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Abstract

This paper proposes and analyzes discrete-time approximations to a class of diffusions, with
an emphasis on preserving certain important features of the continuous-time processes in the
approximations. We start with multivariate diffusions having three features in particular: they
are martingales, each of their components evolves within the unit interval, and the components
are almost surely ordered. In the models of the term structure of interest rates that motivate our
investigation, these properties have the important implications that the model is arbitrage-free
and that interest rates remain positive. In practice, numerical work with such models often
requires Monte Carlo simulation and thus entails replacing the original continuous-time model
with a discrete-time approximation. It is desirable that the approximating processes preserve
the three features of the original model just noted, though standard discretization methods do
not. We introduce new discretizations based on Þrst applying nonlinear transformations from
the unit interval to the real line (in particular, the inverse normal and inverse logit), then using
an Euler discretization, and Þnally applying a small adjustment to the drift in the Euler scheme.
We verify that these methods enforce important features in the discretization with no loss in
the order of convergence (weak or strong). Numerical results suggest that these methods can
also yield a better approximation to the law of the continuous-time process than does a more
standard discretization.

Key words: Interest rate models, Monte Carlo simulation, martingales

1 Introduction

A central principle of Þnancial economics, sometimes referred to as the fundamental theorem of

asset pricing, is that in the absence of arbitrage (opportunities for riskless proÞts) the prices of

traded assets are martingales when properly normalized. The normalization consists of dividing

by the price of another asset, called the numeraire, which may be thought of as the asset relative

to which all other assets are priced. A deßated asset price is the ratio of the asset price to the

price of the numeraire. A more accurate paraphrasing of the fundamental theorem is then that

for each choice of numeraire (which can be essentially any positive price process) there exists a

measure under which deßated asset prices are martingales. For precise formulations of these ideas
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see Harrison and Kreps [7], Harrison and Pliska [8], Delbaen and Schachermayer [2], Duffie [3];

for a discussion of the relation between changing numeraires and changing measure see Geman, El

Karoui, and Rochet [5].

In a stochastic model of interest rates, the most basic assets are pure-discount bonds � bonds

making a sure payment of 1 unit of account at a Þxed date in the future. Clearly, bond prices

should always be positive (buying a bond at a negative price would be an arbitrage). In a model

with positive interest rates bond prices should never exceed 1. Indeed, if we write BT (t) for the

time-t price of a bond maturing at T ≥ t, then [BT1(t) − BT2(t)]/[BT2(t)(T2 − T1)] deÞnes the
forward rate of interest for the interval [T1, T2], t ≤ T1 < T2. For all forward rates to be positive,
bond prices must decrease with maturity, so BT (t) < Bt(t) ≡ 1 whenever T > t. If, therefore, we
choose as numeraire an asset whose price never falls below 1, then under the measure associated

with this numeraire deßated bond prices have the following properties:

(i) they are martingales;

(ii) they are bounded between 0 and 1;

(iii) they are almost surely ordered, decreasing with maturity.

That the numeraire should be bounded from below (by 1) occurs naturally if the numeraire corre-

sponds to the value of depositing 1 unit at time 0 in an interest bearing account and reinvesting

all interest payments. Indeed, this type of �money market account� is probably the most common

choice of numeraire; see, for example, the general class of models identiÞed by Heath, Jarrow, and

Morton [9].

The three characteristics above lead us to consider processes of the form

dXi(t) = Xi(t)
dX
j=1

σij(X(t)) dWj(t), i = 1, . . . , N, (1)

0 < XN(t) < · · · < X1(t) < 1, (2)

where X(t) = (X1(t), . . . ,XN (t)) and W (t) = (W1(t), . . . ,Wd(t)) is a d-dimensional standard

Brownian motion. We have in mind a model with Þnitely many maturities TN > TN−1 > · · · >
T1 > T0 = 0 in which Xi(t) represents the time-t deßated price of the bond maturing at Ti ≥ t.

(How Xi evolves after Ti will be immaterial.) Models in which deßated bond prices admit precisely

such a representation have recently been put forth in an important stream of research that includes

Brace, Gatarek, and Musiela [1], Jamshidian [11], Miltersen, Sandmann, and Sondermann [15],

and Musiela and Rutkowski [16]. These models actually take forward interest rates rather than

bond prices as model primitives (as do Heath et al. [9]), but it is possible to solve for the bond
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price dynamics and to put them in the form (1). Using the numeraire proposed in Jamshidian [11]

(a discretely compounded money market account) the property in (2) holds automatically. Using

instead the numeraire in Brace, Gatarek, and Musiela [1] and Musiela and Rutkowski [16] (a bond

maturing later than TN ), (2) should be replaced with 1 < XN (t) < · · · < X1(t). This is similar to
but simpler than the restriction in (2), so it suffices to consider (2).

Our interest is in the time-discretization of (1) consistent with properties (i)-(iii) above. Pricing

interest rate derivative securities in a model of the whole term structure (of the Heath-Jarrow-

Morton [9] type or the others cited above) generally requires a numerical method and for instruments

that depend on the path of interest rates the only viable method is often Monte Carlo simulation.

Simulation requires approximating diffusions with discrete-time processes. Typically, the forward

rate processes through which the models are deÞned are themselves discretized; but as argued in

Glasserman and Zhao [6] (in the speciÞc setting of [1, 11, 16]) there can be advantages to simulating

instead the deßated bond prices or their increments. Hence, here we take (1) (rather than forward

rate processes leading to it) as our starting point.

Each of the properties (i)-(iii) is important in the continuous-time formulation of an interest

rate model. Care should therefore be taken to preserve these properties in the discretization, since

it is ultimately the discretized model from which prices are computed. To further motivate our line

of investigation, consider the one-dimensional case

dX(t) = X(t)σ(X(t)) dW (t), 0 < X(t) < 1. (3)

A standard Euler discretization of this process with step size h is given recursively by

�X((i+ 1)h) = �X(ih) + �X(ih)σ( �X(ih))
√
hZi+1, �X(0) = X(0) ≡ x0,

where Z1, Z2, . . . are independent standard normal random variables. The discretized process �X

is clearly a martingale, but it is not restricted to the unit interval. We can keep �X between

0 and 1 by projecting values outside this range back to (0, 1), but in so doing we destroy the

martingale property. We are left in the position of having to choose between two important features

of the original model. More accurate approximations to the law of the continuous-time process can

sometimes be obtained using a higher-order discretization (of the type detailed in Kloeden and

Platen [12], Milstein [14], and Talay [18]) but these do not directly address the issue of preserving

properties (i)-(iii).

The methods we investigate begin by applying a transformation Y (t) = g(X(t)) where g is an

increasing, twice continuously differentiable mapping from [0, 1] onto the real line. We discretize Y

and then apply the inverse transformation f = g−1. This produces a discretization of the original
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process that is automatically restricted to the unit interval. In the univariate case we show how

to carry out the discretization of Y so that the resulting discretization of X will furthermore be a

martingale. This approach (developed in Section 2) is particularly explicit when g is the inverse

of the cumulative normal distribution. In Section 3 we turn to the multivariate case and show

that under a general class of transformations the martingale property holds �to Þrst order� in a

sense to be made precise. In Section 4, we develop a second-order adjustment. We show that all

methods proposed have the same strong and weak convergence orders as the standard Euler scheme

and are therefore no worse than an Euler scheme in this respect. Section 5 gives some numerical

illustrations.

2 One-Dimensional Setting

We proceed with the approach sketched towards the end of the previous section. For now, we

simply assume that the stochastic differential equation (SDE) in (3) has a unique strong solution

that remains in the unit interval whenever 0 < X(0) < 1. Let g : (0, 1) → R be increasing,

surjective, and twice continuously differentiable. By Ito�s rule, the process Y (t) = g(X(t)) satisÞes

dY (t) = 1
2g
00(Xt)σ2(Xt)X2

t dt+ g
0(Xt)σ(Xt)Xt dWt

≡ �µ(Yt) dt+ �σ(Yt) dWt,

with

�µ(y) = 1
2g
00(f(y))σ2(f(y))f2(y)

�σ(Yt) = g0(f(y))σ(f(y))f(y),

and f = g−1. A standard Euler discretization gives

�Y ((i+ 1)h) = �Y (ih) + �µ( �Y (ih))h+ �σ( �Y (ih))
√
hZi+1, �Y (0) = g(x0),

with Z1, Z2, . . . , independent standard normals. The process �X(ih) = f( �Y (ih)) never leaves the

unit interval, but it is not a martingale.

Consider a modiÞed Euler scheme

�Y ((i+ 1)h) = �Y (ih) + µ( �Y (ih))h+ �σ( �Y (ih))
√
hZi+1,

in which µ is to be chosen close enough to �µ to preserve convergence of the scheme but perturbed

sufficiently to make �X = f( �Y ) a martingale. Imposing the martingale condition is equivalent to

requiring

E[f( �Y (ih) + µ( �Y (ih))h+ �σ( �Y (ih))
√
hZi+1| �Y (ih)] = f( �Y (ih)) (4)
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We now focus on the particular case g = Φ−1 and

f(y) = Φ(y)
4
=

1√
2π

Z y

−∞
e−u

2/2 du.

This transformation is made particularly convenient by the fact that we can explicitly evaluate, for

any constants a, b,

E[Φ(a+ bZ)] = P (Z 0 ≤ a+ bZ) = P (Z 0 − bZ ≤ a) = Φ
µ

a√
1+ b2

¶
,

with Z,Z 0 independent standard normals. With y = �Y (ih), (4) becomes

Φ

Ã
y + µ(y)hp
1+ �σ2(y)h

!
= Φ(y).

We therefore require

y =
y + µ(y)hp
1+ �σ2(y)h

,

which is to say

µ(y) =
1

h

µq
1+ �σ2(y)h− 1

¶
y. (5)

A simple calculation veriÞes that (for general g and f = g−1)

�σ2(y) =
−2f 0(y)
f 00(y)

�µ(y).

With f = Φ the expression on the right becomes 2�µ(y)/y and (5) becomes

µ(y) =
1

h

Ãs
1+

2h

y
�µ(y)− 1

!
y. (6)

Substituting this expression for µ results in the discretized process

�Y ((i+ 1)h) = �Y (ih) +

Ãs
1+

2h

�Y (ih)
�µ( �Y (ih))− 1

!
�Y (ih) + �σ( �Y (ih))

√
hZi+1. (7)

We summarize the derivation leading to this scheme in the following:

Proposition 1 Let �Y be as in (7). Then the process �X = Φ( �Y ) is a martingale on the unit

interval.

Of course, for this scheme to be of any interest �X must converge to X , so we now address this

issue. We recall some notions of convergence of discrete-time approximations to SDEs, as presented

in Kloeden and Platen [12]. A discretization �X based on time-step h converges to X with strong

order γ if

E[| �X(nh)−X(T )|] ≤ Chγ , n = T/h,
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for some constant C and all sufficiently small h. It converges with weak order γ if

|E[ψ( �X(nh)]− E[ψ(X(T ))]| ≤ Chγ ,

for all functions ψ having 2(γ + 1) continuous and polynomially bounded derivatives. The Euler

scheme typically has strong order 1/2 (see p.327 of Kloeden and Platen [12]), but it also has weak

order 1 under additional smoothness conditions on the coefficients of the SDE. We now have

Theorem 1 For the SDE in (3), suppose that 0 < X(0) ≡ x0 < 1, that σ(·) is Lipschitz continuous
on [0, 1], and that σ(1) = 0. Then for any T > 0 we have 0 < X(t) < 1, 0 ≤ t ≤ T , almost surely,
and �X = Φ( �Y ) has strong convergence order 1/2.

Theorem 2 Suppose the conditions in Theorem 1 hold and that σ(·) is in fact C4([0, 1]). Then �X

converges to X with weak order 1.

Proofs of these and all other results are given in an appendix.

3 Multidimensional Setting

We now turn to the general model in (1). To keep each coordinate between 0 and 1 we could

apply a transformation g to each coordinate separately, and to preserve the martingale property

we could make the drift adjustment introduced in the previous section. In this way, the univariate

results of the previous section extend to vector processes. However, these transformations do not

by themselves ensure that the coordinates remain ordered as indicated in (2). In the interest rate

setting that motivates our investigation, when some increment Xi(t)−Xi+1(t) hits zero, the forward
rate

1

Ti+1 − Ti
µ
Xi
Xi+1

− 1
¶

(8)

also hits zero, and if the increment were to become negative, so would the forward rate. Since nega-

tive interest rates can create serious anomalies, we would like to ensure that even after discretization

the increments �Xi − �Xi+1 remain positive.

3.1 Discretization

To this end, we deÞne

Y1 = g(X1), Yi = g (Xi/Xi−1) , i = 2, . . . , N,
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where g : (0, 1) → R, as before, is increasing, surjective, and twice continuously differentiable.

Inverting this transformation gives

Xi =
iY
j=1

f(Yj),

with f the inverse of g.

To make the dynamics of Y = (Y1, . . . , YN) explicit, let

σi =


σi1
σi2
...
σid

 and W (t) =


W1(t)
W2(t)
...

Wd(t)

 ,

with the σij as in (1). Using angle brackets to denote quadratic variation, Ito�s rule gives

d

µ
Xi+1
Xi

¶
=

dXi+1
Xi

− Xi+1dXi
X2
i

− d <Xi, Xi+1>
X2
i

+
Xi+1d <Xi>

X3
i

=
Xi+1
Xi

σ>i+1 dW − Xi+1
Xi

σ>i dW − Xi+1
Xi

σ>i+1σi dt+
Xi+1
Xi

σ>i σi dt

= −Xi+1
Xi

(σi+1 − σi)>σi dt+ Xi+1
Xi

(σi+1 − σi)> dW, (9)

each σj evaluated at X(t). It now follows from a further application of Ito�s rule that

dY1 = 1
2g
00(X1)X2

1σ
>
1 σ1 dt+ g

0(X1)X1σ>1 dW
4
= a1(Y1) dt+ b1(Y1)

> dW, (10)

and

dYi+1 =

∙
1
2g
00(
Xi+1
Xi

)(
Xi+1
Xi

)2(σi+1 − σi)>(σi+1 − σi)− g0(Xi+1
Xi

)(
Xi+1
Xi

)(σi+1 − σi)>σi
¸
dt

+g0(
Xi+1
Xi

)(
Xi+1
Xi

)(σi+1 − σi)> dW
4
= ai+1(Yi+1) dt+ b

>
i+1(Yi+1) dW, i = 1, . . . , N − 1. (11)

An Euler scheme for Y with step size h has the form

�Y ((k + 1)h) = �Y (kh) + ak( �Y (kh))h+ bk( �Y (kh))
>Z(k + 1)

√
h, �Y (0) = Y (0), (12)

where

Z(k) =


Z1(k)
Z2(k)
...

Zd(k)

 , k = 1, 2, . . .
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are independent standard normal vectors. This in turn deÞnes a discretization of the original

process X if we deÞne

�Xi(kh) =
iY
j=1

f( �Yj(kh)).

Moreover, for all k = 0, 1, 2, . . . we have

1 > �X1(kh) > �X2(kh) > · · · > �XN(kh) > 0,

almost surely, in view of the fact that f maps the real line into (0, 1). We have therefore met

conditions (ii) and (iii) of Section 1.

We proceed to verify that the proposed discretization scheme has the same orders of strong and

weak convergence as a standard Euler scheme. To state these results we need to introduce two

classes of functions. As before, we consider f : R→ (0, 1) with f(−∞) = 0 and f(∞) = 1. We say
that f ∈ D if

(i) f 0 is strictly positive and bounded on R.

(ii) f(1− f)/f 0 is bounded.

(iii) f(1− f)f 00/(f 0)2 is bounded.

(iv) f2(1− f)2f 000/(f 0)3 is bounded.

We say that f ∈ D0 if in addition

(v) f3(1− f)3f 0000/(f 0)4 is bounded.

The important special cases f = Φ and the inverse logit transformation

f(y) =
ey

1+ ey

µ
g(x) = log

µ
x

1− x
¶¶

both belong to D0. Write ∆σi for σi − σi−1, i = 2, . . . , N , and ∆σ1 ≡ σ1.

Theorem 3 Suppose that

(i) σ1 depends only on X1 and ∆σi depends only on the ratio Xi/Xi−1, i = 2, . . . , N ;

(ii) ∆σi is Lipschitz continuous on [0, 1] with ∆σi(1) = 0, i = 1, . . . , N .
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Then the SDE (1) admits a unique strong solution for every initial condition 1 > X1(0) > X2(0) >

· · · > XN(0) > 0 such that 1 > X1(t) > X2(t) > · · · > XN (t) > 0 for all t. Moreover, if we deÞne
�Y as in (12) for any f ∈ D and g = f−1, then

�Xi(kh) =
iY
j=1

f( �Yj(kh)), i = 1, . . . , N,

converge to X with strong order 1/2.

Through the expression in (8) for the forward rate and from (9) (but with i and i+ 1 reversed)

we may interpret condition (ii) of this theorem as stating that the diffusion coefficient of each

forward rate is a function of that forward rate only.

For the weak convergence order we need an additional deÞnition: a function is in Ckp if the

function and its derivatives up to order k are continuous and polynomially bounded. We now have

Theorem 4 Suppose f ∈ D and in addition, for i = 1, . . . , N ,

(i) ∆σi ∈ C4([0, 1]),

(ii) ai, bi ∈ C4p .

Then �X converges to X with weak order 1. Condition (ii) is automatically satisÞed if f is Φ or the

inverse logit transformation.

Theorem 3 is proved in an appendix; the existence and uniqueness of the solution to the SDE

is a prerequisite to everything else in the paper. The proof of Theorem 4 amounts to a veriÞcation

of the conditions in Theorem 14.5.2 of Kloeden and Platen [12] under the stated hypotheses. As

the calculations involved are lengthy but routine, we omit them.

3.2 First-Order Property and Second-Order Adjustment

We have thus far veriÞed that discretizing the Xi by transforming Þrst to the Yi, applying an

Euler discretization, and then transforming back results in a convergent scheme that preservers the

ordering of the variables on (0, 1). We turn next to the martingale property. Using the scheme

above, the �X will not in general be martingales, and in this multidimensional setting explicitly

identifying a drift adjustment similar to the one in Section 2 appears to be infeasible. However,

the following result indicates that, in a precise sense, the martingale property automatically holds

to Þrst order:
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Theorem 5 DeÞne �Y = (�Y1, . . . , �YN) by setting �Y (0) = Y (0)

�Yi((k + 1)h) = �Yi(kh) + ai( �Y (kh))h+ bi( �Y (kh))
>Z(k + 1)

√
h, k = 0, 1, . . . ,

with ai and bi as in (10)-(11). Set

�Xi =
iY
j=1

f( �Yj), i = 1, . . . , N.

Then

d

dh
E

 iY
j=1

f( �Yj(h))

¯̄̄̄¯̄
h=0

= 0, i = 1, . . . , N.

We interpret this result as stating that

E[ �X((k + 1)h)| �X(kh)] = �X(kh) + o(h),

so that in transforming variables before discretizing we have maintained the ordering of the com-

ponents of X while partially preserving the martingale property.

This result indicates a positive feature of the transformation method, but it also suggests a

strategy for further improvement of the method. We cannot entirely eliminate the o(h) term (as we

did in the one-dimensional setting) but we can perhaps reduce it to o(h2) through a modiÞcation

of the drift term in the Euler scheme for �Y .

Consider, then, a scheme of the form

�Yi((k + 1)h) = �Yi(kh) + [ai( �Y (kh)) + ei( �Y (kh))h]h+ bi( �Y (kh))
>Z(k + 1)

√
h, i = 1, . . . , N,

with the ai as before and with the ei(y) chosen to satisfy

d2

dh2
E

 iY
j=1

f( �Yj(h))| �Y (0) = y
¯̄̄̄¯̄
h=0

= 0, i = 1, . . . , N.

The ei do not admit a simple closed-form expression; however, they can be fairly easily evaluated

at each step of a simulation. Details of the evaluation of the ei�s are given at the beginning of the

proof of Theorem 6 in the Appendix. As before, we then set

�Xi =
iY
j=1

f( �Yj), i = 1, . . . , N.

Clearly, this method continues to ensure

1 > �X1(kh) > �X2(kh) > · · · > �XN(kh) > 0,
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and by construction it enforces the martingale property to terms of order h2. We now verify that

under appropriate conditions its convergence orders are no worse than those of a standard Euler

scheme. The only assumption required beyond those in Theorems 3 and 4 is that f belong to D0
rather than merely D.

Theorem 6 Under the conditions of Theorem 3 but with f ∈ D0, the �Xi converge to the Xi with
strong order 1/2. Under the conditions of Theorem 4 but with f ∈ D0 we have convergence with
weak order 1.

4 Numerical Examples

Our analysis has focused on ensuring that the martingale property and bounds on variables are

preserved after discretization, and further ensuring that this is achieved without a decrease in the

convergence order in comparison with a standard Euler scheme. In practice, it is also important

that the discretization provide a good approximation to the law of the continuous-time process,

even if the time step h is not very small. To gauge the quality of the approximation, we present a

few numerical examples. These suggest that the transformation methods we have proposed provide

a better approximation than a standard Euler scheme.

We present three types of examples. We start with a one-dimensional model, then consider a

ten-dimensional example, and Þnally compare the performance of the methods in pricing interest

rate caps, which are simply options on forward rates. In comparing multiple methods on a single

problem, we keep the computer time Þxed for all methods by varying the time-step h. For example,

if implementing the second-order adjustment takes twice the time of an ordinary Euler scheme, we

use a time-step half as small for the Euler scheme as for the adjusted scheme. This puts the various

methods on level ground in the comparison.

4.1 One-Dimensional Case

With f = Φ, the exact martingale adjustment can be established as in (7) for a one-dimensional

model. We consider the following example:

dX(t) = −λX(t)(1−X(t))dW (t), 0 < X(0) = x0 < 1,

where λ > 0 is a constant. For all t, we have 0 < X(t) < 1.

To evaluate the quality of any discretization scheme, we need to have exact results against

which to compare. To this end, we will examine the distribution not of X(t) itself (which is rather
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complex) but rather of the �forward rate� implied by this deßated bond price, namely

L(t)
4
=

1

X(t)
− 1.

Its dynamics are given by

dL(t)

L(t)
=

λ2L(t)

1+ L(t)
dt+ λ dW (t), L(0) =

1

x0
− 1.

DeÞne a new measure by

d �P

dP

¯̄̄̄
¯Ft

4
= exp

(
−
Z T

0
λ(1−X(t))dW (t)− 1

2
λ2
Z T

0
(1−X(t))2 dt

)
=
X(t)

x0
;

then by Girsanov�s Theorem (see, e.g., Karatzas and Shreve [13], Theorem 3.5.1) �W (t)
4
= W (t) +R t

0 λ(1−X(s)) ds is a standard Brownian motion under this new measure. Moreover, under �P we

have
dL(t)

L(t)
= λ d �W (t)

since 1 −X(t) = L(t)/(1 + L(t)). This implies that L(t) is lognormally distributed under �P and

thus

E

∙
X(t)

x0
1© 1

X(t)
−1≤x

ª¸ = �P(L(t) ≤ x) = Φ
 log

³
x
L(0)

´
+ 1

2λ
2t

λ
√
t

 .
We will use this formula to check the quality of the simulated distribution. Figure 1 compares

the estimated bias for �P(L(T ) ≤ x) for three different methods: a standard Euler scheme for the
original process X(t), a standard Euler scheme for the transformed process Y (t)

4
= Φ−1(X(t)), and

a scheme with the martingale adjustment applied to Y (t) as in (7). We use the following parameter

values: time horizon T = 10, �volatility� λ = 0.5, and initial value x0 = 0.95 (corresponding to an

interest rate L(0) of about 5.26%).

The results in Figure 1 show that using the transformation (with or without martingale ad-

justment) substantially improves the Þt of the distribution. The bias curve for the ordinary Euler

scheme jumps at 0 showing that a certain proportion of �X(T )s go beyond 1. It also has a large

spike indicating that too many simulated values are close to 1. Without the martingale adjustment,

the Euler scheme for Y (t) introduces a small bias in E[X(T )] (visible by examining the limit as

x→∞ in the Þgure), while the martingale adjustment (7) erases this bias successfully.

4.2 Multidimensional Case

The diffusion model we consider is

X0(t) ≡ 1;
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Figure 1: One-Dimensional Model

dXi(t) = −λXi(t) ·
 iX
j=1

Ã
1− Xj(t)

Xj−1(t)

! dW (t), i = 1, . . . , N ;

1 > X1(0) > X2(0) > · · · > XN (0) > 0,

with W (t) a standard one-dimensional Brownian motion (i.e. d = 1) and λ > 0 is a constant.

These processes will always be ordered and bounded, i.e., 1 > X1(t) > X2(t) > · · · > XN(t) > 0 at
every t ≥ 0.

As in the one-dimensional case, we derive closed-form expressions against which to compare by

introducing forward rates and changing measures: let

Li(t)
4
=

Xi−1(t)
Xi(t)

− 1, i = 1, 2, · · · , N,

d �Pi
dP

¯̄̄̄
¯Ft

4
=

Xi(t)

Xi(0)
;

�W (i)(t)
4
= W (t) + λ

Z t

0

iX
j=1

Ã
1− Xj(s)

Xj−1(s)

!
ds.

It follows readily that dLi(t) = λLi(t)d �W
(i)(t) and, much as in the one-dimensional case,

E

Xi(t)
Xi(0)

1nXi−1(t)
Xi(t)

−1≤x
o = �Pi(Li(t) ≤ x) = Φ

 log
³

x
Li(0)

´
+ 1

2λ
2t

λ
√
t

 .
We compare simulated estimates of this expectation with the formula. The simulation uses a time

13



horizon T = 10, dimension N = 10, constant coefficient λ = 0.5, and initial value Xi(0) = 0.95i,

i = 1, · · · , 10.
No exact martingale adjustment is available in this multidimensional setting. Instead, we carry

out the second-order adjustments. As discussed in Section 3.2, there is no simple closed-form

expression for the adjustment parameters ei, but they can be evaluated fairly easily at each step of

a simulation. We consider two transformations in this example � namely, f = Φ and the inverse

logit transformation f(x) = ex/(1+ ex). Figures 2, 3, and 4 show estimated bias curves for X1(T ),

X5(T ), and X10(T ) and thus give an indication of the performance across coordinates as well as

across methods. In each case, we compare Þve schemes: a standard Euler scheme for the original

process, a standard Euler scheme for the transformed process Yi(t)
4
= f−1(Xi(t)) (with f = Φ or

the inverse logit function), and discretizations with the second-order adjustment for Y (t).

The bias curves from the standard Euler scheme display a jump at 0, indicating that �Xi+1(T )

exceeds �Xi(T ) with positive probability. The large spike shows that a disproportionate fraction of

the �Xi+1(T ) and �Xi(T ) are very close (roughly corresponding to forward rates that are too close

to zero). We get a better Þt to the target distribution using either of the transformations. As

in the one-dimensional case, the Euler scheme for Yi(t) without adjustment introduces bias (more

pronounced for larger i). Examination of the bias curves for large values of x indicates that with

the second-order adjustment the martingale property is well preserved.

Figures 2, 3, and 4 are consistent with a broader pattern we have observed in other numerical

examples as well: the transformation methods are most effective for the lower-indexed components

of the vector X , while the beneÞt of the second-order adjustment is most pronounced for the

higher-indexed components.

4.3 Pricing Caps

Interest rate caps are among the most actively traded of all interest rate options, so the ability to

price caps accurately is a prerequisite for any computational procedure in this context. To assess

the performance of our discretization schemes in pricing caps, we need to enrich the setting slightly.

Fix a set of maturity dates 0 = T0 < T1 < · · · < TN < TN+1 and for simplicity suppose they are
evenly spaced with an increment of δ ≡ Ti+1−Ti i = 0, · · · , N . We take δ = 0.25, corresponding to
a quarter of a year. DeÞne η(t) to be the unique integer for which Tη(t)−1 < t ≤ Tη(t). The model
takes the form

dXn+1(t)

Xn+1(t)
= −λ

nX
i=η(t)

µ
1− Xi+1(t)

Xi(t)

¶
dW (t), n = 0, 1, . . . , N,

1 > X1(0) > X2(0) > · · · > XN(0) > 0.

14
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Figure 2: Multidimensional Model, X1
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Figure 3: Multidimensional Model, X5
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Figure 4: Multidimensional Model, X10

Each Xi(t) should be interpreted as the deßated price of a bond maturing at Ti. This model differs

from the previous one only in that the range of summation in the diffusion coefficient varies over

time, in a manner consistent with the formulation in Jamshidian [11]. Although, for simplicity, we

have not explicitly considered time-varying coefficients in our analysis, the proposed transformations

can still be applied in this setting.

From the deßated bond prices we can deÞne forward interest rates. The forward rate at time t

for the accrual period [Ti, Ti+1], t ≤ Ti is

Li(t) =
1

δ

µ
Xi(t)

Xi+1(t)
− 1

¶
, i = 1, . . . , N,

which evolves according to

dLn(t)

Ln(t)
=

nX
i=η(t)

δλ2Li(t)

1+ δLi(t)
dt+ λ dW (t), n = 1, . . . , N.

For background and a more detailed discussion, see Jamshidian [11].

An interest rate cap for the period [Tn, Tn+1] (a caplet) pays the holder δ(Ln(Tn)−K)+ at time
Tn+1, where the constant K is the strike. As shown in Jamshidian [11], the value of this option is

given by C(λ, K,Ln(0), Bn+1(0), Tn), where

C(σ, K, r, b, T )
4
= δb

"
rΦ

Ã
log

¡
r
K

¢
+ 1

2σ
2T

σ
√
T

!
−KΦ

Ã
log

¡
r
K

¢− 1
2σ

2T

σ
√
T

!#
(13)

and Bn+1 = Xn+1(0)(1+ δL0(0)). (The factor 1+ δL0(0) is the initial value of the numeraire and

is arbitrary; we take L0(0) = .04.) This expression evaluates

Bn+1(0)�En+1[δ(Ln(Tn)−K)+] = (1+ δL0(0))E
£
Xn+1(Tn+1) · δ(Ln(Tn)−K)+

¤
.
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The expectation on the right can be estimated by simulation and then compared with the formula

in (13) to estimate the discretization bias.

We use the following model parameters: the time horizon is T = 10 years with a total of N = 40

bonds (since δ = 1/4), the volatility coefficient is λ = 0.5, initial values are Xi(0) = 0.99i. We

consider at-the-money caplets, meaning that for the n-th caplet we use a strike of K = Ln(0).

Figure 5 shows the estimated bias for the Þve schemes used previously. The results are based on

four million replications (using a control variate for variance reduction) which suffices to make the

standard error a small fraction of the estimated bias. The apparent biases in the graphs are thus

statistically signiÞcant. The time-increments for the various schemes were chosen to balance the

computer times per path; speciÞcally, the second-order (resp. Þrst-order) adjustment will usually

take three (resp. two) times as long per step as an ordinary Euler scheme so we use a time increment

one third (resp. half) as small for the Euler scheme as for the second-order (resp. Þrst-order) adjusted

scheme. We use the same number of paths for all methods, so the faster time per step associated

with the Euler scheme is used exclusively to reduce its bias through a smaller time increment. (For

an analysis of the tradeoff between bias and variance in simulations of SDE, see Duffie and Glynn

[4].)

All the transformation schemes appear to be biased low across all maturities whereas the stan-

dard Euler scheme appears to be biased high. The smaller bias observed in the previous examples

does not translate to a markedly smaller bias in caplet prices in this example. The bias in the

nth caplet price is closely related to the integral over x from K to ∞ of the bias in estimating

�Pn+1(Ln(t) > x). The large positive and negative spikes typical of the bias in the Euler scheme in

estimating such probabilities makes the caplet bias using this method very sensitive to the choice

of K, with larger K typically resulting in a more positive caplet bias over the relevant range of

strike prices. Similarly, the shape of the bias curves in Figures 1-4 for the transformation methods

is consistent with the negative bias observed in the caplet prices. It is worth emphasizing, however,

that the transformation methods have other desirable properties and that Figure 5 suggests that

these properties have not come at the expense of inferior performance in pricing caplets.

5 Concluding Remarks

We have investigated and analyzed the use of nonlinear transformations in discretizing a class of

continuous-time martingales restricted to a wedge-shaped region of RN . The martingale condition

and the inequalities deÞning the domain of the processes have important implications in the Þnancial

applications that motivate this investigation; care should therefore be taken to try to preserve these

properties in numerical work. Our results indicate that by applying nonlinear transformations
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Figure 5: Caplet prices

before time-discretization we can better preserve these properties with no loss in the convergence

order of the discretization (compared with a standard Euler scheme) and in some cases with a much

better Þt to the ideal continuous-time distribution.

Appendix: Proofs

Proof of Theorem 1

We need to prove that E[|X(T ) − Φ( �Y (T ))|] ≤ c√h. (Here and throughout the proof, c, c1, c2, . . .
represent unspeciÞed constants.) Because Φ is Lipschitz, it suffices to prove

E[|Y (T )− �Y (T )|] ≤ c
√
h. (14)

We will show that

(I) �µ and �σ are Lipschitz continuous;

(II) �µ2(y) ≤ K and �σ2(y) ≤ K, for some K > 0.

We leave veriÞcation of these two properties until the end, and proceed to show that they imply

(14).

With h the time increment, let nt = bt/hc, tn = nh and write �Yi for �Y (ih). In the construction of
�Y , let the normal random variables

√
hZi be the increments ∆Wi =Wih−W(i−1)h of the Brownian

motion deÞning X and let {Ft, t ≥ 0} be the standard Þltration generated by the Brownian motion.
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Extend �Y to arbitrary times by setting �Y (t) = �Y (nth). Set Z(t) = sup0≤s≤t E[| �Yns − Ys|2] so

Z(t) = sup
0≤s≤t

E

¯̄̄̄¯
ns−1X
n=0

( �Yn+1 − �Yn)−
Z s

0
�µ(Yu) du−

Z s

0
�σ(Yu) dWu

¯̄̄̄
¯
2


≤ c1 sup
0≤s≤t

E
¯̄̄̄
¯
ns−1X
n=0

(E[ �Yn+1 − �Yn|Fnh)− �µ( �Yn)h)
¯̄̄̄
¯
2

+E

¯̄̄̄
¯
ns−1X
n=0

( �Yn+1 − �Yn)− E[ �Yn+1 − �Yn|Fnh)− �σ( �Yn)∆Wn)

¯̄̄̄
¯
2

+E

¯̄̄̄Z tns

0
[�µ( �Ynu)− �µ(Yu)] du

¯̄̄̄2
+ E

¯̄̄̄Z tns

0
[�σ( �Ynu)− �σ(Yu)] dWu

¯̄̄̄2
+E

¯̄̄̄
¯
Z s

tns

�µ(Yu) du

¯̄̄̄
¯
2

+ E

¯̄̄̄
¯
Z s

tns

�σ(Yu) dWu

¯̄̄̄
¯
2


≡ A1 +A2 +A3 +A4 +A5 +A6.

By construction, A2 = 0. By property (I) above

A3 +A4 ≤ c
Z t

0
E( �Yns − Ys)2 ds ≤ c

Z t

0
Z(s) ds,

and by property (II)

A5 +A6 ≤ c2h.
Next we analyze A1, which can be rewritten as

A1 = E

¯̄̄̄
¯
ns−1X
n=0

[µ( �Yn)− �µ( �Yn)]2
¯̄̄̄
¯ .

In light of (5), �µ(y)/y > 0 for all y. From (6) and the fact that |√1+ 2a− 1− a| ≤ a2/2 for a ≥ 0,
we may therefore conclude that

|µ(y)− �µ(y)| ≤ 1

h
· 12h2

�µ2(y)

|y| = 1
2

�µ2(y)

|y| h.

If we can establish that

(III) supy∈R
�µ2(y)
|y| <∞,

it will follow that A1 ≤ c3h2 and

Z(t) ≤ c1
µ
c3h

2 +K

Z t

0
Z(s) ds+ c2h

¶
≤ c4

Z t

0
Z(s) ds+ c5h.

By Gronwall�s inequality, this implies Z(t) ≤ c6h and Þnally

E|YT − �YT | ≤
q
Z(T ) ≤ c7

√
h.
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It remains to establish properties (I)-(III). For (III) observe that

|σ(x)| = |σ(x)− σ(1)| ≤ c(1− x),
since σ(·) is Lipschitz with σ(1) = 0. It is not difficult to verify that

�µ2(y)

|y| =
|y|

4φ4(y)
σ4(Φ(y))Φ4(y) = O(1/|y|3), as |y|→∞,

using Φ(y) ∼ φ(y)/|y| as y → −∞.
From the proof of (III) we have �µ2(y) = O( 1y2 ) as |y|→∞. Similarly,

�σ2(y) =
1

φ2(y)
σ2(Φ(y))Φ2(y) = O(

1

y2
), |y|→∞,

Therefore, �µ2(y) ≤ K and �σ2(y) ≤ K for some positive constant K and (II) holds.

To establish (I) it suffices (through, e.g., exercise 17.23 of Hewitt and Stromberg [10]) to show

that

lim sup
h↓0

1

h
[�µ(y + h)− �µ(y)] and lim sup

h↓0
1

h
[�σ(y + h)− �σ(y)]

are bounded independent of y. Explicit calculation veriÞes that the limsups are indeed bounded.

We omit the details. 2

Proof of Theorem 2

It suffices to show that �Y converges to Y with weak order 1 by checking that conditions (14.5.7)�

(14.5.12) in Theorem 14.5.2 of Kloeden and Platen [12] are satisÞed. This is to verify, in our

context, that for any p = 1, 2, . . ., there exists C < ∞, which does not depend on h, such that for
any q = 1, 2, . . . , p, we have

E

µ
max

0≤n≤nT
| �Yn|2q

¶
≤ C;

E
³
| �Yn+1 − �Yn|2q

¯̄̄
Fnh

´
≤ Chq;¯̄̄

E
³
( �Yn+1 − �Yn)

l − (�µ( �Yn)h+ �σ( �Yn)
√
hZn+1)

l)|Fnh
´¯̄̄
≤ Ch2; for l = 1, 2, 3

From the proof of Theorem 1 it follows that �µ, �σ are both bounded and Lipschitz continuous,

and |µ(y) − �µ(y)| ≤ Kh holds for any real number y (in particular, µ is bounded too). The Þrst
inequality is immediate from the boundedness of �σ and µ (cf. Exercise 14.5.3 of Kloeden and Platen

[12]). As to the second inequality, we have

E
³
| �Yn+1 − �Yn|2q

¯̄̄
Fnh

´
= E

³
|µ( �Yn)h+ �σ( �Yn)

√
hZn+1|2q

¯̄̄
Fnh

´
≤ c1

³
|µ( �Yn)h|2q + |�σ( �Yn)

√
hZn+1|2q

¯̄̄
Fnh

´
≤ c1(c2h

2q + c3h
q)

≤ c4h
q,
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where the last inequality is from the boundedness of �µ(·) and �σ(·). It is not difficult to check the
remaining inequality via similar explicit calculation; we omit the details. 2

Proof of Theorem 3

It is sufficient to prove the boundedness and Lipschitz continuity of all the coefficients {ai(·)} and
{bi(·)} in SDE (10)�(11). Actually, these properties imply the existence and uniqueness of the strong
solution to SDE (10)�(11) (Theorem 5.2.9 of Karatzas and Shreve [13]). Moreover, �Yi converges to

Yi with strong order 1/2 (Theorem 9.6.2 of Kloeden and Platen [12]), so E| �Yi − Yi| ≤ c
√
h, which

yields

E| �Xi −Xi| = E

¯̄̄̄
¯̄ iY
j=1

f( �Yj)−
iY
j=1

f(Yj)

¯̄̄̄
¯̄

≤
iX
j=1

E
¯̄̄
f( �Yj)− f(Yj)

¯̄̄

≤ c1

iX
j=1

E
¯̄̄
�Yj − Yj

¯̄̄
≤ c2

√
h,

where the Þrst and second inequalities are from 0 ≤ f ≤ 1 and the Lipschitz continuity of f .

The rest of this subsection is devoted to the proof of the properties of boundedness and Lipschitz

continuity.

We recall that,

ai(Y ) =
1

2
g00(f(Yi)) · f2(Yi) · (4σ>i 4σi)(f(Yi))− g0(f(Yi)) · f(Yi) · 4σi(f(Yi))>σi−1(Y ),

bi(Y ) = g0(f(Yi)) · f(Yi) · 4σi(f(Yi)),
since 4σi only depends on Xi/Xi−1 = f(Yi).

Boundedness: Note that g0 ◦ f = 1
f 0 , g

00 ◦ f = − f 00
(f 0)3 , 4σi is bounded, σi−1 is bounded and

k 4σi(f) k≤ c1(1− f) (by Lipschitz continuity of 4σi and 4σi(1) = 0). It follows that

sup k bi k≤ c · sup
¯̄̄̄
f(1− f)
f 0

¯̄̄̄
<∞,

and

sup k ai k ≤ sup
¯̄̄
(g00 ◦ f) · f2· k 4σi ◦ f k2

¯̄̄
+ sup

¯̄̄
(g0 ◦ f) · f · (4σi ◦ f)>σi−1

¯̄̄
≤ sup

¯̄̄̄
¯f2f 00(f 0)3

· k 4σi ◦ f k2
¯̄̄̄
¯+ c sup

¯̄̄̄
f

f 0
k 4σi ◦ f k

¯̄̄̄

≤ c1 · sup
¯̄̄̄
¯f2(1− f)2f 00(f 0)3

¯̄̄̄
¯+ c2 sup

¯̄̄̄
f(1− f)
f 0

¯̄̄̄
<∞,
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where the last inequality follows readily from the fact that f ∈ D.
Lipschitz continuity of bi: Note that bi = (bi1, bi2, · · · , bid) is a Rd�valued function that only

depends on Yi. The proof is therefore similar to the one-dimensional case. We only need to prove

for any j = 1, 2, . . . , d, the boundedness of

lim sup
h↓0

1

h
[bij(y + h)− bij(y)]

Since bij(y) = g
0(f(y)) · f(y) · 4σij(f(y)) = f(y)

f 0(y)4σij(f(y)), it follows that

1

h
|bij(y + h)− bij(y)| ≤ 1

h

¯̄̄̄
f(y + h)

f 0(y + h)
(4σij(f(y + h))−4σij(f(y)))

¯̄̄̄
+
1

h

¯̄̄̄
4σij(f(y))

µ
f(y + h)

f 0(y + h)
− f(y)

f 0(y)

¶¯̄̄̄
4
= A+B.

However, by Lipschitz continuity of 4σij, we have

lim sup
h↓0

A ≤ c lim sup
h↓0

1

h

¯̄̄̄
f(y + h)

f 0(y + h)
(f(y + h)− f(y))

¯̄̄̄
= cf(y) ≤ c,

and from the fact that |4σij(x)− 1| ≤ cx we obtain

lim sup
h↓0

B ≤ c(1− f(y)) lim sup
h↓0

1

h

¯̄̄̄
f(y + h)

f 0(y + h)
− f(y)

f 0(y)

¯̄̄̄

= c(1− f(y))
¯̄̄̄
¯
µ
f

f 0

¶0
(y)

¯̄̄̄
¯ = c(1− f(y))

¯̄̄̄
1− f(y)f

00(y)
(f 0(y))2

¯̄̄̄

≤ c(1+ sup

¯̄̄̄
f(1− f)f 00
(f 0)2

¯̄̄̄
) <∞,

where the last inequality holds since f ∈ D.
Lipschitz continuity of ai: It is immediate that

g0(f(Yi)) · f(Yi) · 4σi(f(Yi))>σi−1(Y ) = bi(Y )>σi−1(Y )

is Lipschitz continuous since both bi and σi−1 are bounded and Lipschitz continuous. Hence it

suffices to show the Lipschitz continuity of φi
4
= 1

2(g
00 ◦ f) · f2 · (4σ>i 4σi) ◦ f . As before, we need

to prove that

lim sup
h↓0

1

h
[φi(y + h)− φi(y)]

is bounded. The proof is similar to that of Lipschitz continuity of bi and is omitted. 2
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Proof of Theorem 5

Let yj
4
= Yj(0), Aj

4
= aj(Y (0)) and Bj

4
= bj(Y (0)) for j = 1, · · · , N . We have

f( �Yj(h)) = f(yj) + f
0(yj)B>j Z

√
h+

µ
f 0(yj)Aj +

1

2
f 00(yj)(B>j Z)

2
¶
h+ o(h),

which implies, with EZ = 0, E(ZiZj) = δij,

d

dh
E

 iY
j=1

f( �Yj(h))

¯̄̄̄¯̄
h=0

=
iX
j=1

uj Y
m6=j

f(ym)

+ X
1≤m<j≤i

f 0(ym)f 0(yj)B>mBj · Y
l 6=m,j

f(yl)


=

iY
m=1

f(ym) ·
 iX
j=1

uj
f(yj)

+
X

1≤m<j≤i

f 0(ym)f 0(yj)
f(ym)f(yj)

B>mBj

 .
Here uj

4
= Ajf

0(yj) + 1
2f
00(yj)B>j Bj . We only need to prove that, for every 1 ≤ i ≤ N ,

ui
f(yi)

+
f 0(yi)
f(yi)

X
0≤m<i

f 0(ym)
f(ym)

· (B>mBi) = 0,

or equivalently,

ui = −f 0(yi)
X

0≤m<i

f 0(ym)
f(ym)

· (B>mBi) = −f 0(yi)
 X
0≤m<i

f 0(ym)
f(ym)

Bm

>Bi.
However, by deÞnition,

Bm = bm(Y (0)) = g
0(f(ym))f(ym)4σm = f(ym)

f 0(ym)
4σm.

Hence X
0≤m<i

f 0(ym)
f(ym)

Bm =
X

0≤m<i

f 0(ym)
f(ym)

f(ym)

f 0(ym)
4σm =

X
0≤m<i

4σm = σi−1

and we need only to prove ui = −f 0(yi)σ>i−1Bi. But by deÞnition,

Ai = ai(Y (0)) =
1

2
g00(f(yi))f2(yi)(4σ>i 4σi)(f(yi))− g0(f(yi))f(yi)4σi(f(yi))>σi−1

=
1

2

g00(f(yi))
(g0(f(yi)))2

(B>i Bi)− σ>i−1Bi

= −1
2

f 00(yi)
f 0(yi)

(B>i Bi)− σ>i−1Bi.

Therefore,

ui =

µ
−1
2

f 00(yi)
f 0(yi)

(B>i Bi)− σ>i−1Bi
¶
f 0(yi) +

1

2
f 00(yi)B>i Bi

= −f 0(yi)σ>i−1Bi,

which concludes the proof. 2
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Proof of Theorem 6

Here we present the proof for the case of a one-dimensional driving Brownian motion, i.e. d = 1.

The proof for d > 1 is essentially the same except for more burdensome notation. We shall prove

that ei is actually bounded for every i = 1, · · · , N . The strong and weak convergence order then
follow from Theorems 9.6.2 and 14.5.2 of Kloeden and Platen [12].

Before we prove the boundedness of ei, let us brießy describe how ei can be evaluated at each

step of simulation. As before, Let yj
4
= Yj(0), Aj

4
= aj( �Y (0)) and Bj

4
= bj( �Y (0)) for j = 1, · · · , N .

Explicit calculation yields that

f( �Yj(h)) = d
(0)
j +d

(1)
j Z

√
h+d

(2)
j h+d

(3)
j Z

2h+d
(4)
j Zh

√
h+d

(5)
j Z

3h
√
h+d

(6)
j h

2+d
(7)
j Z

2h2+d
(8)
j Z

4h2+o(h2),

with

d
(0)
j = f(yj), d

(1)
j = f 0(yj)Bj, d

(2)
j = f 0(yj)Aj,

d
(3)
j =

1

2
f 00(yj)Bj , d

(4)
j = f 00(yj)AjBj , d

(5)
j =

1

6
f 000(yj)B3j ,

d
(6)
j = f 0(yj)ej +

1

2
f 00(yj)A2j , d

(7)
j =

1

2
f 000(yj)AjB2j , d

(8)
j =

1

24
f 0000(yj)B4j .

Moreover, we may write

jY
i=1

f( �Yi(h)) = w
(0)
j + w

(1)
j Z

√
h+ w

(2)
j h+ w

(3)
j Z

2h+ w
(4)
j Zh

√
h+ w

(5)
j Z

3h
√
h

+w
(6)
j h

2 + w
(7)
j Z

2h2 + w
(8)
j Z

4h2 + o(h2),

where w
(·)
j �s can be expressed in terms of w

(·)
j−1�s and d

(·)
j �s. Actually, w

(·)
1 = d

(·)
1 and for i ≥ 2,

w
(0)
i = w

(0)
i−1d

(0)
i ; w

(1)
i = w

(1)
i−1d

(0)
i + w

(0)
i−1d

(1)
i ; w

(2)
i = w

(2)
i−1d

(0)
i + w

(0)
i−1d

(2)
i ;

w
(3)
i = w

(3)
i−1d

(0)
i + w

(1)
i−1d

(1)
i + w

(0)
i−1d

(3)
i ; w

(4)
i = w

(4)
i−1d

(0)
i + w

(2)
i−1d

(1)
i + w

(1)
i−1d

(2)
i + w

(0)
i−1d

(4)
i ;

w
(5)
i = w

(4)
i−1d

(0)
i + w

(2)
i−1d

(1)
i + w

(1)
i−1d

(2)
i + w

(0)
i−1d

(4)
i ; w

(6)
i = w

(6)
i−1d

(0)
i + w

(2)
i−1d

(2)
i + w

(0)
i−1d

(6)
i ;

w
(7)
i = w

(7)
i−1d

(0)
i + w

(4)
i−1d

(1)
i + w

(3)
i−1d

(2)
i +w

(2)
i−1d

(3)
i + w

(1)
i−1d

(4)
i + w

(0)
i−1d

(7)
i ;

w
(8)
i = w

(8)
i−1d

(0)
i + w

(5)
i−1d

(1)
i + w

(3)
i−1d

(3)
i + w

(1)
i−1d

(5)
i + w

(0)
i−1d

(8)
i ;

The value of ei can be updated at each step through the equation

w
(6)
i + w

(7)
i + 3w

(8)
i = 0,
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which makes the term of second-order have expectation zero since EZ = EZ3 = 0,EZ2 = 1 and

EZ4 = 3. Solving this equation, we have

d
(6)
i = −w

(7)
i + 3w

(8)
i + w

(6)
i−1d

(0)
i + w

(2)
i−1d

(2)
i

w
(0)
i−1

and ei =
d
(6)
i − 1

2f
00(yi)A2i

f 0(yi)
. (15)

More speciÞcally, when i = 1, the above equation gives d
(6)
1 + d

(7)
1 + 3d

(8)
1 = 0, which in turn yields

e1 =
−1
f 0(y1)

µ
1

2
f 00(y1)A21 +

1

2
f 000(y1)A1B21 +

1

8
f 0000(y1)B41

¶
.

With this e1, we can determine all the d
(·)
1 �s. As i = 2, all the w

(·)
2 �s can updated immediately

except w
(6)
i since we do not know d

(6)
2 . However, e2 can be evaluated from (15), which in turn

determine the value of d
(6)
2 and therefore w

(6)
2 ; and so on.

To prove the boundedness of ej , we employ induction on j.

j = 1: It follows from f ∈ D0 that

sup

¯̄̄̄
¯f 00A21f 0

¯̄̄̄
¯ = sup

¯̄̄̄
¯f 00f2(σ1 ◦ f)2(f 0)3

¯̄̄̄
¯ ≤ c sup

¯̄̄̄
¯f 00f2(1− f)2(f 0)3

¯̄̄̄
¯ <∞,

and similarly,

sup

¯̄̄̄
¯f 000A1B21f 0

¯̄̄̄
¯ ≤ c sup

¯̄̄̄
¯f 000(f 00)2f5(1− f)5(f 0)8

¯̄̄̄
¯ <∞,

sup

¯̄̄̄
¯f 0000B41f 0

¯̄̄̄
¯ ≤ c sup

¯̄̄̄
¯f 0000(f 00)4f8(1− f)8(f 0)13

¯̄̄̄
¯ <∞.

The boundedness of e1 follows readily.

Suppose for 1 ≤ i ≤ j − 1, ei is bounded. We need to prove that ej is bounded too.
First we prove that all d

(p)
i s with 1 ≤ i ≤ j−1, 0 ≤ p ≤ 8 are bounded. Actually, by assumption,

ei is bounded. Hence d
(6)
i is bounded too. For p 6= 6, explicit calculation will do. For example,

when p = 5,

sup
¯̄̄
d
(5)
i

¯̄̄
= sup

¯̄̄̄
1

6
f 000B3i

¯̄̄̄
≤ c sup

¯̄̄̄
¯f 000(f 00)3f6(1− f)6(f 0)9

¯̄̄̄
¯ <∞

since f ∈ D0.
ej is determined by w

(6)
j + w

(7)
j + 3w

(8)
j = 0. However,

w
(6)
j h

2 + w
(7)
j Z

2h2 + w
(8)
j Z

4h2 = d
(0)
j ·

terms of order h2 from j−1Y
i=1

f( �Yi(h))


+d

(1)
j ·

terms of order h√h from j−1Y
i=1

f( �Yi(h))

+ · · ·
+ · · ·+ d(8)j ·

constant term from
j−1Y
i=1

f( �Yi(h))

 .
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Because
³
terms of order h2 from

Qj−1
i=1 f(

�Yi(h))
´
already has expectation 0, it suffices to prove that

d
(p)
j

f 0 for all 1 ≤ p ≤ 8 and
f 00a2j
f 0 are bounded since all the d

(p)
i s with 1 ≤ i ≤ j − 1, 0 ≤ p ≤ 8 are

bounded. Using f ∈ D0, we can carry out the proof by explicit calculation. We omit the details. 2
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