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Abstract

This paper studies the �rst passage times to 
at boundaries for a double exponential jump

di�usion process, which consists of a continuous part driven by a Brownian motion and a jump

part with jump sizes having a double exponential distribution. Explicit solutions of the Laplace

transforms, of both the distribution of the �rst passage times and the joint distribution of the

process and its running maxima, are obtained. Because of the overshoot problems associated

with general jump di�usion processes, the double exponential jump di�usion process o�ers a

rare case in which analytical solutions for the �rst passage times are feasible. In addition, it

leads to several interesting probabilistic results. Numerical examples are also given. The �nance

applications include pricing barrier and lookback options.

Key words: Renewal theory, martingale, di�erential equations, integral equations, in�nitesimal

generators, marked point processes, L�evy processes, Gaver-Stehfest algorithm.

AMS 1991 subject classi�cations: Primary 60J75, 44A10; secondary 60J27.

1 Introduction

Jump di�usion processes are processes of the form

Xt = �Wt +

NtX
i=1

Yi + �t; X0 � 0:

Here fWt; t � 0g is a standard Brownian motion with W0 = 0, fNt; t � 0g is a Poisson process,

constants � and � > 0 are the drift and volatility of the di�usion part, respectively, and the

jump sizes Y1; Y2; � � � ; are independent identically distributed random variables. They are used,

for example, in �nance to model asset (stock, bond, currency, etc.) prices. Two examples are the

normal jump di�usion process (Merton, 1976) where Y has a normal distribution, and the double
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exponential jump di�usion process (Kou, 1999) where Y has a double exponential distribution

(could be asymmetric).

This paper focuses on the �rst passage times for the double exponential jump di�usion process:

�b := inf ft � 0; Xt � bg ; b > 0:

The main problems studied include the distribution of the �rst passage time

(1.1) P(�b � t);

for all t > 0, the joint distribution between the �rst passage time and the terminal value

(1.2) P(�b � t; Xt � a);

and the joint distributions between the overshoot and the �rst passage time

(1.3) P(�b � t; X�b � b > y); y � 0; P(�b � t; X�b � b = 0);

As a by product, we also compute P(�b < 1), E(�b1f�b<1g), P(�b < 1; X�b � b = 0), and

P(�b <1; X�b � b > y) for y � 0, explicitly.

There are three reasons why these problems are interesting. First, from a purely probabilistic

point of view, the double exponential jump di�usion process o�ers a rare case in which analytical

solutions of the �rst passage times are feasible. Because of the jump part, when a jump di�usion

process crosses the boundary level b; sometimes it hits the boundary exactly and sometimes it

may incur an \overshoot" over the boundary. In general, the distribution of the overshoot and

the dependent structures between the overshoot and the original jump di�usion process are not

known analytically, thus making it impossible to get closed form solutions of the distribution of

the �rst passage times. However, if the jump sizes, Y 's, have an exponential-type distribution,

the overshoot problems can be solved analytically, thanks to the special feature of the memoryless

property associated with the exponential distribution. See Siegmund (1985, Ch. 8) and Woodroofe

(1982) for some detailed discussions of overshoot problems.

Second, the study leads to several interesting probabilistic results. (1) Although the exponen-

tial random variables have memoryless properties, the �rst passages time and the overshoot are

dependent, despite the fact that the two are conditionally independent given that the overshoot is

bigger than 0. (2) The renewal-type integral equations, which are used frequently in studying �rst

passage times, may not lead to unique solutions for the problems, because the boundary conditions

are diÆcult to determine; see Section 4.3. Instead, our approach based on di�erential equations

and martingales can circumvent this problem of uniqueness.
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Third, from the applied probability point of view, the results of this paper are useful in option

pricing. Brownian motion and normal distribution have been widely used, for example, in Black-

Scholes option pricing framework, to study the return of assets. However, two puzzles, that emerged

from many empirical investigations, have recently received a great deal of attention, namely the

leptokurtic feature, meaning that the return distribution of assets may have a higher peak and two

(asymmetric) heavier tails than those of the normal distribution, and an empirical abnormality

called \volatility smile" in option pricing. Many studies have been conducted to modify the Black-

Scholes models, in order to explain the two puzzles. To incorporate the leptokurtic and asymmetric

features, a variety of models have been proposed, including, among others, (a) chaos theory, fractal

Brownian motion, and stable processes; (b) generalized hyperbolic models, including log t model

and log hyperbolic model; (c) time changed Brownian motions. In a parallel development, di�erent

models are also proposed to incorporate the \volatility smile." Popular ones are (a) stochastic

volatility and ARCH models; (b) constant elasticity model (CEV model); (c) normal jump di�usion

model; (d) implied binomial trees. See the textbooks by Hull (2000) and DuÆe (1998) for more

details.

An immediate problem with these models is that it may be diÆcult to obtain analytical solutions

for the purpose of option pricing; more precisely, they might give some analytical formulae for the

regular call and put options, but certainly not for the popular path-dependent options, such as

perpetual American options, barrier and lookback options. To get analytically tractable models,

and to incorporate both the leptokurtic feature and the \volatility smile," the double exponential

jump di�usion model is proposed by Kou (1999); see also Glasserman and Kou (1999) for pricing

of interest rate derivatives under such model and more background about general jump di�usion

models.

The explicit calculation of (1.1) and (1.2) for the �rst passage time can be used to get closed

form solutions for pricing barrier and lookback options under the double exponential jump di�usion

model. The details of its �nance applications, being too long to be included here, will be reported

in Kou and Wang (2001).

In this paper, we shall demonstrate that it is possible to compute the Laplace transform for (1.1),

(1.2), and (1.3) explicitly. In the case of (1.2), the Laplace transform is given in terms of a special

function called Hh function, which can be computed easily via a linear recursion. Using a Laplace

inverse algorithm (the Gaver-Stehfest algorithm), both (1.1) and (1.2) can then be computed very

fast; see Section 6 for details of Laplace inversion and some numerical examples.

An outline of the paper is as follows. In Section 2 the double exponential jump di�usion

process is introduced, and intuition about the closed form solutions is also given. Section 3 gives
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some preliminary results. Section 4 presents the computation of the Laplace transform of the �rst

passage times, its immediate corollaries, and its connection with the integral equation approach.

The joint distribution of the jump di�usion process and its running maxima is considered in Section

5, which also includes a brief account of Hh functions. Inversion of Laplace transforms and numerical

examples are given in Section 6. Some proofs and technical details are deferred to Appendices to

ease exposition.

2 Background and Intuition

Consider a complete probability space (
;F ; fFt; t � 0g;P) where the �ltration satis�es the usual

conditions. The double exponential jump di�usion process analyzed in this paper consists of two

parts, a continuous part driven by a Brownian motion, and a jump part with jump sizes having a

common double exponential distribution. More precisely,

(2.1) Xt = �Wt + �t+

NtX
i=1

Yi; X0 � 0:

Here fWt; t � 0g is a standard Brownian motion, and fNt; t � 0g is a Poisson process with

intensity �. Constants � and � > 0 represent the drift and volatility of the continuous part,

respectively. The jump sizes fY1; Y2; � � � g form a sequence of independent identically distributed

(i.i.d.) random variables with the common density

(2.2) fY (y) = p � �1e��1y1fy�0g + q � �2e�2y1fy<0g;

where constants p; q � 0, p + q = 1 and �1; �2 > 0. Note that the means of the two exponential

distributions are 1=�1 and 1=�2. We also assume that the random processes fWt; t � 0g, fNt; t � 0g
and random variables fY1; Y2; � � � g are independent. The jump part of this process,

PNt

i=1 Yi, is a

special case of the so-called marked point processes; further background on marked point processes

can be found, for example, in Br�emaud (1981) and Jacod and Shiryaev (1987).

We are interested in analyzing the �rst passage time to level b; de�ned by

(2.3) �b
4
= inf ft � 0; Xt � bg ; b > 0;

where

X�b

4
= lim sup

t!1
Xt; on the set f�b =1g:

More precisely, we shall examine the distribution of the �rst passage time

(2.4) P(�b � t) = P( max
0�s�t

Xs � b)
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for all t � 0; and the joint distribution of the �rst passage time and the terminal value,

P(�b � t; Xt � a);

and their related quantities.

Without the jump part, the process simply becomes a Brownian motion with drift �. The

distribution of the �rst passage times and the joint distribution between the �rst passage times

and the terminal values for a Brownian motion with drift are well known. They can be obtained

either by a combination of a change of measure (Girsanov theorem) and the re
ection principle,

or by calculating the Laplace transforms via some appropriate martingales and optional sampling

theorem. Details of both methods can be found in many classical textbooks on stochastic analysis;

see, for example, Karatzas and Shreve (1991), and Karlin and Taylor (1975).

With the jump part, however, it is very diÆcult to study the �rst passage times for general

jump di�usion processes. When a jump di�usion process crosses boundary level b; sometimes it

hits the boundary exactly and sometimes it incurs an \overshoot", X�b � b, over the boundary. See

Fig. 1 for an illustration.

Figure 1: A Simulated Sample Path with the Overshoot Problem

The overshoot presents several problems, if one wants to compute the distribution of the �rst

passage times analytically.

� One needs to get the exact distribution of the overshoot, X�b � b; particularly, P(X�b � b = 0)

and P(X�b � b > x), x > 0. This is only possible if the jump size Y has an exponential type

distribution, thanks to the memoryless property of the exponential distribution.
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� One needs to know the dependent structure between the overshoot, X�b � b, and the �rst

passage time �b. The two random variables are conditionally independent, given that the

overshoot is bigger than 0, if the jump size Y has an exponential type distribution, again

thanks to the memoryless property. This conditionally independent structure seems to be

very special to the exponential distribution, and does not hold for general distributions.

� If one wants to use the re
ection principle to study the �rst passage times, the dependent

structure between the overshoot and the terminal value Xt is also needed afterwards. This

is not known to the best of our knowledge, even for the double exponential jump di�usion

process.

Consequently, we can derive closed form solutions for the Laplace transforms of the �rst passage

times for the double exponential jump di�usion process, yet cannot give more explicit calculations

beyond that, as the correlation between Xt and X�b � b is not available. However, for other jump

di�usion processes, even analytical forms of the Laplace transforms seem to be quite diÆcult, if

not impossible.

To compute the Laplace transform of P(�b � t), we use both martingale and di�erential equa-

tions. There are two other possible approaches: renewal-type integral equations and Wiener-Hopf

factorization. Renewal-type integral equations are frequently used in actuarial science literature

(see, for example, Gerber and Landry, 1998, and reference therein) to study �rst passage times.

However, (1) most of actuarial literature is devoted to one-sided jump distributions (thus it might

not have the overshoot problems, if, for example, the jump size can only be negative and the barrier

is positive), and our double exponential distribution is two-sided (can jump both up and down);

(2) the renewal equations may not lead to unique solutions (see Section 4.3 for details), and thus

would not solve the problems in our case.

Wiener-Hopf factorization has been widely used to study the �rst passage times for L�evy pro-

cesses (note that the double exponential jump di�usion process is a special case of the L�evy pro-

cesses); for a survey, see, for example, Sato (1999). Many such studies focus on one-sided jumps;

see, for example, Rogers (2000). However, because of the one-sided jumps, the \overshoot" prob-

lems are avoided, as the jumps are in the opposite direction of the barrier crossing. A closely

related paper for two-sided jumps is Boyarchenko and Levendorski (2000), in which they discuss

the Wiener-Hopf factorization for general jump di�usion processes. In general, explicit calculation

of the Wiener-Hopf factorization is diÆcult. Because of the special structure of the exponential

distribution, especially due to its memoryless property, we can solve the �rst passage time problems

explicitly. In some sense, that also suggests, though indirectly, that the Wiener-Hopf factorization
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could be performed explicitly in the case of double exponential jump di�usion processes.

After the Laplace transform of �b is calculated, the Laplace transform of P(�b � t; Xt � a) can

be obtained as a product of the Laplace transforms of �b and Xt. Most of Section 5 is devoted to

computing the Laplace transform of Xt by using the Hh function.

3 Preliminary Results

The in�nitesimal generator of the jump di�usion process (2.1) is given by

(3.1) Lu(x) = 1

2
�2u00(x) + �u0(x) + �

Z 1

�1
[u(x+ y)� u(x)] fY (y) dy;

for all twice continuously di�erentiable functions u(x). In addition, suppose � 2 (��2; �1). The

moment generating function of jump size Y is given by

E

h
e�Y
i
=

p�1
�1 � �

+
q�2

�2 + �
;

from which the moment generating function of Xt can be obtained as

(3.2) �(�; t)
4
= E

h
e�Xt

i
= expfG(�)tg;

where the function G(�) is de�ned as

(3.3) G(x)
4
= x�+

1

2
x2�2 + �

�
p�1

�1 � x
+

q�2
�2 + x

� 1

�
:

Lemma 3.1. The equation

G(x) = �; 8� > 0;

has exactly four roots: �1;�, �2;�, ��3;�, ��4;�, where

0 < �1;� < �1 < �2;� <1; 0 < �3;� < �2 < �4;� <1:

In addition, let the overall drift of the jump di�usion process be

�u
4
= �+ �

�
p

�1
� q

�2

�
:

Then as �! 0,

�1;� !
�

0, if �u � 0
��1 ; if �u < 0

; �2;� ! ��2 ;

where ��1 and ��2 are de�ned as the unique roots

G(��1 ) = 0; G(��2) = 0; 0 < ��1 < �1 < ��2 <1:
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Proof. Since G(�) is a convex function on interval (��2; �1) with G(0) = � � (p+ q� 1) = 0, and

G(�1�) = +1, G(��2+) = +1, there is exactly one root �1;� for G(x) = � on the interval (0; �1),

and another one on the interval (��2; 0). Furthermore, Since G(�1+) = �1, G(+1) =1, there

is at least one root on (�1;1). Similarly, there is at least one root on (�1;��2), as G(�1) =1
and G(��2�) = �1. But the equations G(�) = � is actually a polynomial equation with degree

four; therefore, the equation can have at most four real roots. It follows that on each interval,

(�1;��2) and (�1;1), there is exactly one root.

The limiting results when �! 0 follow easily, once we note that G0(0) = �u: 2

The following result shows that the memoryless property of the random walk of exponential

random variables leads to the conditional memoryless property of the jump di�usion process.

Proposition 3.1. (Conditional Memoryless Property). For any x > 0,

(3.4) P(�b � t; X�b � b � x) = e��1xP(�b � t; X�b � b > 0);

(3.5) P(X�b � b � xjX�b � b > 0) = e��1x;

Furthermore, conditional on X�b � b > 0, the stopping time �b and the overshoot X�b � b are

independent; more precisely, for any x > 0,

(3.6) P(�b � t; X�b � b � xjX�b � b > 0) = P(�b � tjX�b � b > 0)P(X�b � b � xjX�b � b > 0);

Proof. We only need to show that equality (3.4) holds. Equality (3.5) follows readily by letting

t ! 1 and observe that on set fX�b > bg, the hitting time �b is �nite by de�nition; and equality

(3.6) also holds since

P(�b � t; X�b � b � xjX�b � b > 0) =
P(�b � t; X�b � b � x)

P(X�b � b > 0)
= e��1x

P(�b � t; X�b � b > 0)

P(X�b � b > 0)

= P(X�b � b � xjX�b � b > 0)P(�b � tjX�b � b > 0):

Deonte by T1; T2; : : : , the arrival times of the Poisson process N . It follows that

P(�b � t; X�b � b � x) =
1X
n=1

P(Tn = �b � t; XTn � b � x) :=
1X
n=1

Pn;

as the overshoot insider the probability can only occur during the arrive times of the Poisson
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process, because x > 0. However, with X0(t) = �Wt + �t, we have

Pn = P( max
0�s<Tn

Xs < b; XTn � b+ x; Tn � t)

= EfP(XTn � b+ xjFTn�; Tn)1fmax0�s<Tn Xs<b; Tn�tgg
= Efp expf��1(b+ x�X0(Tn)� �1 � � � � � �n�1)g1fmax0�s<Tn Xs<b; Tn�tgg
= e��1xEfp expf��1(b�X0(Tn)� �1 � � � � � �n�1)g1fmax0�s<Tn Xs<b; Tn�tgg
= e��1xEfP(XTn > bjFTn�; Tn)1fmax0�s<Tn Xs<b; Tn�tgg
= e��1xP( max

0�s<Tn
Xs < b; XTn > b; Tn � t)

= e��1xP(XTn � b > 0; Tn = �b � t):

It follows that

P(�b � t; X�b � b � x) =

1X
n=1

e��1xP(Tn = �b � t; X�b � b > 0) = e��1xP(�b � t; X�b � b > 0):

This completes the proof. 2

It is easy to verify from the conditional memoryless property that, for any x > 0, the following

equalities hold:

P(X�b � b � x) = e��1xP(X�b � b > 0);

E(e���b1fX�b
�b+xg) = e��1xE(e���b1fX�b

�b>0g):

4 Distribution of the First Passage Times

4.1 The Laplace Transforms

Theorem 4.1. For any � 2 (0;1), let �1;� and �2;� be the only two positive roots for the equation

� = G(�);

where 0 < �1;� < �1 < �2;� < 1. Then we have the following results regarding the Laplace

transforms of �b and X�b :

E[e���b ] =
�1 � �1;�

�1
� �2;�
�2;� � �1;�

e�b�1;� +
�2;� � �1

�1
� �1;�
�2;� � �1;�

e�b�2;� ;(4.1)

E

h
e���b1fX�b

�b>yg
i

= e��1y
(�1 � �1;�)(�2;� � �1)

�1(�2;� � �1;�)

h
e�b�1;� � e�b�2;�

i
; 8y � 0;(4.2)

E

h
e���b1fX�b

=bg
i

=
�1 � �1;�
�2;� � �1;�

e�b�1;� +
�2;� � �1
�2;� � �1;�

e�b�2;� :(4.3)
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Proof. Here we focus on the proof for (4.1) and (4.2). Equation (4.3) follows immediately by

taking the di�erence of (4.1) and (4.2) by letting y = 0. For notation simplicity, we shall write

�i � �i;�, i = 1; 2.

Proof of \(4.1)": For any �xed level b > 0, de�ne the function u to be

u(x)
4
=

�
1 ; x < b

A1e
��1(b�x) +B1e

��2(b�x) ; x � b
;

where A1 and B1 are de�ned to be the two coeÆcients in front of the exponential terms in (4.1).

Clearly 0 � u(x) � 1 for all x 2 (�1;1), because �1, �2 � 0. Note that on the set f�b < 1g,
u(X�b) = 1 since A1 +B1 = 1. Furthermore, the function u is continuous.

Plugging in this form of u and doing the integration in two regions,
R1
�1 =

R b�x
0 +

R1
b�x, we

have, after some algebra, that, for all x < b, ��u+ Lu is equal to

(4.4) A1e
�(b�x)�1f(�1) +B1e

�(b�x)�2f(�2)� �pe��1(b�x)
�
A1

�1
�1 � �1

+B1
�1

�1 � �2
� 1

�
;

where f(�)
4
= G(�) � �: Since

f(�1) = f(�2) = 0; A1
�1

�1 � �1
+B1

�1
�1 � �2

� 1 = 0;

we have

(4.5) ��u(x) + Lu(x) = 0; 8x < b:

Because function u(x) is continuous, but not C1 at x = b, we cannot apply Itô formula directly

to process
�
e��tu(Xt); t � 0

	
. However, it is not diÆcult to see that there exists a sequence

of functions fun(x); n = 1; 2; � � � g such that: (1) un(x) is smooth everywhere, and in particular

it belongs to C2; (2) un(x) = u(x) for all x � b; (3) un(x) = 1 = u(x) for all x � b + 1
n
; (4)

0 � un(x) � 2 for all x and n. Clearly, un(x)! u(x) for all x.

It follows from a straightforward calculation that, for x < b,

Lun(x) =
1

2
�2u00n(x) + �u0n(x) + �

Z 1

�1
[un(x+ y)� un(x)] fY (y) dy

=
1

2
�2u00n(x) + �u0n(x)� �un(x) + �

Z 1

�1
un(x+ y)fY (y) dy

=
1

2
�2u00(x) + �u0(x)� �u(x) + �

Z b�x

�1
u(x+ y)fY (y) dy

+ �

Z b�x+ 1

n

b�x
un(x+ y)fY (y) dy + �

Z 1

b�x+ 1

n

u(x+ y)fY (y) dy

= �u(x) + �

Z b�x+ 1

n

b�x
un(x+ y) � fY (y) dy � �

Z b�x+ 1

n

b�x
u(x+ y)fY (y) dy;

10



thanks to (4.5). Since jun � uj � 1 by construction, it follows that,

(4.6) j��un(x) + Lun(x)j � �p

Z b�x+ 1

n

b�x

��un(x+ y)� u(x+ y)
�� � �1 dy � �p�1

n
! 0; 8 x < b

uniformly in x, as n ! 1. Applying the Itô formula for jump processes (see, e.g., Protter, 1990)

to the process
�
e��tun(Xt); t � 0

	
, we obtain that the process

M
(n)
t

4
= e��(t^�b)un

�
Xt^�b

�� Z t^�b

0
e��s(��un(Xs) + Lun(Xs)) ds; t � 0;

is a local martingale starting from M
(n)
0 = un(0) = u(0). However,

���M (n)
t

��� � 2 +
�p�1
n

t; 8t � 0;

thanks to (4.6). It follows from the Dominated Convergence Theorem, fM (n)
t ; t � 0g is actually a

martingale. In particular,

EM
(n)
t = E

�
e��(t^�b)un (Xt^�b)�

Z t^�b

0
e��s

���un(Xs) + Lun(Xs)
�
ds

�
= u(0);

for all t � 0. Letting n!1, It follows from Dominated Convergence Theorem that

lim
n!1E

h
e��(t^�b)un (Xt^�b)

i
= E

h
e��(t^�b)u(Xt^�b)

i
;

and, thanks to the uniform convergence in (4.6),

lim
n!1E

�Z t^�b

0
e��s

���un(Xs) + Lun(Xs)
�
ds

�
= lim

n!1E

�Z t^�b�

0
e��s

���un(Xs) + Lun(Xs)
�
ds

�
= 0:

Therefore, for any t � 0,

u(0) = E

h
e��(t^�b)u(Xt^�b)

i
= E

h
e��(t^�b)u(Xt^�b)1f�b<1g

i
+ E

�
e��tu(Xt)1f�b=1g

�
:

Now letting t!1, we have, thanks to the boundedness of u,

u(0) = E
�
e���bu(X�b)1f�b<1g

�
= E

�
e���b1f�b<1g

�
= E

�
e���b

�
;

as u(X�b) = 1 on set f�b <1g, from which the result follows.

Proof of \(4.2)": it is very similar to the previous proof, so we only give an outline. It suÆces

to consider the case where y > 0, as the case for y = 0 follows by letting y # 0. Let u(x)
4
=

E
x
h
e���b1fX�b

�b>yg
i
, we expect that u satis�es the equation

��u(x) + Lu(x) = 0

11



for all x < b, and u(x) = 1 if x � b + y while u(x) = 0 if x 2 [b; b + y). This equation can be

explicitly solved. Indeed, consider a solution taking form

u(x) =

8<
:

1 ; x > b+ y
0 ; b < x � b+ y

A2e
�(b�x)�1 +B2e

�(b�x)�2 ; x � b

where constants A2 and B2 are yet to be determined. Plug in to obtain that

���u+Lu�(x) = A2e
�(b�x)�1f(�1)+B2e

�(b�x)�2f(�2)��pe��1(b�x)
�

A2�1
�1 � �1

+
B2�1
�1 � �2

� e��1y
�
= 0:

for all x < b. Since f(�1) = f(�2) = 0, it suÆces to choose A2 and B2 so that

A2
�1

�1 � �1
+B2

�1
�1 � �2

= e��1y:

Furthermore, the continuity of u at x = b implies that

A2 +B2 = 0:

Solve the equations to obtain A2 and B2 (A2 = �B2), which are exactly the coeÆcients in (4.2).

A similar argument as before yields

u(0) = E
�
e���bu(X�b)1f�b<1g

�
= E

h
e���b1fX�b

>b+yg1f�b<1g
i
= E

h
e���b1fX�b

�b>yg
i
;

as u(X�b) = 1fX�b
>b+yg on the set f�b <1g, from which the proof is terminated. 2

Note the following Laplace transform, which is convenient for numerical Laplace inversion,Z 1

0
e��tP(�b � t)dt =

1

�

Z 1

0
e��tdP(�b � t) =

1

�
E(e���b):

Remark 4.1. Here some very special features of exponential density functions enable us to ex-

plicitly solve the di�erential equations associated with the Laplace transforms; see, for example,

the three-term decomposition in (4.4). For general jump di�usion processes, such explicit solutions

might not be available, partly because of the lack of the three-term decomposition.

4.2 Properties

Corollary 4.1. We have P(�b <1) = 1 if and only if �u � 0. Furthermore, if �u � 0, then

P(X�b � b > y) = e��1y
��2 � �1
��2

h
1� e�b�

�
2

i
; 8y � 0;

P(X�b = b) =
�1
��2

+
��2 � �1
��2

e�b�
�
2 :

12



If �u < 0, then

P(�b <1) =
�1 � ��1
�1

� ��2
��2 � ��1

e�b�
�
1 +

��2 � �1
�1

� ��1
��2 � ��1

e�b�
�
2 < 1;

P(�b <1; X�b � b > y) = e��1y
(�1 � ��1)(�

�
2 � �1)

�1(�
�
2 � ��1)

h
e�b�

�
1 � e�b�

�
2

i
; 8y � 0;

P(�b <1; X�b = b) =
�1 � ��1
��2 � ��1

e�b�
�
1 +

��2 � �1
��2 � ��1

e�b�
�
2 :

Here ��1 and ��2 are de�ned as in Lemma 3.1.

Proof. By Lemma 3.1, if �u � 0, then, as �! 0, �1;� ! 0 and �2;� ! ��2 . Thus,

P(�b <1) = lim
�!0

E[e���b ] = 1:

If �u < 0, then, as � ! 0, �1;� ! ��1 and �2;� ! ��2 . The result follows by letting � ! 0 in (4.1),

(4.2), and (4.3). 2

Remark 4.2. It is surprising to see from Theorem 4.1 and Corollary 4.1 that the �rst passage

time �b and the overshoot X�b � b are dependent, although Proposition 3.1 shows that they are

conditionally independent.

Corollary 4.2. The expectation of the �rst passage time is �nite, i.e. E[�b] < 1, if and only if

�u > 0. Indeed,

E[�b] =

(
1
�u

h
b+

��
2
��1

�1�
�
2

(1� e�b��2 )
i

; if �u > 0

+1 ; if �u � 0

)
:

Furthermore, for �u < 0, we have

E
�
�b1f�b<1g

�
= C1e

�b��1 + C2e
�b��2 <1;

where

C1
4
=

1

�1(��2 � ��1)2

�
��2(�

�
2 � �1) + b��2(�1 � ��1)(�

�
2 � ��1)

G0(��1)
+
��1(�1 � ��1)
G0(��2)

�
;

C2
4
=

1

�1(�
�
2 � ��1)2

�
��1(�

�
1 � �1) + b��1(�1 � ��2)(�

�
1 � ��2)

G0(��2)
+
��2(�1 � ��2)
G0(��1)

�
:

See Lemma 3.1 for the de�nition of (��1 ; �
�
2 ).

Proof: To ease exposition, we will use �i to denote �i;�. Since the function 1
x
(1 � e�x) is

decreasing for x 2 [0;+1), it follows that with probability one,

1� e���b

�
1f�b<1g " �b1f�b<1g as � # 0:

13



By Monotone Convergence Theorem, we have

E
�
�b1f�b<1g

�
= lim

�#0
E

�
1� e���b

�
1f�b<1g

�
= lim

�#0
P(�b <1)� Ee���b

�
= � lim

�!0

d

d�
Ee���b ;

where the last equality follows from L'hospital rule. However, it follows from Implicit Function

Theorem that

lim
�!0

d

d�
�i = lim

�!0

1

G0(�i)
=

1

G0(��i )
:

1. For �u � 0, we have P(�b <1) = 1 and E[�b1f�b<1g] = E[�b]. Moreover, in this case, we have

�1 ! 0, �2 ! ��2 as �! 0, and G0(0) = �u, according to Lemma 3.1.

2. For �u < 0, it is trivial that E[�b] = 1. Moreover, in this case, �1 ! ��1 , �2 ! ��2 as � ! 0,

where ��1 and ��2 are both positive.

The rest of the proof is a straightforward calculation, and thus is omitted. 2

Corollary 4.3. For any � > 0 and � < �1, we have

E

h
e���b+�X�b1f�b<1g

i
= e�b

h
c1e

�b�1;� + c2e
�b�2;�

i
;

where

c1 =
�1 � �1;�
�2;� � �1;�

� �2;� � �

�1 � �
; c2 =

�2;� � �1
�2;� � �1;�

� �1;� � �

�1 � �
:

Proof. It follows that

E

h
e���b+�X�b1f�b<1g

i
= E

h
e���b+�X�b1fX�b

=b; �b<1g
i
+ e�bE

h
e���b+�(X�b

�b)1fX�b
>b; �b<1g

i
= e�bE

h
e���b1fX�b

=b; �b<1g
i
+ e�b

�1
�1 � �

E

h
e���b1fX�b

>b; �b<1g
i

= e�bE
h
e���b1fX�b

=bg
i
+ e�b

�1
�1 � �

E

h
e���b1fX�b

>bg
i
;

where we have used the conditional memoryless property. The claim follows from Theorem 4.1. 2

Note that if �u � 0, then P(�b <1) = 1 and Corollary 4.3 implies that

E

h
e���b+�1;�X�b

i
= 1;

which can be veri�ed alternatively by applying the optional sampling theorem to the exponential

martingale

e�1;�Xt�G(�1;�)t = e�1;�Xt��t; t � 0:

14



4.3 Connection with Renewal-Type Integral Equations

We have used martingale and di�erential equations to derive closed form solutions of the Laplace

transforms for the �rst-passage-time probabilities. Another possible and popular approach to solv-

ing the problems, now investigated in this section, is to set up some integral equations by using

renewal arguments. For simplicity, we shall only consider the case of overall drift being nonnegative,

i.e. �u � 0; in which �b <1 almost surely.

For any x > 0, de�ne P (x) as the probability of no overshoot occurs for the �rst passage time

�x with X0 � 0, that is

(4.7) P (x)
4
= P(X�x = x):

Proposition 4.1. P (x) satis�es the following renewal type integral equation:

P (x+ y) = P (y)P (x) +
�
1� P (x)

� Z y

0
P (y � z) � �1e��1z dz;

However, the solution to this renewal equation is not unique. Indeed, for every � � 0, the function

P�(x) =
�1

�1 + �
+

�

�1 + �
e�(�1+�)x

satis�es the integral equation with the boundary condition P�(0) = 1.

Proof. A renewal argument and the memoryless property of the exponential distribution yield

P (x+ y) = P(X�x+y = x+ y
��X�x = x)P(X�x = x) + P(X�x+y = x+ y

��X�x > x)P(X�x > x)

= P (y)P (x) +
�
1� P (x)

� Z y

0
P (y � z) � �1e��1z dz;

thanks to the fact that �b is �nite almost surely. Now it remains to check that P�(x) satis�es the

integral equation for every � � 0. To this end, note thatZ y

0
P�(y � z) � �1e��1zdz = �1

�1 + �
(1� e��1y) +

�1
�1 + �

e��1y � �1
�1 + �

e�(�1+�)y:

It is then very easy to check that

(1� P�(x))

Z y

0
P�(y � z) � �1e��1zdz = ��1

(�1 + �)2

h
1� e�(�1+�)x � e�(�1+�)y + e�(�1+�)(x+y)

i
;

P�(x)P�(y) =
1

(�1 + �)2
f�21 + �1�e

�(�1+�)x + �1�e
�(�1+�)y + �2e�(�1+�)(x+y)g:

Thus,

P�(x)P�(y) + (1� P�(x))

Z y

0
P�(y � z) � �1e��1zdz = �1

�1 + �
+

�

�1 + �
e�(�1+�)(x+y) = P�(x+ y);
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and the proof is complete. 2

Remark 4.3. Proposition 4.1 shows that, in the presence of two-sided jumps, the renewal-type

integral equations may not have unique solutions, mainly because of the diÆculty of determining

enough boundary conditions based on renewal arguments alone. It is easy to see that � = �P 0�(0).
Indeed, as we have shown in Corollary 4.1, it is possible to use the in�nitesimal generator and

di�erential equations to determine �. The point here is, however, that the renewal-type integral

equations cannot do the job by themselves.

5 Joint Distribution of Jump Di�usion and Its Running Maxima

The following probability

P(Xt � a; max
0�s�t

Xs � b) = P(Xt � a; �b � t);

for some �xed numbers a � b and b > 0, is useful, for example, in pricing barrier options while the

logarithm of the underlying asset price is modeled by a jump di�usion process. In this section, we

evaluate the Laplace transform
R1
0 e��tP(Xt � a; �b � t) dt; for all � > 0. It turns out that the

above Laplace transform has an explicit expression, in terms of Hh functions. We shall �rst give a

brief account of the Hh functions.

5.1 Hh Functions

The Hh functions are de�ned as

(5.1) Hhn(x)
4
=

Z 1

x

Hhn�1(y) dy =
1

n!

Z 1

x

(t� x)ne�
t2

2 dt; n = 0; 1; 2; � � � ;

(5.2) Hh�1(x)
4
= e�

x2

2 ; Hh0(x)
4
=
p
2��(�x);

where �(x) is the cumulative distribution function of the standard normal density. The Hh functions

are non-increasing, and have a three term recursion, which is very useful in numerical calculation:

(5.3) Hhn(x) =
1

n
Hhn�2(x)� x

n
Hhn�1(x); n � 1;

for more details, see Abramowitz and Stegun (1972, p. 691).

Introduce the following function

(5.4) Hi(a; b; c;n)
4
=

1p
2�

Z 1

0
e(

1

2
c2�b)ttn+

i
2Hhi

�
c
p
t+

ap
t

�
dt:

16



Here i � �1; n � 0 are both integers and we assume:

(5.5) Assumption: a; b; c are arbitrary constants such that b > 0 and c > �p2b:

For i � 1, it follows from identity (5.3) that

(5.6) Hi(a; b; c;n) =
1

i
Hi�2(a; b; c;n + 1)� c

i
Hi�1(a; b; c;n + 1)� a

i
Hi�1(a; b; c;n):

This recursive formula can be used to determine all the values of Hi's, starting from H�1(a; b; c;n)

and H0(a; b; c;n). See Appendix A for details.

5.2 Laplace Transform

Proposition 5.1. The Laplace transform of the joint distribution is given byZ 1

0
e��tP(Xt � a; �b � t) dt = A

Z 1

0
e��tP(Xt � a� b) dt+B

Z 1

0
e��tP(Xt + �+ � a� b) dt:

Here �+ is an independent exponential random variable with rate �1 > 0, and

A
4
= E

h
e���b1fX�b

=bg
i
=

�1 � �1;�
�2;� � �1;�

e�b�1;� +
�2;� � �1
�2;� � �1;�

e�b�2;�(5.7)

B
4
= E

h
e���b1fX�b

>bg
i
=

(�1 � �1;�)(�2;� � �1)

�1(�2;� � �1;�)

h
e�b�1;� � e�b�2;�

i
:(5.8)

Proof. We need to compute two integrals

I =

Z 1

0
e��tP(Xt � a;X�b = b; �b � t)dt; II =

Z 1

0
e��tP(Xt � a;X�b > b; �b � t)dt:

For the �rst one,

I =

Z 1

0
e��t

Z t

0
P(Xt � a;X�b = b; �b 2 ds) dt

=

Z 1

0

Z t

0
e��tP(X�b = b; �b 2 ds)P(Xt�s � a� b) dt

=

Z 1

0
e��sP(X�b = b; �b 2 ds) �

Z 1

0
e��uP(Xu � a� b) du

= E

h
e���b1fX�b

=bg
i
�
Z 1

0
e��tP(Xt � a� b) dt;

where the second equality follows from the strong Markov property, and the third equality follows

from the fact that the Laplace transform of convolution is the product of Laplace transforms.

As for the second term, observe that for any s 2 [0; t],

P(Xt � a; X�b > b; �b 2 ds) = P(X�b > b; �b 2 ds)P(Xt�s + �+ � a� b);
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by the conditional memoryless property and the conditional independence (see Proposition 3.1),

as well as the strong Markov property; here �+ is some independent exponential random variable

with rate �1. It follows exactly like term (I) that

II = E

h
e���b1fX�b

>bg
i
�
Z 1

0
e��tP(Xt + �+ � a� b) dt;

from which the proof is completed. 2

Theorem 5.1. The Laplace transform of the joint distribution can be further written as

Z 1

0
e��tP(Xt � a; �b � t) dt = (A+B)

1X
n=0

�n

n!
H0(�h;��;��

�
;n)

+ eh��1
1X
n=1

nX
j=1

�n

n!
(APn;j +B �Pn;j)

 
j�1X
i=0

(��1)
iHi(h;��; c+;n)

!

� e�h��2
1X
n=1

nX
j=1

�n

n!
(AQn;j +B �Qn;j)

 
j�1X
i=0

(��2)
iHi(�h;��; c�;n)

!

+ eh��1B

1X
n=1

nX
i=0

(�p)n

n!
(��1)

iHi(h;��; c+;n) + eh��1BH0(h;��; c+; 0):

Here

Pn;i
4
=

n�1X
j=i

�
n
j

�
pjqn�j

�
n� i� 1
j � i

��
�1

�1 + �2

�j�i� �2
�1 + �2

�n�j
81 � i � n� 1;

Qn;i
4
=

n�1X
j=i

�
n
j

�
qjpn�j

�
n� i� 1
j � i

��
�2

�1 + �2

�j�i� �1
�1 + �2

�n�j
81 � i � n� 1;

while Pn;n
4
= pn and Qn;n

4
= qn;

�Pn;1
4
=

nX
i=1

Qn;i

�
�2

�1 + �2

�i

; �Pn;i = Pn;i�1; 8 2 � i � n+ 1;

�Qn;i
4
=

nX
j=i

�
n
j

�
qjpn�j

�
n� i
j � i

��
�2

�1 + �2

�j�i� �1
�1 + �2

�n�j+1
; 8 1 � i � n;

(5.9) c+
4
= ��1 +

�

�
; c�

4
= ��2 � �

�
; ��

4
= �+ �+

�2

2�2
; h

4
=

b� a

�
;

and A and B are given by equations(5.7) and (5.8).
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The proof of this theorem is long and is given in Appendix B.

Remark 5.1. All the parameters involved in H functions in Theorem 5.1 satisfy the assumption

(5.5).

Remark 5.2. It is easy to derive the corresponding result for P(Xt � �a; ~��b � t), a � b, b > 0,

where ~��b := infft � 0 : Xt � �bg, More precisely, one only needs to do the following changes in

Theorem 5.1: p! q, q ! p, �1;� ! �3;�, �1 ! �2, �2 ! �1, and �2;� ! �4;�.

6 Laplace Inversion and Numerical Examples

Since the solutions of the �rst passage times are given in terms of Laplace transforms, numerical

inversion of Laplace transforms becomes necessary. To do this, we shall use the Gaver-Stehfest

algorithm. The reason is that among all the Laplace inversion algorithms, to our best knowledge,

the Gaver-Stehfest is the only one that does the inversion on the real line; all others perform the

calculation in the complex domain, which are unsuitable for our purpose as the Laplace transforms

in our case involve �nding the roots �1;� and �2;�. For a survey of Laplace inversion algorithms,

see the paper by Abate and Whitt (1992).

The algorithm is very simple. For any bounded real-valued function f(�) de�ned on [0;1) that

is continuous at t,

f(t) = lim
n!1

~fn(t);

where

(6.1) ~fn(t) =
ln(2)

t

(2n)!

n!(n� 1)!

nX
k=0

(�1)k
�
n

k

�
f̂

�
(n+ k)

ln(2)

t

�
;

and f̂ is the Laplace transform of f , i.e. f̂(�) =
R1
0 e��tf(t)dt: To speed up the convergence, an

n-point Richardson extrapolation can be used. More precisely, f(t) can be approximated by f�n(t),

for large n, where

f�n(t) =
nX

k=1

w(k; n) ~fk(t);

and the extrapolation weights w(k; n) are given by

(6.2) w(k; n) = (�1)n�k kn

k!(n� k)!
:

Numerically, we �nd that it is better to ignore the �rst few initial calculations of ~fk. As a result

the algorithm approximates f(t) by f�n(t); where

f�n(t) =
nX

k=1

w(k; n) ~fk+B(t);
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with ~f and w given by (6.1) and (6.2), and B � 0 is the initial burning-out number (typically

equals to 2 or 3).

Main advantages of the Gaver-Stehfest algorithm are: (a) it is very easy to program (several

lines of code will do the job); (b) it converges very fast; as we will see, the algorithm typically

converges nicely even for n between 5 and 10; (c) it is stable (i.e. small perturbation of initial

inputs will not lead to a dramatic change of �nal results), if high accuracy computation is used.

A main disadvantage of the algorithm is that it needs high accuracy, as both ~fn and the weights

w(k; n) involve factorials and alternative +=� signs. In our numerical examples, typically an

accuracy of 30-80 digits is needed. However, in many software packages (e.g. \Mathematica") one

can specify arbitrary accuracy, and in standard programming languages (e.g. C++) subroutines

for high precision calculation are available. So this is not a big problem.

It is easy to compute the marginal and joint distributions of the �rst passages times for the

double exponential jump di�usion process by using the Laplace transform formulae given in Sections

4 and 5, in conjunction with the Gaver-Stehfest algorithm. As a numerical illustration, we shall

present two examples, one is to compute P(�b � t), and the other P(�b � t; Xt � a), for b = 0:3,

a = 0:2, and t = 1. The parameters, which are chosen to re
ect those in typical �nance applications,

for the double exponential jump di�usion are � = �0:1, � = 0:2, p = 0:5, �1 = 1=0:02, �2 = 1=0:03,

and � = 3. To make a comparison with the Monte Carlo simulation, we also use � = 0:01, so that

the results may be compared with the limiting Brownian motion case (� = 0); the formulae for the

�rst passage times of Brownian motion can be found in many textbooks; e.g. Karlin and Taylor

(1975).

All the computations are done on a Pentium 400 PC. The initial burning-out number used in

all calculations is B = 2. Also, in calculating P(�b � t; Xt � a), we truncate the Poisson sum after

the 10th term, as additional numerical calculations suggest that the error involves in the truncation

is less than 10�6. The reason why the calculation of P(�b � t; Xt � a) takes longer time is that it

requires of computing the functions Hi recursively and \Mathematica" is slow in terms of recursive

calculation.

To speed up the simulation, binomial apprixomation is used to simulate the Poisson processes.

Note that the Monte Carlo simulation is biased and slow, due to two sources of errors: random

sampling error and systematic discretization bias. It is quite possible to signicantly reduce the

random sampling error here (thus the width of the con�dence intervals) by using some variance

reduction techniques, such as control variates and importance sampling (suitable for the case of

�u < 0). The systematic discretization bias, resulting from approximating a continuous time process

by a discrete time process in simulation, is, however, very diÆcult to be reduced; in the examples
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n P(�b � t) P(�b � t; Xt � a)

� = 0:01 � = 3 � = 0:01 � = 3

1 0.34669 0.33472 0.30266 0.28114
2 0.30818 0.29912 0.27062 0.25673
3 0.28211 0.27521 0.24940 0.23849
4 0.26880 0.26313 0.23886 0.22886
5 0.26328 0.25819 0.23464 0.22507
6 0.26136 0.25649 0.23324 0.22393
7 0.26078 0.25599 0.23285 0.22367
8 0.26063 0.25587 0.23277 0.22363
9 0.26060 0.25585 0.23275 0.22362
10 0.26060 0.25584 0.23275 0.22362

Total CPU Time 1.26 sec 1.76 sec 4.53 min 4.61 min

Brownian Motion Case 0.26061 N.A. 0.23278 N.A.

Monte Carlo Simulation

200 Points point est. 0.248 0.244 0.226 0.218
CPU Time: 15 min 95% C.I. (0.241, 0.255) (0.236, 0.252) (0.220, 0.232) (0.211, 0.225)

2000 Points point est. 0.254 0.251 0.227 0.220
CPU Time: 1 hr 20 min 95% C.I. (0.247, 0.261) (0.244, 0.258) (0.220, 0.234) (0.214, 0.226)

Table 1: Positive Overall Drift �u > 0 (� = 0:1).

n P(�b � t) P(�b � t; Xt � a)

� = 0:01 � = 3 � = 0:01 � = 3

1 0.07737 0.07884 0.04762 0.04626
2 0.06878 0.07096 0.04591 0.04558
3 0.06296 0.06562 0.04455 0.04480
4 0.05999 0.06289 0.04376 0.04428
5 0.05876 0.06176 0.04340 0.04404
6 0.05833 0.06137 0.04328 0.04397
7 0.05820 0.06126 0.04325 0.04396
8 0.05817 0.06123 0.04325 0.04396
9 0.05816 0.06122 0.04325 0.04397
10 0.05816 0.06122 0.04325 0.04397

Total CPU Time 1.20 sec 1.81 sec 4.49 min 4.67 min

Brownian Motion Case 0.05815 N.A. 0.04324 N.A.

Monte Carlo Simulation

200 Points point est. 0.055 0.056 0.042 0.043
CPU Time: 15 min 95% C.I. (0.051, 0.059) (0.052, 0.060) (0.038, 0.046) (0.040, 0.046)

2000 Points point est. 0.057 0.059 0.043 0.044
CPU Time: 1 hr 20 min 95% C.I. (0.053, 0.061) (0.055, 0.063) (0.040, 0.046) (0.041, 0.047)

Table 2: Negative Overall Drift �u < 0 (� = �0:1).
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given above, it makes the calculation from the simulation biased low. Even in the Brownian motion

case, because of the presence of boundary, the discretization bias is very signi�cant, resulting in a

surprisingly slow rate of convergence for simulating the �rst passage time, both theoretically and

numerically; see Asmussen, Glynn, and Pitman (1995) (they show that the discretization error

has an order 1/2, which is much slower than the order 1 convergence for simulation without the

boundary; 16,000 points are suggested for a Brownian motion with � = �1; � = 1 and time t = 8).

In the presence of jumps, the discretization bias is even more serious, especially for large t or �.

This explains the large bias in our simulation results.

A Appendix. Computation of Hi function

We have de�ned in (5.4) the following function

Hi(a; b; c;n)
4
=

1p
2�

Z 1

0
e(

1

2
c2�b)ttn+

i
2Hhi

�
c
p
t+

ap
t

�
dt

for integers i � �1; n � 0. Throughout this section, we assume that (5.5) always holds, that is,

b > 0; c > �p2b. The following recursion formula holds:

Hi(a; b; c;n) =
1

i
Hi�2(a; b; c;n + 1)� c

i
Hi�1(a; b; c;n + 1)� a

i
Hi�1(a; b; c;n):

Therefore, it suÆces to evaluate H�1(a; b; c;n) and H0(a; b; c;n), both of which can be calculated

explicitly.

Lemma A.1. If a 6= 0, then for all integers n � 0 we have

H�1(a; b; c;n) = e�ac�
p
2a2b

r
1

2b

 r
a2

2b

!n

�
nX

j=0

(�n)j(n+ 1)j

j!(�2
p
2a2b)j

;

and for all integers n � �1

H�1(a; b; c;n) = e�ac�
p
2a2b

r
1

2b

 r
a2

2b

!n

�
�n�1X
j=0

(�n)j(n+ 1)j

j!(�2
p
2a2b)j

;

where (a)j
4
= a(a+ 1) � � � (a+ j � 1). If a = 0, then for all integers n � 0 we have

H�1(0; b; c;n) =
(2n)!

n!(4b)n

r
1

2b
;

and for all integers n � �1 we have H�1(0; b; c;n) = +1:

22



Proof: We shall prove the case of a 6= 0 �rst. Since Hh�1(x) = e�
x2

2 , by de�nition

H�1(a; b; c;n) =
1p
2�

Z 1

0
e(

1

2
c2�b)ttn�

1

2 e
� 1

2

�
c
p
t+ ap

t

�2
dt =

1p
2�

e�ac
Z 1

0
e
�
�
bt+a2

2t

�
tn�

1

2 dt:

Recall the so-called modi�ed Bessel Function of the third kind (Bateman, 1953, p. 5), K�(x), which

has an integral representation (Bateman, 1954, p. 146) as

��

2

Z 1

0
e
� z
2

�
t+�2

t

�
� 1

t�+1
dt = K�(�z)

for arbitrary constants � and � > 0; z > 0. It is easy to show that

H�1(a; b; c;n) =

r
2

�
e�ac

 r
a2

2b

!n+ 1

2

K�(n+ 1

2
)(
p
2a2b):

However, the modi�ed Bessel function K�(x) has property that

K�(x) = K��(x); 8�;

Kn+ 1

2

(x) =

r
�

2x
e�x

nX
j=0

(�n)j(n+ 1)j
j!(�2x)j ; 8n � 0;

see Bateman (1953, p. 5 and p. 10). The result follows.

Now consider the case of a = 0. We have, by de�nition, that

H�1(0; b; c;n) =
1p
2�

Z 1

0
e�bttn�

1

2 dt:

For n � �1, the integral is obviously +1. For n � 0, this integral is the Laplace transform of

tn�
1

2 , which can be found in many integral tables, and we have

H�1(0; b; c;n) =
1p
2�

(2n)!

n!(4b)n

r
�

b
=

(2n)!

n!(4b)n

r
1

2b
:

This completes the proof. 2

The following lemma gives the value of H0 in terms of H�1.

Lemma A.2. Suppose n � 0 is an integer.

1. If b = 1
2c

2, we have

H0(a; b; c;n) =
c

2(n+ 1)
H�1(a; b; c;n + 1)� a

2(n+ 1)
H�1(a; b; c;n):

23



2. If b 6= 1
2c

2, a > 0, we have

H0(a; b; c;n) =
n!

(b� 1
2c

2)n+1

nX
i=0

(b� 1
2c

2)i

i!

�a
2
H�1(a; b; c; i � 1)� c

2
H�1(a; b; c; i)

�
:

3. If b 6= 1
2c

2, a < 0, we have

H0(a; b; c;n) =
n!

(b� 1
2c

2)n+1
+

n!

(b� 1
2c

2)n+1

nX
i=0

(b� 1
2c

2)i

i!

�a
2
H�1(a; b; c; i � 1)� c

2
H�1(a; b; c; i)

�
:

4. If b 6= 1
2c

2, a = 0, we have

H0(0; b; c;n) =
n!

2(b� 1
2c

2)n+1
� n!

(b� 1
2c

2)n+1

nX
i=0

(b� 1
2c

2)i

i!

c

2
H�1(0; b; c; i):

Proof: It follows from the de�nition of Hh function (5.1) that

d

dx
Hhn(x) = �Hhn�1(x); n = 0; 1; 2; � � �

For b = 1
2c

2 (i.e. c =
p
2b > �

p
2b), since Hh0(x) =

p
2��(�x), we have

H0(a; b; c;n) =
1p
2�

Z 1

0
tnHh0

�
c
p
t+

ap
t

�
dt

=
1p
2�

tn+1

n+ 1
Hh0

�
c
p
t+

ap
t

�����
1

0

+
1p
2�

Z 1

0

tn+1

n+ 1
Hh�1

�
c
p
t+
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t

�
�
�

c

2
p
t
� a

2t
p
t

�
dt

=
c

2(n+ 1)

1p
2�

Z 1

0
tn+

1

2Hh�1

�
c
p
t+

ap
t

�
dt� a

2(n+ 1)

1p
2�

Z 1

0
tn�

1

2Hh�1

�
c
p
t+

ap
t

�
dt

=
c

2(n+ 1)
H�1(a; b; c;n + 1)� a

2(n+ 1)
H�1(a; b; c;n):

For b 6= 1
2c

2, we have the following elementary identity

d

dt

 
�n!

(b� 1
2c

2)n+1
e(

1

2
c2�b)t

nX
i=0

(b� 1
2c

2)iti

i!

!
= e(

1

2
c2�b)ttn;

and equality (note c > �p2b)

1p
2�

 
�n!

(b� 1
2c

2)n+1
e(

1

2
c2�b)t

nX
i=0

(b� 1
2c

2)iti

i!

!
� Hh0

�
c
p
t+

ap
t

������
1

0

=

8><
>:

0 ; if a > 0
n!

(b� 1

2
c2)n+1

; if a < 0

n!
2(b� 1

2
c2)n+1

; if a = 0

The rest of the proof is simply integration by parts, and is thus omitted. 2
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B Appendix. Proof of Theorem 5.1

The proof relies on four lemmas, of which the �rst two can be found in Kou (1999). The third one

can be proved by a modi�cation of Proposition 1 in Kou (1999). Thus, we only give a proof for the

last lemma.

Lemma B.1. Suppose f�1; �2; � � � g is a sequence of i.i.d. exponential random variables with rate

�, and Z is a normal random variable with distribution N(0; �2). For n � 1,

1. The tail probability of random variable Z +
Pn

i=1 �i is given by

P

 
Z +

nX
i=1

�i � x

!
=

(��)n

�
p
2�

e
1

2
(��)2In�1(x;��;� 1

�
;���):

2. The tail probability of random variable Z �Pn
i=1 �i is given by

P

 
Z �

nX
i=1

�i � x

!
=

(��)n

�
p
2�

e
1

2
(��)2In�1(x; �;

1

�
;���):

Here the function In is de�ned as

(B.1) In(c;�; �; Æ)
4
=

Z 1

c

e�xHhn(�x� Æ) dx:

Lemma B.2. If � > 0, � 6= 0:

In(c;�; �; Æ) = �e
�c

�

nX
i=0

�
�

�

�n�i
Hhi(�c� Æ) +

�
�

�

�n+1 p2�
�

e
�Æ
�
+ �2

2�2�

�
��c+ Æ +

�

�

�
:

If � < 0, � < 0:

In(c;�; �; Æ) = �e
�c

�

nX
i=0

�
�

�

�n�i
Hhi(�c � Æ) �

�
�

�

�n+1 p2�
�

e
�Æ
�
+ �2

2�2�

�
�c� Æ � �

�

�
:

If � > 0, � = 0:

In(c; 0; �; Æ) =

Z 1

c

Hhn(�x� Æ) dx =
1

�
Hhn+1(�c� Æ):

Lemma B.3. For any �xed t � 0, conditioning on Nt = n, n � 1, Xt has a decomposition in

distribution

Xt �
(

�t+ Z +
Pj

i=1 �
+
i with probability Pn;j ; j = 1; 2; � � � ; n

�t+ Z �Pj
i=1 �

�
i with probability Qn;j ; j = 1; 2; � � � ; n

)
;

and Xt + �+ has a decomposition in distribution

Xt + �+ �
(

�t+ Z +
Pj

i=1 �
+
i with probability �Pn;j ; j = 1; 2; � � � ; n+ 1

�t+ Z �Pj
i=1 �

�
i with probability �Qn;j ; j = 1; 2; � � � ; n

)
;
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where Z is a normal random variable with distribution N(0; �2t), and f�+i ; i � 1g, f��i ; i � 1g are

i.i.d. exponential random variables with rates �1 and �2, respectively.

Lemma B.4. We haveZ 1

0
e�
�
�+�
�
ttn
�
�
p
t�1
�j

�
p
2�t

e
1

2
(�1�)2tIj�1

�
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�
p
t
;��1�

p
t

�
dt(B.2)
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(��2)
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Proof. In (B.2) the Ij�1 function, j � 1, can be split into two parts by Lemma B.2:

Ij�1 =
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The term (A) will contribute
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Here the term (A) will contributeZ 1
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from which the result follows. 2.

Proof of Theorem 5.1. From Proposition 5.1 the Laplace transform of the joint distribution is

given byZ 1

0
e��tP(Xt � a; �b � t) dt = A

Z 1

0
e��tP(Xt � a� b) dt+B

Z 1

0
e��tP(Xt + �+ � a) dt;

where �+ is an independent exponential distribution with rate �1.

Let us �rst consider the �rst term. By conditioning on Nt, it follows from Lemmas B.1 and B.3

that
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Using the identity Hh0(x) =
p
2��(�x) and the de�nition of H function (5.4), it is easy to
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(note a� b = �h�). The third term in (B.4) will contribute the following
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where the last equality follows from the fact that
Pn

j=1(Pn;j +Qn;j) = 1:

It remains to evaluate the Laplace transform
R1
0 e��tP(Xt + �+ � a � b) dt; where �+ is an

independent exponential random variable with rate �1. Conditioning on Nt = 0, clearly Xt +
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Thus, its Laplace transform is given byZ 1
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the contribution of the �rst term in (B.5) to the Laplace transform is given by
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The second term in (B.5) will contribute to the Laplace transform
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(note a� b = �h�). The third term in (B.5) will contribute
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Therefore, we have, by Lemma B.4,Z 1
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where the last equality follows from the facts that
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