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Abstract

A general result is obtained for the existence of saddle-point in a stochastic game of timing, by
exploiting its connection with a bounded-variation control problem. Weak compactness arguments
prove the existence of an optimal process for the control problem. It is shown that this optimal
process generates a pair of stopping times that constitute a saddle-point for the game, using the
method of comparing costs at nearby points by switching paths at appropriate random times.

1 Introduction and Summary

In three very important and influential papers, Bensoussan & Friedman [4], [5] and Friedman [11]
developed the analytical theory of stochastic differential games with stopping times. Their setting
is that of a Markov diffusion process, and of a pair of players, each of whom can chose when
to terminate the process. At that time, and depending on who made the decision to stop, one
of the players (the “minimizer”) pays the other (“maximizer”) a certain random amount. The
problem then is for one player to minimize, and for the other to maximize, the expected value of
this payoff. Bensoussan and Friedman studied the value and saddle-points of such a game using
appropriate partial differential equations, variational inequalities, and free-boundary problems.
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Detailed expositions of their approach can be found in their monographs Bensoussan & Lions [6],
pp. 462-493, and Friedman [12].

Along a parallel track, the purely probabilistic approach to such games of timing (stopping)
was being developed in progressively greater generality, by Dynkin [9], Krylov [19], Neveu [22],
Bismut [7], Alario-Nazaret [1], Stettner [24], Alario-Nazaret, Lepeltier & Marchal [2], Lepeltier &
Maingeneau [20], Morimoto [21], among others. This theory relied on the martingale approach to
the problem of optimal stopping introduced by Snell [23], but now applied in the more challenging
setup of two coupled such stopping problems. More recently, this problem has been connected by
Cvitanić & Karatzas [8] to the solution of backwards stochastic differential equations with upper-
and lower-constraints on the state-process (see also Hamadène & Lepeltier [13], [14]), and has
received pathwise (Karatzas [15]) and mixed-strategy (Touzi & Vieille [26]) treatments.

This paper presents another approach to the general, non-Markovian stochastic game of timing
(“Dynkin game”), and brings it into contact with a suitable bounded-variation or singular control
problem. We show that the game has a value, which coincides with the derivative of the value-
function of the auxiliary control problem. An optimal process to this latter problem generates in
a simple way a pair of stopping times, that constitute a saddle-point for the game of timing; see
Theorems 3.1, 3.2. Then a result of Komlós [18] is coupled with weak compactness arguments, to
show that such an optimal process indeed exists; cf. Theorem 3.3.

The approach is very direct and “pathwise”. It uses the method of comparing costs at nearby

points by switching paths at appropriate random times, initiated by Karatzas & Shreve ([16], [17])
in the context of optimal-stopping/reflected-follower problems for Brownian motion, and further
developed in Baldursson & Karatzas [3]. The connections of singular stochastic control with games
of stopping were first noticed by Taksar [25], in a Markovian context and using very different
(analytical) methods.

2 The Two Stochastic Optimization Problems

Consider a complete probability space (Ω,F , IP) equipped with a filtration IF =
{
F (t)

}
0≤t≤T

which
satisfies the usual conditions (of right-continuity and augmentation by IP-null sets). We denote by
A the class of increasing, left-continuous and IF-adapted processes ζ : [0, T ] × Ω → [0,∞) with
ζ(0) = 0, and by B the class of processes ξ : [0, T ]× Ω → IR that can be written in the form

(2.1) ξ(t) = ξ+(t) − ξ−(t), 0 ≤ t ≤ T

for two processes ξ± ∈ A. We assume in fact that the decomposition of (2.1) is minimal, and thus
the total variation of the function s �→ ξ(s) on any interval [0, t] is given by

(2.2) ξ̌(t) = ξ+(t) + ξ−(t), ∀ 0 ≤ t ≤ T

almost surely. In the control problem of (2.5), (2.6) below, ξ+(t) (resp., ξ−(t)) represents the total
cumulative push in the positive (resp., negative) direction exerted up to time t, so that

(2.3) X(t) := x + ξ(t), 0 ≤ t ≤ T

represents the state (or position) at time t, when starting at X(0) = x ∈ IR and employing the
“strategy” ξ ∈ B. We shall denote by S the set of all IF-stopping times ρ : Ω → [0, T ]. In order to
formulate the two optimization problems that will occupy us in this paper, let us introduce:

2



• A random field H : [0, T ]×Ω×IR → IR, such that (t, ω) �→ H(t, ω, x) is IF-progressively measurable
for every x ∈ IR, and x �→ H(t, ω, x) is convex and of class C1 for every (t, ω) ∈ [0, T ]× Ω.
• Two continuous, IF-adapted processes γ : [0, T ]× Ω → [0,∞) and ν : [0, T ]× Ω → [0,∞) .
• A random field G : Ω × IR → IR, such that G(·, x) is F (T )-measurable for every x ∈ IR, and
G(ω, ·) is convex and of class C1 for every ω ∈ Ω.

On these random functions we shall impose throughout the regularity requirements

(2.4) IE
[∫ T

0
|Hx(t, x)| dt +

∣∣G′(x)
∣∣] < ∞, ∀ x ∈ IR and IE

[
sup

0≤t≤T
γ(t) + sup

0≤t≤T
ν(t)

]
< ∞.

2.1 A Bounded-Variation Control Problem

Suppose that when in state X(t) = y ∈ IR at time t ∈ [0, T ), we incur a running cost H(t, y) per
unit of time, and a running cost γ(t) (resp., ν(t)) per unit of fuel spent to push in the positive
(resp., negative) direction. Suppose also that we incur a terminal cost G(x) for being in position
X(T ) = y at the terminal time t = T . Then we should try to find a strategy ξ∗ ∈ B that attains

(2.5) V (x)
�
= inf

ξ∈B
IE[J(ξ; x)] ,

the minimal expected cost of our stochastic control problem with

(2.6) J(ξ; x)
�
=
∫ T

0
H
(
t, X(t)

)
dt +

∫
[0,T )

γ(t)dξ+(t) +
∫

[0,T )
ν(t)dξ−(t) + G

(
X(T )

)
,

in the notation of (2.1)-(2.3). If there exists a strategy ξ∗ ∈ B that attains the infimum in (2.5), it
is called optimal for the initial condition x.

2.2 A Game of Timing (Dynkin Game)

Consider two players, N and G, each of whom chooses a stopping time (σ and τ , respectively) in
S. The game terminates at σ ∧ τ , that is, as soon as one of the players decides to stop. If player G
stops first, he pays N the amount γ(τ). If player N stops first, he pays G the amount ν(σ) (resp.
G′(x)) when the game terminates before (resp., at) the end of the time-horizon T ; and as long as
the game is in progress, N keeps paying G at the rate Hx(t, x) per unit of time. In other words,
the total payment from N to G is given by the expression

(2.7) I(σ, τ ; x)
�
=
∫ σ∧τ

0
Hx(t, x) dt + ν(σ)1{σ<τ} − γ(τ)1{τ<σ} + G′(x)1{σ=τ=T },

a random variable whose expectation N tries to minimize and G to maximize. We obtain a stochastic
game of timing (or “Dynkin game”, after Dynkin [9]) with lower- and upper- values

(2.8) u(x)
�
= sup

τ∈S
inf
σ∈S

IE[I(σ, τ ; x)] ≤ ū(x)
�
= inf

σ∈S
sup
τ∈S

IE[I(σ, τ ; x)] ,

respectively. We say that the game has value u(x), if u(x) = ū(x) = u(x). A pair (σ∗, τ∗) ∈ S2 is
called saddle-point of the game, if

(2.9) IE[I(σ∗, τ ; x)] ≤ IE[I(σ∗, τ∗; x)] ≤ IE[I(σ, τ∗; x)] holds for all σ ∈ S , τ ∈ S .
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It is easy to see, that the existence of a saddle-point implies that the game has value

(2.10) u(x) = IE[I(σ∗, τ∗; x)] = u(x) = ū(x).

3 Results

The stochastic control problem of subsection 2.1 and the stochastic game of subsection 2.2 turn
out to be very closely connected. Under the conditions of Section 2, it can be proved that every
optimal strategy for the control problem induces a saddle-point for the game (Theorem 3.1), whose
value u(·) is then shown to coincide with the derivative V ′(·) of the value of the control problem
(Theorem 3.2). And under certain additional conditions on the random quantities H, G, γ and ν,
it can be shown that such an optimal strategy for the control problem indeed exists (Theorem
3.3). Consequently, under the conditions of Theorem 3.3, the Dynkin Game of section 2.2 has a

saddle-point, and this is of the type (3.1) below.

Theorem 3.1. Suppose that the process ξ∗ ∈ B is optimal for the control problem of subsection 2.1,
i.e., attains the infimum in (2.5). Write this process in its minimal decomposition ξ∗ = ξ+∗ − ξ−∗ as
in (2.1), and define the stopping times

(3.1) σ∗
�
= inf

{
t ∈ [0, T )

/
ξ−∗ (t) > 0

}
∧ T, τ∗

�
= inf

{
t ∈ [0, T )

/
ξ+
∗ (t) > 0

}
∧ T.

Then the pair (σ∗, τ∗) ∈ S2 is a saddle-point for the game of subsection 2.2, whose value is given
by

(3.2) u(x) = ū(x) = u(x)
�
= IE[I(σ∗, τ∗; x)] .

Theorem 3.2. Under the conditions of Theorem 3.1, the value function V (·) of the control problem
of (2.5), (2.6) is differentiable, and we have

(3.3) V ′(x) = u(x), ∀ x ∈ IR.

Suppose now that, in addition to the conditions in Section 2, the random functions H, G, γ and
ν satisfy

(3.4) IE
[∫ T

0

(
sup
x∈IR

H−(t, x)
)

dt +
(

sup
x∈IR

G−(t, x)
)]

< ∞,

and the a.s. conditions

(3.5) −γ(T ) ≤ G′(x) ≤ ν(T ), ∀ x ∈ IR

(3.6) γ(t) ≥ κ , ν(t) ≥ κ ; ∀ t ∈ [0, T ] for some κ > 0.

Theorem 3.3. Under the conditions (3.4)-(3.6), in addition to those of Section 2, the control
problem of (2.5), (2.6) admits an optimal process ξ∗ ∈ B.

Corollary 3.1. With the assumption of Theorem 3.3, the Dynkin game of subsection 2.2 has a
saddle-point and a value given by (3.1)-(3.2), and the relation (3.3) holds.
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4 Proofs of Theorems 3.1, 3.2

We begin with a simple observation.

Lemma 4.1. The function V (·) of (2.5) is proper, convex.

Proof : Convexity of V (·) is a consequence of the convexity of the functions H(t, ω, ·) , G(ω, ·) ,
and follows by taking infima over ζ ∈ B , η ∈ B on the right-hand side of the inequality

(4.1) V
(
λx1+(1−λ)x2

)
≤ IE[J

(
λx1+(1−λ)x2; λζ+(1−λ)η

)
] ≤ λ IE[J(x1; ζ)]+(1−λ) IE[J(x2; η)] ,

valid for x1 ∈ IR, x2 ∈ IR, 0 ≤ λ ≤ 1 ; and (2.4) implies V (x) ≤ IE
[∫ T

0 H(t, x) dt + G(x)
]

< ∞ for
every x ∈ IR , which gives properness. �

As a corollary of convexity, the right- and left- derivatives

(4.2) D±(x)
�
= lim

h→0±
V (x + h) − V (x)

h
exist, and we have D−V (x) ≤ D+V (x) , ∀ x ∈ IR.

Lemma 4.2. Under the assumption of Theorem 3.1, we have in the notation of (2.7), (3.1), (4.2):

(4.3) D+V (x) ≤ IE[I(σ, τ∗; x)] for every x ∈ IR , σ ∈ S .

Proof : We compare costs at nearby points using the technique of “switching paths at appropriate
random times” introduced in Karatzas & Shreve [16]. Let us consider the stopping times

(4.4) τε
�
= inf

{
t ∈ [0, T )

/
ξ+
∗ (t) ≥ ε

}
∧ T, 0 < ε < 1

and notice that τε ↓ τ∗ as ε ↓ 0, a.s. Introduce also the auxiliary process

(4.5) ξε(t)
�
=
{

−ξ−∗ (t) ; 0 ≤ t ≤ σ ∧ τε

ξ∗(t) − ε ; σ ∧ τε < t ≤ T

}
∈ B

for each given σ ∈ S, 0 < ε < 1. The state-process X̃ε(·) = x+ε+ξε(·) corresponds to the strategy
of “starting at x + ε and following a modification of the optimal strategy ξ∗(·) for x, whereby we
suppress any movement to the right up to time σ ∧ τε; after which we jump onto the optimal path
X∗(·) = x + ξ∗(·) for x, and follow it up to time T”. The cost associated with this strategy is

J(x + ε; ξε) =
∫ σ∧τ∗

0
H
(
t, x + ε − ξ−∗ (t)

)
dt +

∫ σ∧τε

σ∧τ∗
H
(
t, x + ε − ξ−∗ (t)

)
dt(4.6)

+
∫ T

σ∧τε

H
(
t, x + ξ+

∗ (t)− ξ−∗ (t)
)
dt + G

(
x + ξ+

∗ (T )− ξ−∗ (T )
)
· 1{σ∧τε<T }

+ G
(
x + ε − ξ−∗ (T )

)
· 1{σ=τ∗=T } + G

(
x + ε − ξ−∗ (T )

)
· 1{τ∗<σ=τε=T }

+ 1{τε≤σ}

(
γ(τε) ·

(
ξ+
∗ (τε+) − ε

)
+
∫

(τε,T )
γ(t) dξ+

∗ (t) +
∫

[0,T )
ν(t) dξ−∗ (t)

)

+ 1{τ∗≤σ<τε}

(∫
(σ,T )

γ(t) dξ+
∗ (t) + ν(σ) ·

(
ε − ξ+

∗ (σ+)
)
+
∫

[0,T )
ν(t) dξ−∗ (t)

)

+ 1{σ<τ∗}

(∫
[τ∗,T )

γ(t) dξ+
∗ (t) +

∫
[0,T )

ν(t) dξ−∗ (t) + εν(σ)

)
.
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In a similar vein, we have the decomposition

J(x; ξ∗) =
∫ σ∧τ∗

0
H
(
t, x − ξ−∗ (t)

)
dt +

∫ σ∧τε

σ∧τ∗
H
(
t, x + ξ+

∗ (t)− ξ−∗ (t)
)
dt(4.7)

+
∫ T

σ∧τε

H
(
t, x + ξ+

∗ (t) − ξ−∗ (t)
)
dt + G

(
x + ξ+

∗ (T ) − ξ−∗ (T )
)
· 1{σ∧τε<T }

+ G
(
x − ξ−∗ (T )

)
· 1{σ=τ∗=T } + G

(
x + ξ+

∗ (T )− ξ−∗ (T )
)
· 1{τ∗<σ=τε=T }

+ 1{τε≤σ}

(∫
[τ∗,τε)

γ(t) dξ+
∗ (t) + γ(τε) ·

(
ξ+
∗ (τε+) − ξ+

∗ (τε)
)

+
∫

(τε,T )
γ(t) dξ+

∗ (t) +
∫

[0,T )
ν(t) dξ−∗ (t)

)

+ 1{τ∗≤σ<τε}

(∫
[τ∗,σ)

γ(t) dξ+
∗ (t) +

∫
(σ,T )

γ(t) dξ+
∗ (t) +

∫
[0,T )

ν(t) dξ−∗ (t)

)

+ γ(σ) [ ξ+
∗ (σ+) − ξ+

∗ (σ) ] 1{τ∗≤σ<τε} + 1{σ<τ∗}

(∫
[τ∗,T )

γ(t) dξ+
∗ (t) +

∫
[0,T )

ν(t) dξ−∗ (t)

)

for the cost corresponding to the optimal process ξ∗ ∈ B at position x ∈ IR. Comparing (4.7) with
(4.6), we see that V (x + ε) − V (x) is dominated by IE[J(x + ε; ξε)]− IE[J(x; ξ∗)] , namely

V (x + ε) − V (x) ≤ IE
[∫ σ∧τ∗

0

[
H
(
t, x + ε − ξ−∗ (t)

)
− H

(
t, x − ξ−∗ (t)

)]
dt

]

+
∫ σ∧τε

σ∧τ∗

[
H
(
t, x + ε − ξ−∗ (t)

)
− H

(
t, x + ξ+

∗ (t) − ξ−∗ (t)
)]

dt

+
[
G
(
x + ε − ξ−∗ (T )

)
− G

(
x − ξ−∗ (T )

)]
· 1{σ=τ∗=T }(4.8)

+
[
G
(
x + ε − ξ−∗ (T )

)
− G

(
x + ξ+

∗ (T ) − ξ−∗ (T )
)]

· 1{τ∗<σ=τε=T }

− 1{τε≤σ}

(
γ(τε)

(
ε − ξ+

∗ (τε)
)

+
∫

[τ∗,τε)
γ(t) dξ+

∗ (t)

)
+ εν(σ) · 1{σ<τ∗}

− 1{τ∗≤σ<τε}

(
[γ(σ) + ν(σ)]

(
ξ+
∗ (σ+)− ε

)
+ γ(σ) (ε− ξ+

∗ (σ)) +
∫

[τ∗,σ)
γ(t) dξ+

∗ (t)

)]
.

Let us look at all the terms under the expectation on the right-hand side of (4.8), one by one. From
the convexity of the functions H(t, ω, ·) and G(ω, ·), we deduce that the first and second terms are
dominated by

ε

∫ σ∧τ∗

0
Hx(t, x + ε) dt and

∫ σ∧τε

σ∧τ∗

(
ε − ξ+

∗ (t)
)
Hx(t, x + ε) dt ,

while the third and fourth are dominated by

εG′(x + ε) · 1{σ=τ∗=T } and
(
ε − ξ+

∗ (T )
)
G′(x + ε) · 1{τ∗<σ=τε=T } ,
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respectively. We also observe that the fifth term can be written in the form

−εγ(τ∗)1{τ∗<σ} + ε
[
γ(τ∗)1{τ∗<σ} − γ(τε)1{τε≤σ}

]
+ 1{τε≤σ}

[
γ(τε)ξ+

∗ (τε) −
∫

[τ∗,τε)
γ(t) dξ+

∗ (t)

]
.

We can now put these observations together, and deduce from (4.8) the inequality

(4.9)
V (x + ε) − V (x)

ε
≤ IE[I(σ, τ∗; x)] +

7∑
j=1

Lj(ε), where

L1(ε)
�
= IE

∫ σ∧τ∗

0

[
Hx(t, x + ε)dt − Hx(t, x)

]
dt , L2(ε)

�
= IE

∫ σ∧τε

σ∧τ∗
|Hx(t, x + ε)| dt

L3(ε)
�
= IE

∣∣ γ(τ∗) 1{τ∗<σ} − γ(τε) 1{τε≤σ}
∣∣

L4(ε)
�
= IE

[
1
ε
·
∣∣∣∣∣ γ(τε)ξ+

∗ (τε) −
∫

[τ∗,τε)
γ(t)dξ+

∗ (t)

∣∣∣∣∣ 1{τε≤σ}

]

L5(ε)
�
= IE

[
1
ε
·
∣∣∣∣∣ ν(σ)

(
ε − ξ+

∗ (σ+)
)
−
∫

[τ∗,σ)
γ(t)dξ+

∗ (t)

∣∣∣∣∣ 1{τ∗≤σ<τε}

]

L6(ε)
�
= IE

∣∣G′(x + ε) · 1{τ∗<τε}
∣∣ , L7(ε)

�
= IE

∣∣G′(x + ε) − G′(x)
∣∣ .

It is not hard to see that limε↓0 Lj(ε) = 0, for all j = 1, · · · , 7, thanks to the dominated convergence
theorem and the conditions of (2.4). For instance, L3(ε) ≤ IE

[
|γ(τε) − γ(τ∗)| + |γ(τ∗)|1{τ∗<σ<τε}

]
,

L4(ε) ≤ IE
[

ξ+∗ (τε)
ε

· sup
τ∗≤t<τε

|γ(τε) − γ(t)|
]

≤ IE
[

sup
τ∗≤t<τε

|γ(τε) − γ(t)|
]

,

L5(ε) ≤ IE
[

1{τ∗≤σ<τε} ·
(

ν(σ)
(

1 − ξ+∗ (σ+)
ε

)
+

ξ+∗ (σ)
ε

· max
τ∗≤t≤σ

γ(t)
)]

≤ IE
[

max
0≤t≤T

(
γ(t) + ν(t)

)
· 1{τ∗≤σ<τε}

]
,

all tend to zero, as ε ↓ 0; and (4.3) follows. �

Lemma 4.3. With the same assumptions and notation as in Lemma 4.2, we have

(4.10) D−V (x) ≥ IE[I(σ∗, τ ; x)] , for every x ∈ IR , τ ∈ S .

Sketch of Proof : The situation is completely symmetric to that of Lemma 4.2, so we just sketch the
broad outline of the argument. For each given τ ∈ S , 0 < ε < 1 , we introduce the analogue σε

�
=

inf
{
t ∈ [0, T )

/
ξ−∗ (t) ≥ ε

}
∧ T , 0 < ε < 1 of the stopping time in (4.4), as well as the analogue

ϑε(t)
�
=
{

ξ+∗ (t) ; 0 ≤ t ≤ τ ∧ σε

ξ∗(t) + ε ; τ ∧ σε < t ≤ T

}

of the auxiliary process in (4.5), and note that IP[ limε↓0 ↓ σε = σ∗ ] = 1 . The state-process
X ′

ε(·) = x − ε + ϑε(·) corresponds then to the strategy of “starting at x − ε and following a
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modification of ξ∗(·), whereby we suppress any movement to the left, up to the time τ ∧ σε; after
which we follow the optimal state-process X∗(·) = x+ξ∗(·) for x, up to time T”. Comparing the cost
J(x − ε; ϑε) of this strategy to the cost J(x; ξ∗) of the optimal strategy at x, taking expectations,
dividing by ε > 0, and then letting ε ↓ 0, we arrive at (4.10) – much as we derived (4.3) through
the comparisons (4.6)–(4.9).

Proof of Theorems 3.1, 3.2 : From (4.2), (4.3) and (4.10), we obtain

D−V (x) ≤ D+V (x) ≤ IE[I(σ∗, τ∗; x)] ≤ D−V (x), ∀ x ∈ IR .

This shows that V (·) is differentiable with V ′(x) = IE[I(σ∗, τ∗; x)] , proving (3.3). Again from (4.2),
(4.3) we conclude now IE[I(σ∗, τ ; x)] ≤ V ′(x) = IE[I(σ∗, τ∗; x)] ≤ IE[I(σ, τ∗; x)] for every σ ∈ S,
τ ∈ S, proving (3.2). �

5 Proof of Theorem 3.3

Let {ηn(·)}n∈IN ⊆ B be a minimizing sequence of processes for the control problem of (2.5)-(2.6),
that is, limn→∞ IE[J(ηn; x)] = V (x) < ∞ . From the conditions (3.4) and (3.6), we have
(5.1)

sup
n∈IN

IE[η̌n(T )] ≤ 1
κ

[
sup
n∈IN

IE[J(ηn; x)] + IE
∫ T

0

(
sup
x∈IR

H−(t, x)
)

dt + IE
(

sup
x∈IR

G−(x)
)]

=: M < ∞.

It follows that supn∈IN IE
∫ T
0 |ηn(T )| dt ≤ supn∈IN IE

∫ T
0 η̌n(T ) dt ≤ MT < ∞ , so that the sequence

of processes {ηn(·)}n∈IN is bounded in IL1(λ ⊗ IP), where λ denotes Lebesgue measure on [0, T ].
Thus, thanks to a theorem of Komlós [18], there exists a subsequence (relabelled, and still denoted
by {ηn(·)}n∈IN) and a pair of B

(
[0, T ]

)
⊗ F (T )−measurable processes ϑ± : [0, T ] × Ω → [0,∞),

such that the Cesàro sequences of processes

(5.2)

⎧⎨
⎩ ξ±n (·) �

=
1
n

n∑
j=1

η±
j (·)

⎫⎬
⎭

n∈IN

⊆ A converge (λ ⊗ IP)−a.e. to ϑ±(·).

Define ξn(·) �
= ξ+

n (·) − ξ−n (·) ∈ B , for every n ∈ IN. ¿From the convexity of J(·, x) in (2.6), it is
clear that {ξn(·)}n∈IN ⊆ B is also a mininizing sequence, namely

(5.3) lim
n→∞ IE[J(ξn; x)] = V (x) < ∞ ,

and from (5.2) that the sequence of processes

(5.4)

⎧⎨
⎩ ξn(·) �

=
1
n

n∑
j=1

ηj(·)

⎫⎬
⎭

n∈IN

converges (λ ⊗ IP)−a.e. to ϑ(·) �
= ϑ+(·)− ϑ−(·) .

Using Komlós’s theorem one last time, we deduce from (5.1) the existence of two F (T )−measurable
random variables ζ± : Ω → [0,∞) , such that the sequences of random variables

(5.5)

⎧⎨
⎩ ξ±n (T ) =

1
n

n∑
j=1

η±
j (T )

⎫⎬
⎭

n∈IN

converge IP−a.s. to ζ±
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and thus limn→∞ ξn(T ) = ζ
�
= ζ+ − ζ− , IP−a.s. (possibly after passing to a further, relabelled,

subsequence, for which each of (5.2), (5.4) and (5.5) holds).

Proposition 5.1. The processes ϑ±(·) of (5.2) have modifications ξ±∗ (·) ∈ A (i.e., IF-adapted,
left-continuous, increasing, with ξ±∗ (0) = 0 ) that satisfy

(5.6) lim
n→∞ ξ±n (t) = ξ±∗ (t), IP − a.s.

for λ−a.e. t ∈ [0, T ]. In particular, we have the analogue

(5.7) lim
n→∞ ξn(t) = ξ∗(t) = ξ+

∗ (t) − ξ−∗ (t) , IP−a.s.

of (5.6), for λ−a.e. t ∈ [0, T ], where the process ξ∗(·)
�
= ξ+∗ (·)− ξ−∗ (·) belongs to B , as well as

(5.8) ξ±∗ (T ) ≤ ζ± , IP−a.s.

This result can be proved in a manner completely analogous to Lemmata 4.5–4.7, pp. 867–869
in Karatzas & Shreve [16].

Proposition 5.2. For the process ξ±∗ (·) ∈ A, ξ∗(·) ∈ B of Proposition 5.1, we have

(5.9) V (x) ≥ IE

[∫ T

0
H
(
t, x + ξ∗(t)

)
dt +

∫
[0,T )

γ(t)dξ+
∗ (t) +

∫
[0,t)

ν(t)dξ−∗ (t) + G
(
x + ξ∗(T )

)]
.

Corollary 5.3: The process ξ∗(·) of (5.7) is optimal for the control problem of (2.5), (2.6).

Proof : This is clear if the decomposition ξ∗(·) = ξ+∗ (·)−ξ−∗ (·) is minimal, because then (5.9) reads
V (x) ≥ IE[J(ξ∗; x)]. But even if this decomposition is not minimal, the right-hand side of (5.9)
dominates IE[J(ξ∗; x)], and the conclusion follows as before. �

Proof of Proposition 5.2 : From (5.5), (5.7), the assumption (3.4), and Fatou’s Lemma, we obtain

IE
∫ T

0

H
(
t, x + ξ∗(t)

)
dt ≤ lim inf

n→∞ IE
∫ T

0

H
(
t, x + ξn(t)

)
dt ,(5.10)

IE[G(x + ζ)] ≤ lim inf
n→∞ IE[G

(
x + ξn(T )

)
].(5.11)

It can also be shown that we have

IE
[∫

[0,T ) γ(t)dξ+∗ (t) + γ(T ) (ζ+ − ξ+∗ (T ))
]

≤ lim infn→∞ IE
∫
[0,T ) γ(t)dξ+

n (t)(5.12)

IE
[∫

[0,T ) ν(t)dξ−∗ (t) + ν(T ) (ζ− − ξ−∗ (T ))
]

≤ lim infn→∞ IE
∫
[0,T ) ν(t)dξ−n (t) .(5.13)

Indeed, denote by T the set of full Lebesgue measure in B
(
[0, T ]

)
on which (5.6) and (5.7) hold.

For any partition Π = {ti}m
i=1 ⊆ T of [0, T ] with 0 = t0 < t1 < · · · < tm < tm+1 = T , we have

m∑
i=1

(
inf

ti−1≤t≤ti
γ(t)

)
·
[
ξ+
n (ti) − ξ+

n (ti−1)
]
+
(

inf
tm≤t≤T

γ(t)
)[

ξ+
n (T )− ξ+

n (tm)
]
≤
∫

[0,T )

γ(t)dξ+
n (t)

9



IP−a.s. and, by (5.5) and Fatou’s lemma, lim infn→∞ IE
∫
[0,T ) γ(t)dξ+

n (t) dominates the expression

IE

[
m∑

i=1

(
inf

ti−1≤t≤ti
γ(t)

)
·
[
ξ+
∗ (ti) − ξ+

∗ (ti−1)
]
+
(

inf
tm≤t≤T

γ(t)
)
·
[
ζ+ − ξ+

n (tm)
]]

.

As we let ‖Π‖ �
= max0≤i≤m |ti+1 − ti| → 0, this expression approaches the left-hand side of (5.12),

which is then established; (5.13) is proved similarly. Now let us put (5.10)-(5.13) together; in
conjunction with (5.3), and using repeatedly the inequality lim infn xn+lim supn yn ≤ lim supn(xn+
yn) , we obtain

IE

[∫
[0,T )

H
(
t, x + ξ∗(t)

)
+
∫

[0,T )
γ(t)dξ+

∗ (t) +
∫

[0,T )
ν(t)dξ−∗ (t) + G

(
x + ξ∗(T )

)]
+ IE[Θ]

≤ lim sup
n→∞

IE[J(ξn; x)] = V (x) , where(5.14)

(5.15) Θ
�
= G(x + ζ) − G

(
x + ξ∗(T )

)
+ γ(T )

[
ζ+ − ξ+

∗ (T )
]
+ ν(T )

[
ζ− − ξ−∗ (T )

]
.

In order to deduce (5.9) from (5.14), it suffices to show that the random variable of (5.15) satisfies
IP[Θ ≥ 0] = 1 ; indeed, (3.5), (5.5), (5.8) and the convexity of G(ω, ·) imply

G(x + ζ) − G
(
x + ξ∗(T )

)
= G(x + ζ+ − ζ−)− G

(
x + ξ∗(T )+ − ξ∗(T )−

)
≥ G′(x − ζ−

) [
ζ+ − ξ∗(T )+

]
− G′(x + ζ+

) [
ζ− − ξ∗(T )−

]
≥ −γ(T )

[
ζ+ − ξ+

∗ (T )
]
− ν(T )

[
ζ− − ξ−∗ (T )

]
, a.s.

whence Θ ≥ 0 , a.s. �
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[18] KOMLÓS, J. (1967) A generalization of a problem of Steinhaus. Acta Math. Acad. Sci.
Hungar. 18, 217-229.

[19] KRYLOV, N.V. (1971) Control of Markov processes and W−spaces. Isvestija 5, 233-266.

[20] LEPELTIER, J.M. & MAINGAINEAU, M.A. (1984) Le jeu de Dynkin en théorie générale
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