical solution u [8]. It remains to show that u = P y in the
domain D. DeÞne the stopping time

τ
.
= inf {t ≥ 0 : (t0 − t, St) 6∈ D} .

It follows that the process u(St, t0 − t) is a (bounded) martingale. In particular,

u(x0, t0) = IE
x0u(Sτ , t0 − τ) = IEx0P y(Sτ , t0 − τ) = P y(x0, t0).

Here the last equality follows from strong Markov property. 2

For Þxed 0 < x < y, the �density� of the hitting time τy is deÞned as

py(x, t)
.
=
∂P y

∂t
(x, t).

According to the preceding lemma, py is continuous in the domain (0, y)× (0,∞).
Lemma 4.2. Suppose yn → y∗, then P yn(x, t) → P y∗(x, t) and pyn(x, t) → py

∗
(x, t) uni-

formly on any compact subset of (0, y∗)× (0,∞).
Proof: It suffices to show that P yn(x, t) → P y

∗
(x, t) uniformly on any compact subset.

The uniform convergence of pyn then follows from Friedman [8, Section 3.6]. Suppose
D
.
= [x0, x1]× [t0, t1] ⊆ (0, y∗)× (0,∞) is a compact subset. In the following, we will denote
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P yn and P y∗ by Pn and P respectively. Also, without loss of generality, we assume yn ≤ y∗
for all n, which implies that

Pn(x, t) ≥ P (x, t).
For any ε > 0, we want to show that for large enough n,

0 ≤ Pn(x, t)− P (x, t) ≤ ε ∀ (x, t) ∈ D.
DeÞne

τ
.
= inf {t ≥ 0 : St ≥ y∗} ; τn

.
= inf {t ≥ 0 : St ≥ yn}

Since P is continuous, it is uniformly continuous on the compact subset D. It follows that
there exists a number h such that

IP
¡
t < τ ≤ t+ h ¯̄S0 = x¢ = P (x, t+ h)− P (x, t) ≤ ε

2
∀ (x, t) ∈ D,

and thus for all (x, t) ∈ D
Pn(x, t)− P (x, t)
= IPx(τn ≤ t, τ > t)
= IPx(τn ≤ t, τ > t+ h) + IPx(τn ≤ t, t < τ ≤ t+ h)
≤ IP(τn ≤ t, τ > t+ h) + ε

2
.

However, it follows from strong Markov property that

IP(τn ≤ t, τ > t+ h
¯̄
S0 = x) ≤ IP

µ
max
0≤u≤h

St ≤ y∗
¯̄
S0 = yn

¶
∀ (x, t) ∈ D.

Note that the right hand side is independent of (x, t) ∈ D. DeÞne

c1
.
= kbk∞ + 1

2
kσ2k.

Then the right hand side is dominated by

IP

µ
max
0≤u≤h

[−c1u+Qu] ≤ log y∗
yn

¶
,

where Qu
.
=
R u
0 σ(St) dWt. Since σ

2u ≤ hQiu ≤ σ̄2u and Qu = BhQiu for some standard
Brownian motion B, the probability is in turn dominated by

IP

µ
max

0≤t≤σ̄2h

∙
−c1
σ
t+Bt

¸
≤ log y∗

yn

¶
.

For n big enough, this probability is at most ε2 since yn → y. This completes the proof. 2

Proposition 4.1. Suppose f : [0,∞)→ IR is a bounded continuous function with

lim
x→∞ f (x) = 0,

and g : [0, 1)→ IR a continuous, bounded function. Then

lim
h,δ→0

IEx
h
f (τδ) g

³τδ
h
−
jτδ
h

k´i
= IExf (τ∗) ·

Z 1

0
g (u) du.

for all x ∈ (0, x∗).
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Proof: Fix x ∈ (0, x∗). Let pδ and p denote the �density� of τδ and τ∗ respectively. We can
assume that all xδ are close to x∗ in the sense that x∗ − xδ ≤ δ0 for some δ0, and x < xδ.
Since

lim
x→∞ f (x) = 0,

we have

IEx
h
f (τδ) g

³τδ
h
−
jτδ
h

k´i
=

Z ∞

0
f (s) g

³ s
h
−
j s
h

k´
pδ (s) ds.

For any ε > 0, there exists 0 < a < M <∞ such thatZ
[0,a]

f (s) g
³ s
h
−
j s
h

k´
pδ (s) ds ≤ kfk∞ · kgk∞IP (τδ ≤ a) ≤ kfk∞ · kgk∞IP (τδ0 ≤ a) ≤ ε.

and Z
[M,∞]

f (s) g
³ s
h
−
j s
h

k´
pδ (s) ds ≤ max

M≤x
|f (x) | · kgk∞ ≤ ε.

Note that such choices of (a,M) also make the above inequalities hold when pδ is replaced
by p. Also since pδ → p uniformly on the compact interval [ε,M ], we haveZ M

a
f (s) g

³ s
h
−
j s
h

k´
|pδ (s)− p (s)| ds ≤ ε

for δ small enough. It remains to show that, for h small enough,¯̄̄̄Z M

a
f (s) g

³ s
h
−
j s
h

k´
p (s) ds−

Z M

a
f (s) p (s) ds ·

Z 1

0
g (u) du

¯̄̄̄
≤ ε.

However, since f, p and f · p are all uniformly continuous on compact intervals, we have

Z M

a
f (s) g

³ s
h
−
j s
h

k´
p (s) ds =

bMh cX
n=b ahc

Z (n+1)h

nh
f (nh) g

³ s
h
− n

´
p (nh) ds+ o (1)

=

Z 1

0
g (u) du

bMh cX
n=b ahc

f (nh) p (nh) · h+ o (1)

=

Z 1

0
g (u) du

Z M

a
f (s) p (s) ds+ o (1)

This completes the proof. 2
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