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Abstract. We identify the large deviation rate function for a single server
with multi-class arrivals in which the service priority is determined according
to the weighted-serve-the-longer-queue policy. The problem setup falls into
the general category of systems with discontinuous statistics. Our analysis,
which is largely based on a weak convergence approach, does not require any
symmetry or dimensional restrictions.

1. Introduction

Consider a single server that must serve multiple queues of customers from different
classes. A common service discipline in this situation is the serve-the-longest-queue
policy, in which the longest queue is given priority. In this paper we will consider
a natural generalization of this discipline, namely, the weighted-serve-the-longer-
queue (WSLQ) policy. Under WSLQ, each queue length is multiplied by a con-
stant to determine a “score” for that queue, and the queue with the largest score is
granted priority. Such service policies are more appropriate than serve-the-longest-
queue policy when the different arrival queues or customer classes have different
requirements or statistical properties. For example, if there is a finite queueing ca-
pacity to be split among the different classes, one may want to choose the partition
and the weighting constants in order to optimize a certain performance measure.

Because WSLQ is a frequently proposed discipline for queueing models in
communication problems, a large deviations analysis of this protocol is useful [12].
However, service policies such as WSLQ are not smooth functions of the sys-
tem state and lead to multidimensional stochastic processes with discontinuous
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statistics. In general, large deviation properties of processes with discontinuous
statistics are hard to analyze [1, 7, 8, 9]. This is especially true when the discon-
tinuities appear on the interior of the state space, rather than the boundary. In
fact, very general results with an explicit identification of the rate function only
exist for the case where two regions of smooth statistical behavior are separated
by an interface of codimension one [3]. For the WSLQ policy, the large deviation
analysis has been limited to special, two-dimensional cases [11]. Large deviations
for a weighted-serve-the-longer-workload policy are treated in [10], but considers
a particular event rather than the sample path large deviations principle.

The purpose of the present work is to show that a complete large deviation
analysis of WSLQ is possible without any symmetry or dimensional assumptions.
Given the intrinsic difficulties in models with discontinuous statistics, it is worth-
while to explain what makes such an analysis possible for WSLQ. To this end, we
recall the main difficulty in the large deviation analysis of systems with discon-
tinuous statistics. A large deviation upper bound can often be established using
the results in [6], which assumes little regularity on the statistical behavior of the
underlying processes. However, this upper bound is generally not tight, even for
the very simple situation of two regions of constant statistical behavior separated
by a hyperplane of codimension one [5].

The reason for this gap is most easily identified by considering the correspond-
ing lower bound. When proving a large deviation lower bound, it is necessary to
analyze the probability that the process closely follows or tracks a constant veloc-
ity trajectory that lies on the interface of two or more regions of smooth statistical
behavior. For this one has to consider all changes of measure in these different
regions that lead to the desired tracking behavior. The thorny issue is how to
characterize such changes of measure. In the case of two regions [5], this can be
done in a satisfactory fashion and it turns out that the large deviation rate func-
tion is a modified version of the upper bound in [6]. The modification is made to
explicitly include certain “stability about the interface” conditions, and part of the
reason that everything works out nicely in the setup of [5] is that these stability
conditions can be easily characterized. However, the analogous characterization
of stability is not known for more elaborate settings such as WSLQ, where the
regions of constant statistical behavior are defined according to the partition of
the state space by a finite number of hyperplanes of codimension one. Therefore,
at present there is no general theory that subsumes WSLQ as a special case.

However, a key observation that makes possible a large deviations analysis
for WSLQ is that for this model, the required stability conditions are implicitly
and automatically built into the upper bound rate function of [6]. More precisely,
it can be shown that in the lower bound analysis one can restrict, a priori, to a
class of changes of measure for which the stability conditions are automatically
implied. Thus while it is true that the upper bound of [6] is not tight in general,
it is so in this case due to the structural properties of WSLQ policy.

The study of the large deviation properties of WSLQ is partly motivated
by the problem of estimating buffer overflow (rare event) probabilities for stable
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WSLQ systems using importance sampling. It turns out that the simple form of
the large deviation local rate function as exhibited in (3.1) and (3.2) is essen-
tial toward constructing simple and asymptotically optimal importance sampling
schemes using a game theoretic approach. These results will be reported elsewhere.

The paper is organized as follows. In Section 2, we introduce the single server
system with WSLQ policy. In Section 3, we state the main result, whose proof is
presented in Section 4. Collected in the appendices are a lengthy technical part
of the proof that involves the approximation of continuous trajectories, as well as
miscellaneous results.

2. Problem Setup

Consider a server with d customer classes, where customers of class i arrive accord-
ing to a Poisson process with rate λi and are buffered at queue i for i = 1, . . . , d.
The service time for a customer of class i is exponentially distributed with rate µi.

λ2

λ1

λd

µ1

µ2

µd

Figure 1: WSLQ system

The service policy is determined according to the WSLQ discipline that can
be described as follows. Let ci be the weight associated with class i. If the size of
queue i is qi, then the “score” of queue i is defined as ciqi and service priority will
be given to the queue with the maximal score. When there are multiple queues with
the maximal score, the assignment of priority among these queues can be arbitrary
– the choice is indeed non-essential and will lead to the same rate function. We
adopt the convention that when there are ties, the priority will be given to the
queue with the largest index.

The system state at time t is the vector of queue lengths and is denoted by
Q(t) .= (Q1(t), . . . , Qd(t)). Then Q is a continuous time pure jump Markov process
whose possible jumps belong to the set

Θ = {±e1,±e2, . . . ,±ed}.

For v ∈ Θ, let r(x; v) denote the jump intensity of process Q from state x to
state x+ v. Under the WSLQ discipline, these jump intensities are as follows. For
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x = (x1, . . . , xd) ∈ Rd+ and x 6= 0, let π(x) denote the indices of queues that have
the maximal score, that is,

π(x) .=
{

1 ≤ i ≤ d : cixi = max
j
cjxj

}
.

Then

r(x; v) =





λi, if v = ei and i = 1, . . . , d,
µi, if v = −ei where i = maxπ(x),
0 , otherwise.

For x = 0, there is no service and the jump intensities are

r(0; v) =
{
λi, if v = ei and i = 1, . . . , d,
0 , otherwise.

We also set
π(0) .= {0, 1, 2, . . . , d}.

An illustrative figure for the case of two queues in given below.

2
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x2

λ1
µ1

λ2

λ2
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c1x1 = c2x2

∂
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c1

Figure 2: System dynamics for d = 2.

Remark 2.1. It is not difficult to see that the system dynamics have constant
statistical behavior in the regions where π(·) is constant. Discontinuity occurs
when π(·) changes, and every x with |π(x)| ≥ 2 (i.e., when there is a tie) is indeed
a discontinuous point. Therefore, we have various discontinuity interfaces with
different dimensions. For example, for every subset A ⊂ {1, 2, . . ., d} with |A| ≥ 2
or A = {0, 1, 2, . . ., d}, the set {x ∈ Rd+ : π(x) = A} defines an interface with
dimension d− |A|+ 1.



Large Deviations for Serve the Longer Queue 5

Remark 2.2. The definition of π(0) is introduced to cope with the discontinuous dy-
namics at the origin. Note that with this definition, π(x) can only be {0, 1, 2, . . . , d}
if x = 0 and a subset of {1, 2, . . ., d} if x 6= 0.

Remark 2.3. A useful observation is that π is upper semicontinuous as a set-valued
function. That is, for any x ∈ Rd+, π(y) ⊂ π(x) for all y in a small neighborhood
of x.

3. The main result

In order to state a large deviation principle on path space, we fix arbitrarily T > 0,
and for each n ∈ N let {Xn(t) : t ∈ [0, T ]} be the scaled process defined by

Xn(t) .=
1
n
Q(nt).

Then Xn is a continuous time Markov process with generator

Lnf(x) = n
∑

v∈Θ

r(x; v) [f (x+ v/n) − f(x)] .

The processes {Xn} live in the space of cadlag functions D([0, T ] : Rd), which is
endowed with the Skorohod metric and thus a Polish space.

3.1. The rate function

For each i = 1, . . . , d, let H(i) be the convex function given by

H(i)(α) .= µi(e−αi − 1) +
d∑

j=1

λj(eαj − 1),

for all α = (α1, . . . , αd) ∈ Rd. We also define for i = 0,

H(0)(α) .=
d∑

j=1

λj(eαj − 1)

for α ∈ Rd.
For each non-empty subset A ⊂ {1, . . . , d} or A = {0, 1, . . ., d}, let LA be the

Legendre transform of maxi∈AH(i), that is,

LA(β) .= sup
α∈Rd

[
〈α, β〉 − max

i∈A
H(i)(α)

]

for each β ∈ Rd. Clearly, LA is convex and non-negative. When A is a singleton
{i}, we simply write LA as L(i). A useful representation of LA [4, Corollary D.4.3]
is

LA(β) = inf
∑

i∈A

ρ(i)L(i)(β(i)), (3.1)
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where the infimum is taken over all {(ρ(i), β(i)) : i ∈ A} such that

ρ(i) ≥ 0,
∑

i∈A
ρ(i) = 1,

∑

i∈A
ρ(i)β(i) = β. (3.2)

Furthermore, for x ∈ Rd+ let L(x, β) .= Lπ(x)(β).
Now we can define the process level rate function. For x ∈ Rd+, define Ix :

D([0, T ] : Rd) → [0,∞] by

Ix(ψ) .=
∫ T

0

L(ψ(t), ψ̇(t))dt (3.3)

if ψ(0) = x, ψ is absolutely continuous, and ψ(t) ∈ Rd+ for all t ∈ [0, T ]. Otherwise
set Ix(ψ) .= ∞. The family of rate functions {Ix : x ∈ Rd+} has compact level sets
on compacts in the sense that, for every M ≥ 0 and every compact set C ∈ Rd+,
the set

∪x∈C
{
ψ ∈ D([0, T ] : Rd) : Ix(ψ) ≤ M

}

is compact [6, Theorem 1.1].

3.2. The main theorem

The main result of this paper can be stated as follows. Let Exn denote the expec-
tation conditioned on Xn(0) = xn.

Theorem 3.1. The process {Xn(t) : t ∈ [0, T ]} satisfies the uniform Laplace prin-
ciple with rate functions {Ix : x ∈ Rd+}. That is, for any sequence {xn} ⊂ Rd+ such
that xn → x and any bounded continuous function h : D([0, T ] : Rd) → R, we have

lim
n→∞

− 1
n

logExn {exp [−nh(Xn)]} = inf
ψ∈D([0,T ]:Rd)

{Ix(ψ) + h(ψ)}.

In particular, {Xn(t) : t ∈ [0, T ]} satisfies the large deviation principle with rate
function {Ix : x ∈ Rd+}.

4. Proof of the main theorem

Throughout the rest of the paper, we will assume without loss of generality that
T = 1. We only need to show the uniform Laplace principle which automatically
implies the large deviation principle [4, Theorem 1.2.3]. The uniform Laplace prin-
ciple upper bound is implied by the large deviation upper bound [6, Theorem 1.1]
and an argument similar to [4, Theorem 1.2.1]. Therefore, it is only necessary to
prove the uniform Laplace principle lower bound. That is,

lim sup
n→∞

− 1
n

logExn {exp [−nh(Xn)]} ≤ inf
ψ∈D([0,1]:Rd)

{Ix(ψ) + h(ψ)}. (4.1)

One can a priori restrict to ψ such that Ix(ψ) < ∞ since the inequality holds
trivially otherwise. Note that such ψ’s are necessarily absolutely continuous by
the definition of Ix.
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4.1. An approximation lemma

A very important step in the proof of (4.1) is the following approximation lemma.
A function ψ∗ has property P if there exists a k ∈ N and 0 = t0 < t1 < · · · <
tk−1 < tk = 1 such that on each interval (ti−1, ti), i = 1, . . . , k ψ̇∗ and π(ψ∗) are
each constant. Then define N be the collection of functions ψ∗ ∈ C([0, 1] : Rd+)
that have property P.

Lemma 4.1. Given any ψ ∈ D([0, 1] : Rd) such that Ix(ψ) < ∞ and any δ > 0,
there exists ψ∗ ∈ N such that ‖ψ − ψ∗‖∞ < δ and Ix(ψ∗) ≤ Ix(ψ) + δ.

The proof of Lemma 4.1 is lengthy and technical, and is deferred to Appendix
A.

We claim that, in order to show inequality (4.1), it suffices to show that for
any xn → x and ψ∗ ∈ N,

lim sup
n→∞

− 1
n

logExn {exp [−nh(Xn)]} ≤ Ix(ψ∗) + h(ψ∗). (4.2)

This reduction follows easily from Lemma 4.1 and the continuity of h. We omit
the details.

4.2. A stochastic control representation

The proof of (4.2) uses the weak convergence approach, and is based on the fol-
lowing formula. Define the function ` by

`(x) =
{
x logx− x+ 1, if x ≥ 0,

∞ , if x < 0,

with the convention 0`(0/0) .= 0. Let r̄(x, t; v) be non-negative and uniformly
bounded, and piecewise constant in t, and also satisfy r̄(x, t; v) = 0 whenever
r(x; v) = 0. Let X̄n be the non-stationary jump Markov process with generator

L̄nf(x, t) = n
∑

v∈Θ

r̄(x, t; v) [f(x + v/n) − f(x)] .

Then

− 1
n

logEx {exp [−nh(Xn)]} (4.3)

≤ inf
r̄
Ex

[∫ 1

0

∑

v∈Θ

r(X̄n(t); v)`
(
r̄(X̄n(t), t; v)
r(X̄n(t); v)

)
dt+ h(X̄n)

]
.

In this inequality r̄ can be viewed as a control and X̄n a controlled process.
The proof of (4.3) follows from the relative entropy representation formula for

exponential integrals. Let P be a probability measure and let h be a bounded con-
tinuous function on D([0, 1] : Rd). For another probablity measure Q on D([0, 1] :
Rd) let R(Q ‖P ) denote the relative entropy of Q with respect to P . Then [4]

− 1
n

log
∫

D([0,1]:Rd)

e−nhdP = inf

[
1
n
R(Q ‖P ) +

∫

D([0,1]:Rd)

hdQ

]
,
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where the infimum is over all Q. If one restricts Q to the probability measures in-
duced by the class of Markov processes described above, one obtains an inequality.
Finally, we substitute the explicit form of the Radon-Nikodym derivative dQ/dP
(as in [11, Theorem B.6]) into the definition of R(Q ‖P ) to arrive at the inequality
in (4.3).

Thanks to the control representation (4.3), the Laplace principle lower bound
(4.2) for ψ∗ ∈ N follows if one can, for an arbitrarily fixed ε > 0, construct a control
(abusing the notation) r̄ = r̄ε such that

lim sup
n→∞

Exn

[∫ 1

0

∑

v∈Θ

r(X̄n(t); v)`
(
r̄(X̄n(t), t; v)
r(X̄n(t); v)

)
dt+ h(X̄n)

]
(4.4)

≤ Ix(ψ∗) + h(ψ∗) + ε.

The details of the construction will be carried out in the next section.

4.3. Properties of the rate function

We give some useful representation formulae for the local rate functions LA.

Lemma 4.2. Given β ∈ Rd, the following representation for L(i)(β) holds.

1. For each i = 1, 2, . . . , d,

L(i)(β) = inf



µi`

(
µ̄i
µi

)
+

d∑

j=1

λj`

(
λ̄j
λj

)
: −µ̄iei +

d∑

j=1

λ̄jej = β



 .

2. For i = 0,

L(0)(β) = inf





d∑

j=1

λj`

(
λ̄j
λj

)
:

d∑

j=1

λ̄jej = β



 .

In every case the infimum is attained.

Proof. Note that for every λ > 0 and v ∈ Rd, the Legendre transform of the convex
function

h(α) .= λ
(
e〈α,v〉 − 1

)

is

h∗(β) .=
{
λ`(λ̄/λ), if β = λ̄v for some λ̄ ∈ R,
∞ , otherwise

for every β ∈ Rd. The proof of this claim is straightforward computation and we
omit the details. Now the representation for L(i) follows directly from [4, Corollary
D.4.2]. The attainability of the infimum is elementary. �

Lemma 4.3. Given β ∈ Rd, we have the following representation for LA(β).
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1. Assume A ∈ {1, 2, . . . , d} is non-empty. Then

LA(β) = inf


∑

i∈A
ρ(i)µi`

(
µ̄i
µi

)
+

d∑

j=1

λj`

(
λ̄j
λj

)
 ,

where the infimum is taken over all collections of (ρ(i), µ̄i, λ̄j) such that

ρ(i) ≥ 0,
∑

i∈A
ρ(i) = 1, −

∑

i∈A
ρ(i)µ̄iei +

d∑

j=1

λ̄jej = β. (4.5)

2. For A = {0, 1, 2, . . ., d}, we have

LA(β) = inf




d∑

i=1

ρ(i)µi`

(
µ̄i
µi

)
+

d∑

j=1

λj`

(
λ̄j
λj

)
 ,

where the infimum is taken over all collections of (ρ(i), µ̄i, λ̄j) such that

ρ(i) ≥ 0,
d∑

i=0

ρ(i) = 1, −
d∑

i=1

ρ(i)µ̄iei +
d∑

j=1

λ̄jej = β.

Proof. We only present the proof for Part 1. The proof for Part 2 is similar and
thus omitted. Thanks to Lemma 4.2 and equations (3.1)-(3.2), we have

LA(β) = inf
∑

i∈A

ρ(i)



µi`

(
µ̄

(i)
i

µi

)
+

d∑

j=1

λj`

(
λ̄

(i)
j

λj

)
 ,

where the infimum is taken over all (ρ(i), µ̄
(i)
i , λ̄

(i)
j ) such that

ρ(i) ≥ 0,
∑

i∈A

ρ(i) = 1,
∑

i∈A

ρ(i)


−µ̄(i)

i ei +
d∑

j=1

λ̄
(i)
j ej


 = β. (4.6)

Abusing the notation a bit, write µ̄i = µ̄
(i)
i for i ∈ A, and let λ̄j

.=
∑

i∈A ρ
(i)λ̄

(i)
j for

j = 1, 2, . . . , d. Thanks to (4.6), the collection (ρ(i), µ̄i, λ̄j) satisfies the constraints
(4.5). Observing that, by convexity of `,

∑

i∈A
ρ(i)

d∑

j=1

λj`

(
λ̄

(i)
j

λj

)
=

d∑

j=1

λj
∑

i∈A
ρ(i)`

(
λ̄

(i)
j

λj

)
≥

d∑

j=1

λj`

(
λ̄j
λj

)
,

with equality if λ(i)
j = λ

(i)
k for every j, k. The first part of Lemma 4.3 now follows

readily. �

Remark 4.4. The representation of LA in Lemma 4.3 remains valid if we further
constrain ρ(i), µ̄i, and λ̄i to be strictly positive for every i ∈ A. This is an easy
consequence of the fact that ` is finite and continuous on the interval [0,∞). We
omit the details.
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Remark 4.5. Given a non-empty subset A ( {1, 2, . . ., d} and β = (β1, . . . , βd) ∈
Rd, LA(β) is finite if and only if βj ≥ 0 for all j 6∈ A. For A = {1, 2, . . . , d} or
{0, 1, 2, . . . , d}, LA(β) is finite for every β ∈ Rd.

4.4. The construction of controls and the cost

Fix ε > 0. We will use ψ∗ to construct a control r̄ = r̄ε based on the representation
of the local rate function as in Lemma 4.3. For notational simplicity, we drop the
superscript ε.

Since ψ∗ ∈ N, there exist 0 = t0 < t1 < · · · < tK = 1 such that for every k
there are βk and Ak such that ψ̇∗(t) ≡ βk and π(ψ∗(t)) ≡ Ak for all t ∈ (tk, tk+1).
We start by defining a suitable collection of {(ρ(i)

k , µ̄i,k, λ̄j,k) : 0 ≤ i ≤ d, 1 ≤ j ≤
d}. We consider the following two cases.

Case 1. Suppose Ak = {0, 1, 2, . . . , d}. Lemma 4.3 and Remark 4.4 imply the
existence of a collection {(ρ(i)

k , µ̄i,k, λ̄j,k) : 0 ≤ i ≤ d, 1 ≤ j ≤ d} such that
µ̄i,k > 0, λ̄i,k > 0 for all i and

ρ
(i)
k > 0,

d∑

i=0

ρ
(i)
k = 1, −

d∑

i=1

ρ
(i)
k µ̄i,kei +

d∑

j=1

λ̄j,kej = βk, (4.7)

d∑

i=1

ρ
(i)
k µi`

(
µ̄i,k
µi

)
+

d∑

j=1

λj`

(
λ̄j,k
λj

)
≤ LAk (βk) + ε. (4.8)

Case 2. Suppose Ak ⊂ {1, 2, . . . , d}. According to Lemma 4.3 and Remark 4.4,
for each k there exist a collection {(ρ(i)

k , µ̄i,k, λ̄j,k) : i ∈ Ak, 1 ≤ j ≤ d} such that
µ̄i,k > 0, λ̄i,k > 0 for all i ∈ Ak and

ρ
(i)
k > 0,

∑

i∈Ak

ρ
(i)
k = 1, −

∑

i∈Ak

ρ
(i)
k µ̄i,kei +

d∑

j=1

λ̄j,kej = βk, (4.9)

∑

i∈Ak

ρ
(i)
k µi`

(
µ̄i,k
µi

)
+

d∑

j=1

λj`

(
λ̄j,k
λj

)
≤ LAk(βk) + ε. (4.10)

We extend the definition by letting ρ(i)
k

.= 0, µ̄i,k
.= µi for i 6∈ Ak and i 6= 0, and

letting ρ(0)
k

.= 0.

The control r̄ is defined as follows. For t ∈ [tk, tk+1), let

r̄(x, t; v) =





λ̄j,k, if v = ej and j = 1, . . . , d,
µ̄j,k, if v = −ej where j = maxπ(x) and x 6= 0,
0 , otherwise.
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Thus, on time interval [tk, tk+1), the system has arrival rates {λ̄1,k, . . . , λ̄d,k} and
service rates {µ̄1,k, . . . , µ̄d,k} under this control r̄. The corresponding running cost
for t ∈ [tk, tk+1) is

∑

v∈Θ

r(X̄n(t); v)`
(
r̄(X̄n(t), t; v)
r(X̄n(t); v)

)
(4.11)

=
d∑

j=1

µj`

(
µ̄j,k
µj

)
1{max π(X̄n(t))=j,X̄n(t) 6=0} +

d∑

j=1

λj`

(
λ̄j,k
λj

)

=
∑

i∈Ak,i 6=0

µi`

(
µ̄i,k
µi

)
1{max π(X̄n(t))=i,X̄n(t) 6=0} +

d∑

j=1

λj`

(
λ̄j,k
λj

)
,

here the last equality holds since µ̄j,k = µj for j 6∈ Ak and `(1) = 0.
For future use, we also define for each i = 1, . . . , d,

β
(i)
k

.= −µ̄i,kei +
d∑

j=1

λ̄j,kej , (4.12)

which is the law of large number limit of the velocity of the controlled process if
queue of class i is served. Analogously, we also define (when none of the queues
are being served)

β
(0)
k

.=
d∑

j=1

λ̄j,kej . (4.13)

4.5. Weak convergence analysis

In this section we characterize the limit processes. Below are a few definitions. For
each j, define random measures {γnj } on [0, 1] by

γnj {B} .=
∫

B

1{max π(X̄n(t))=j,X̄n(t) 6=0}dt, j = 1, 2, . . . , d,

γn0 {B} .=
∫

B

1{X̄n(t)=0}dt,

for Borel subsets B ⊂ [0, 1], and denote γn .= (γn0 , γ
n
1 , . . . , γ

n
d ). We also define the

stochastic processes

Sn(t) .= xn +
d∑

j=0



κ(t)−1∑

k=0

β
(j)
k γnj {[tk, tk+1)} + β

(j)
κ(t)

γnj {[tκ(t), t)}


 ,

where κ(t) = max{0 ≤ k ≤ K : tk ≤ t}.

Proposition 4.6. Given any subsequence of (γn, Sn, X̄n), there exist a subsubse-
quence, a collection of random measures γ .= (γ0, γ1, . . . , γd) on [0, 1], and a con-
tinuous process X̄ such that
(a) The subsubsequence converges in distribution to (γ, X̄, X̄).
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(b) With probability one, γj is absolutely continuous with respect to the Lebesgue
measure on [0, 1], and its density, denoted by hj, satisfies

d∑

j=0

hj(t) =
∑

j∈π(X̄(t))

hj(t) = 1

for almost every t.
(c) With probability one, the process X̄ satisfies

X̄(t) = x+
d∑

j=0



κ(t)−1∑

k=0

β
(j)
k γj{[tk, tk+1)} + β

(j)
κ(t)γj{[tκ(t), t)}




for every t. Therefore, X̄ is absolutely continuous with derivative

dX̄(t)
dt

=
d∑

j=0

β
(j)
κ(t)hj(t).

Proof. The family of random measures {γnj } is contained in the compact set of
sub-probability measures on [0, 1] and therefore tight. Furthermore, since {Sn} is
uniformly Lipschitz continuous, it takes values in a compact subset of C([0, 1] : Rd),
and therefore is also tight. We also observe that for every ε > 0,

lim
n→∞

P (‖X̄n − Sn‖∞ > ε) = 0, (4.14)

which in turn implies that {X̄n} is tight. Equation (4.14) is trivial since X̄n −
Sn is a martingale (e.g., [11, Appendix B.2]), whence the process ‖X̄n − Sn‖2

is a submartingale. Therefore, by the submartingale inequality and the uniform
boundedness of the jump intensity r̄

P

(
sup

0≤t≤1
‖X̄n(t) − Sn(t)‖ > ε

)
≤ 2
ε2
E
[
‖X̄n(1) − Sn(1)‖2

]
→ 0.

It follows that there exists a subsubsequence that converges weakly to say
(γ, S, S), with γ = (γ0, γ1, . . . , γd). By the Skorohod representation theorem, we
assume without loss of generality that the convergence is almost sure convergence,
and everything is defined on some probability space, say (Ω̄, F̄, P̄ ).

Since the {γnj } are absolutely continuous with respect to Lebesgue measure
on [0, 1] with uniformly bounded densities (i.e., Radon-Nikodým derivatives) in
both n and t, the limit γj is also absolutely continuous. Furthermore, if we define
the process X̄ as in (c), the above consideration yields that, for every t ∈ [0, 1],
Sn(t) converges to X̄(t) almost surely. Therefore, with probability one, S(t) = X̄(t)
for all these rational t ∈ [0, 1]. Since both S and X̄ are continuous, S = X̄ with
probability one.

It remains to show the two equalities of (b). Since
∑d

j=0 γ
n
j equals Lebesgue

measure for every n, we have
∑d
j=0 hj(t) = 1 for almost every t. The proof of the

second equality is similar to that of [4, Theorem 7.4.4(c)]. Consider an ω ∈ Ω̄ such
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that X̄(t, ω) is a continuous function of t ∈ [0, 1], γn(ω) ⇒ γ(ω), and such that
X̄n(·, ω) converges to X̄(·, ω) in the Skorohod metric (whence also in sup-norm
since X̄(·, ω) is continuous [4, Theorem A.6.5]). By the upper semicontinuity of
π(·) [Remark 2.3], it follows that for any t ∈ (0, 1) and A ⊂ {0, 1, . . . , d} such that
π(X̄(t, ω)) ⊂ A, there exist an open interval (a, b) containing t andN ∈ N such that
π(X̄n(s, ω)) ⊂ A for all n ≥ N and s ∈ (a, b). Therefore

∑
j 6∈A γ

n
j (ω){(a, b)} = 0

for all n ≥ N. Taking the limit as n → ∞ we have
∑
j 6∈A γj(ω){(a, b)} = 0, which

in turn implies that
∑

j 6∈A

γj(ω){t ∈ (0, 1) : π(X̄(t, ω)) ⊂ A} = 0,

or equivalently, ∫ 1

0

∑

j 6∈A
hj(t, ω)1{π(X̄(t,ω))⊂A} dt = 0.

We claim that this implies the desired equality at ω. Otherwise, there exists a
subset D ⊂ (0, 1) with positive Lebesgue measure such that for every t ∈ D,

∑

j 6∈π(X̄(t,ω))

hj(t, ω) > 0.

Since π(X̄(t, ω)) can only take finitely many possible values, there exists a subset
(abusing the notation) A ⊂ {0, 1, . . ., d} such that the set

D̄
.= {t ∈ D : π(X̄(t, ω)) = A}

has positive Lebesgue measure. It follows that
∫ 1

0

∑

j 6∈A

hj(t, ω)1{π(X̄(t,ω))⊂A} dt ≥
∫

D̄

∑

j 6∈A

hj(t, ω)1{π(X̄(t,ω))⊂A} dt

=
∫

D̄

∑

j 6∈π(X̄(t,ω))

hj(t, ω) dt

> 0,

a contradiction. This completes the proof. �

4.6. Stability analysis

In this section we prove a key lemma in the analysis that identifies the weak limit
X̄ as ψ∗. The proof uses the implied “stability about the interface” in a crucial
way.

We discuss the main idea behind this stability property before giving the
detailed proof. For the large deviation analysis, it is important to analyze the
probability that the process tracks a segment of trajectory that lies on an interface,
say {x : π(x) = A}, with a constant velocity, say β. To this end, it is natural to use
the change of measure induced by β through the local rate function L as described
in Section 4.4. However, for general systems, this very natural construction does
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not guarantee that X̄ will follow or track ψ, and certain “stability about the
interface” conditions have to be added for this to happen.

For WSLQ system, a stability condition is not explicitly needed since it is
implicitly and automatically built into the upper bound local rate function L. To be
more precise, denote the arrival and service rates under the change of measure by λ̄i
and µ̄i respectively. Then for the tracking behavior to take place it is required that
the proportion of time that the process X̄ spent in the region {x : maxπ(x) = i}
equals ρ(i), where {ρ(i)} is the (strictly positive) solution to the system of equations

ci(λ̄i − ρ(i)µ̄i) = cj(λ̄j − ρ(j)µ̄j), i, j ∈ A, and
∑

i∈A

ρ(i) = 1.

Thanks to Proposition 4.6, such proportions are characterized by {hi(t)} where
∑

i∈π(X̄(t))

hi(t) = 1.

Therefore, we would like to show that π(X̄(t)) ≡ A and hi(t) ≡ ρ(i) for i ∈ A.
This can be shown, and the argument is based on the simple fact that for any
non-empty subset B ⊂ {1, 2, . . . , d} and any b, the solution {xi : i ∈ B} to the
system of equations

ci(λ̄i − xiµ̄i) = cj(λ̄j − xjµ̄j), i, j ∈ B, and
∑

i∈B
xi = b, (4.15)

is unique and component-wise strictly increasing with respect to b.
For example, suppose on some time interval (a, b) that π(X̄(t)) ≡ B where

B is a strict subset of A. It is not difficult to see that {hi(t) : i ∈ B} is a solution
to equation (4.15) because, thanks to Proposition 4.6,

d

dt
(X̄(t))i = λ̄i − hi(t)µ̄i, for i ∈ B.

Since ∑

i∈B
ρ(i) = 1 −

∑

i∈A\B

ρ(i) < 1,

the monotonicity implies hi(t) > ρ(i) for all i ∈ B. This in turn yields [see the
proof of (4.25) for details] that for i ∈ B and j ∈ A \B,

d

dt

[
ci((X̄(t))i − cj((X̄(t))j

]
< 0. (4.16)

Thus the differences between weighted queue lengths grows smaller, and the state
is “pushed” towards the interface A. This derivation can be used to prove by
contradiction that A ⊂ π(X̄(t)). The other direction π(X̄(t)) ⊂ A can be shown
similarly. Once π(X̄(t)) = A is shown, hi(t) = ρ(i) follows immediately from the
uniqueness of the solution to equation (4.15).
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We want to point out that in general such stability conditions are equivalent
to the existence of certain Lyapunov functions, and for the case of WSLQ, inequal-
ity (4.16) indicates that the difference of weighted queue lengths is a Lyapunov
function.

Lemma 4.7. Let (γ, X̄, X̄) be a limit of any weakly converging subsubsequence
(γn, Sn, X̄n) as in Proposition 4.6. Then with probability one, X̄(t) = ψ∗(t) for
every t ∈ [0, 1], and for each j,

hj(t) =
K−1∑

k=0

ρ
(j)
k 1(tk,tk+1)(t)

for almost every t ∈ [0, 1].

Proof. The proof is by induction. By definition X̄(0) = x = ψ∗(0). Assume that
X̄(t) = ψ∗(t) for all t ∈ [0, tk]. The goal is to show that X̄(t) = ψ∗(t) for all
t ∈ [0, tk+1]. Define Ak = π(ψ∗(t)), t ∈ (tk, tk+1) and A = π(ψ∗(tk)). Note that
Ak ⊂ A thanks to the continuity of ψ∗ and the upper semicontinuity of π. Define
the random time

τk = inf
{
t > tk : π(X̄(t)) 6⊂ A

}
.

Since π(X̄(tk)) = π(ψ∗(tk)) = A and X̄ is continuous, the upper semicontinuity
of π implies that τk > tk and π(X̄(τk)) 6⊂ A. We claim that it suffices to show
X̄(t) = ψ∗(t) and hj(t) = ρ

(j)
k for all t ∈ (tk, tk+1 ∧ τk). Indeed, if this is the

case, we must have τk ≥ tk+1 with probability one, since otherwise by continuity
X̄(τk) = ψ∗(τk) and thus π(X̄(τk)) = Ak ⊂ A, a contradiction.

The proof of X̄(t) = ψ∗(t) and hj(t) = ρ
(j)
k for all t ∈ (tk, tk+1 ∧ τk) proceeds

in three steps.
Step 1.. For every t ∈ (tk, tk+1 ∧ τk), either Ak ⊂ π(X̄(t)) or π(X̄(t)) is a strict

subset of Ak.
Step 2.. For every t ∈ (tk, tk+1 ∧ τk), π(X̄(t)) = Ak.
Step 3.. For every t ∈ (tk, tk+1 ∧ τk), X̄(t) = ψ∗(t) and hj(t) = ρ

(j)
k .

Note that, for t ∈ (tk, tk+1 ∧ τk), the definition of τk implies π(X̄(t)) ⊂ A. It
follows from (4.12), (4.13), and Proposition 4.6 that,

d

dt
X̄(t) =

∑

i∈π(X̄(t))

β
(i)
k hi(t) =

d∑

j=1

λ̄j,kej −
∑

i∈π(X̄(t)), i6=0

µ̄i,khi(t)ei. (4.17)

To verify Step 1, we assume that Ak is a strict subset of A and a strict subset
of {1, 2, . . ., d} as well, since otherwise the claim is trivial. It follows from the
definitions of π, A, and Ak that for every i ∈ Ak and j ∈ A \Ak such that j 6= 0,

ci (ψ∗(tk))i − cj (ψ∗(tk))j = 0

and for t ∈ (tk, tk+1)
ci (ψ∗(t))i − cj (ψ∗(t))j > 0.
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Since ψ̇∗(t) ≡ βk for t ∈ (tk, tk+1), the last display and (4.9) yield

0 < ci(βk)i − cj(βk)j = ci(λ̄i,k − ρ
(i)
k µ̄i,k) − cj λ̄j,k. (4.18)

Note that Step 1 amounts to claiming that

π(X̄(t)) cannot be written as B ∪C, where B is a strict
subset of Ak and C ⊂ A \Ak is non-empty. (4.19)

Indeed, note that π(X̄(t)) can always be written as π(X̄(t)) = B̄∪C̄ where B̄ ⊂ Ak
and C̄ ∩Ak = ∅. The sets B̄, C̄ are uniquely determined by

B̄ = π(X̄(t)) ∩Ak, C̄ = π(X̄(t)) ∩ (A \Ak).

Then Step 1 amounts to claiming that either B̄ = Ak, or B̄ is a strict subset of
Ak and C̄ = ∅. This is clearly equivalent to (4.19).

We will prove (4.19) by contradiction and assume that there exists an s ∈
(tk, tk+1 ∧ τk) such that π(X̄(s)) can be written as such a union B ∪C. Note that
C must contain at least one non-zero element, since otherwise C = {0} and by
Remark 2.2 B ∪ C = {0, 1, 2, . . ., d} or B = {1, 2, . . . , d}, which contradicts the
assumption that B is a strict subset of Ak. Let

t̄
.= sup

{
t ≤ s : π(X̄(t)) ∩ (Ak \B) 6= ∅

}
.

We claim that t̄ ∈ [tk, s) and π(X̄(t̄))∩ (Ak \B) 6= ∅. Indeed, t̄ ≥ tk is trivial since
π(X̄(tk)) = A ⊃ Ak and Ak \B is non-empty. Thanks to the upper semicontinuity
of π and the continuity of X̄ , there exists a small neighborhood of s such that for
any t in this small neighborhood π(X̄(t)) ⊂ π(X̄(s)) = B∪C. It follows readily that
t̄ < s. An analogous use of upper semicontinuity shows that π(X̄(t̄))∩(Ak\B) 6= ∅.

Fix i ∈ π(X̄(t̄)) ∩ (Ak \ B). Note that i 6∈ π(X̄(t)) for t ∈ (t̄, s). Thus, for
every j ∈ C such that j 6= 0 and t ∈ (t̄, s), it follows from equations (4.17) and
(4.18) that

d

dt

[
ci((X̄(t))i − cj((X̄(t))j

]
= ciλ̄i,k − cj(λ̄j,k − µ̄j,khj(t))

= [ci(λ̄i,k − ρ
(i)
k µ̄i,k) − cjλ̄j,k]

+ [ciρ
(i)
k µ̄i,k + cj µ̄j,khj(t)]

> 0.

Therefore,

0 ≥ ci((X̄(s))i − cj((X̄(s))j > ci((X̄(t̄))i − cj((X̄(t̄))j ≥ 0,

here the first inequality holds since j ∈ C ⊂ π(X̄(s)) and the last inequality is due
to i ∈ π(X̄(t̄)). This is a contradiction. Thus (4.19) holds and Step 1 is completed.

We now show Step 2. Thanks to Step 1, it suffices to show that |π(X̄(t))| ≥
|Ak| for t ∈ (tk, tk+1 ∧ τk). Let t∗ ∈ (tk, tk+1 ∧ τk) be such that

|π(X̄(t∗))| = min{|π(X̄(t))| : t ∈ (tk, tk+1 ∧ τk)},
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and assume that |π(X̄(t∗))| < |Ak| for the purpose of getting a contradiction. It
follows from Step 1 that B .= π(X̄(t∗)) is a strict subset of Ak. Note that B ⊂
{1, 2, . . ., d} (otherwise B = {0, 1, . . ., d} by Remark 2.2, a clear contradiction).
Thanks to the upper semicontinuity of π and the continuity of X̄, there exists an
open interval containing t∗ such that π(X̄(s)) ⊂ π(X̄(t∗)) for all s in this interval.
We will assume (a, b) to be the largest of such intervals. By the definition of t∗,
π(X̄(s)) = π(X̄(t∗)) = B for every s ∈ (a, b)∩ (tk, tk+1∧τk). Obviously a ≥ tk and
π(X̄(a)) contains B as a strict subset by the upper semicontinuity of π. Therefore,
for s ∈ (a, b), ci(X̄(s))i = cj(X̄(s))j if i, j ∈ B. However, (4.17) yields

d

ds
(X̄(s))j =

{
λ̄j,k if j ∈ Ak \B, j 6= 0,
λ̄j,k − hj(s)µ̄j,k if j ∈ B.

(4.20)

It follows that

ci(λ̄i,k − hi(s)µ̄i,k) = cj(λ̄j,k − hj(s)µ̄j,k) for i, j ∈ B. (4.21)

In addition, thanks to Proposition 4.6(b),
∑

i∈B

hi(s) = 1. (4.22)

Solving the system of equations (4.21)-(4.22), we obtain the unique solution

hi(s) =
λ̄i,k
µ̄i,k

− 1
ciµ̄i,k

·


∑

j∈B

1
cj µ̄j,k




−1

·


−1 +

∑

j∈B

λ̄j,k
µ̄j,k


 .

On the other hand, since π(ψ∗(s)) ≡ Ak ⊃ B and ψ̇∗(s) ≡ βk for s ∈ (a, b), we
have ci(βk)i = cj(βk)j for every i, j ∈ B. Invoking (4.7) and (4.9), we arrive at

ci(λ̄i,k − ρ
(i)
k µ̄i,k) = cj(λ̄j,k − ρ

(j)
k µ̄j,k) for i, j ∈ B, (4.23)

and that

b
.=
∑

i∈B
ρ
(i)
k = 1 −

∑

i∈Ak\B

ρ
(i)
k < 1. (4.24)

Similarly, one can solve (4.23)-(4.24) to uniquely determine {ρ(i)
k } for i ∈ B:

ρ
(i)
k =

λ̄i,k
µ̄i,k

− 1
ciµ̄i,k

·


∑

j∈B

1
cjµ̄j,k




−1

·


−b +

∑

j∈B

λ̄j,k
µ̄j,k


 .

Since b < 1 it follows that hi(s) > ρ
(i)
k for all i ∈ B and s ∈ (a, b).
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Assume for now that there exists j ∈ Ak \B such that j 6= 0. Then for i ∈ B
and s ∈ (a, b) we have, thanks to (4.20) and (4.23),

d

ds

[
ci(X̄(s))i − cj(X̄(s))j

]
= ci

[
λ̄i,k − hi(s)µ̄i,k

]
− cj λ̄j,k (4.25)

< ci

[
λ̄i,k − ρ

(i)
k µ̄i,k

]
− cjλ̄j,k

= −cjρ(j)
k µ̄j,k

< 0.

However, since π(X̄(a)) 6= B, Step 1 implies that π(X̄(a)) ∩ (Ak \ B) 6= ∅. Pick
any j in this set. It follows from (4.25) that for any i ∈ B,

0 ≥ ci(X̄(a))i − cj(X̄(a))j > ci(X̄(t∗))i − cj(X̄(t∗))j .

This contradicts that i ∈ B = π(X̄(t∗)). Therefore, we have |π(X̄(t))| ≥ |Ak|. It
follows from Step 1 that Ak ⊂ π(X̄(t)), for t ∈ (tk, tk+1 ∧ τk).

It remains to consider the case where Ak\B = {0}. In this case we necessarily
have B = {1, 2, . . . , d} and Ak = {0, 1, . . . , d} = A. It follows that ψ∗(t) ≡ 0 for
t ∈ (tk, tk+1) and thus βk = 0. Then for any i ∈ B and s ∈ (a, b) we have, thanks
to (4.20) and (4.7),

d

ds

[
ci(X̄(s))i

]
= ci

[
λ̄i,k − hi(s)µ̄i,k

]
< ci

[
λ̄i,k − ρ

(i)
k µ̄i,k

]
= (βk)i = 0.

However, since π(X(a)) contains B as a strict subset, we must have π(X(a)) =
{0, 1, . . ., d} or X(a) = 0. It follows then

0 = ci(X̄(a))i > ci(X̄(t∗))i.

This contradicts the non-negativity of X̄ , and again we have |π(X̄(t))| ≥ |Ak|. It
follows from Step 1 that Ak ⊂ π(X̄(t)), for t ∈ (tk, tk+1 ∧ τk).

If A = Ak then we finish the proof of Step 2 since π(X̄(t)) ⊂ A. Consider the
case when Ak is a strict subset of A, which in turn implies that Ak ⊂ {1, 2, . . . , d}.
Following an argument analogous to that leading to equations (4.21)–(4.22) and
(4.23)–(4.24), we have, for every i, j ∈ Ak and almost every t ∈ (tk, tk+1 ∧ τk),

ci(λ̄i,k − hi(t)µ̄i,k) = cj(λ̄j,k − hj(t)µ̄j,k),
∑

j∈Ak

hj(t) ≤ 1. (4.26)

ci(λ̄i,k − ρ
(i)
k µ̄i,k) = cj(λ̄j,k − ρ

(j)
k µ̄j,k),

∑

i∈Ak

ρ
(i)
k = 1. (4.27)

One can solve these two equations like before to obtain hi(t) ≤ ρ
(i)
k for every i ∈ Ak

and t ∈ (tk, tk+1 ∧ τk), whence

d

dt

[
ci(X̄(t))i − ci(ψ∗(t))i

]
= ci(λ̄i,k − hi(t)µ̄i,k) − ci(λ̄i,k − ρ

(i)
k µ̄i,k) ≥ 0.

It follows that for any i ∈ Ak,

ci(X̄(t))i − ci(ψ∗(t))i ≥ ci(X̄(tk))i − ci(ψ∗(tk))i = 0, (4.28)
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or (X̄(t))i ≥ (ψ∗(t))i. However, since π((ψ∗(t)) ≡ Ak ⊂ {1, 2, . . ., d}, we must
have X̄(t) 6= 0 and thus π(X̄(t)) ⊂ {1, 2, . . . , d}.

On the other hand, for any j ∈ A\Ak and j 6= 0, since (ψ̇∗(t))j = (βk)j = λ̄j,k
thanks to (4.9), we have

d

dt

[
cj(X̄(t))j − cj(ψ∗(t))j

]
= cj(λ̄j,k − hj(t)µ̄j,k) − cj λ̄j,k ≤ 0.

It follows, since X̄(tk) = ψ∗(tk) and (4.28), that for every t ∈ (tk, tk+1 ∧ τk) and
i ∈ Ak,

cj(X̄(t))j − cj(ψ∗(t))j ≤ 0 ≤ ci(X̄(t))i − ci(ψ∗(t))i.

But (ψ∗(t))i > (ψ∗(t))j by definition of Ak, and therefore (X̄(t))i > (X̄(t))j . It
follows that j 6∈ π(X̄(t)). Therefore π(X̄(t)) ≡ Ak and we finish Step 2.

The proof of Step 3 is simple. Assume first Ak ⊂ {1, 2, . . . , d}. Since π(X̄(t)) =
Ak we know that {hi(t)} satisfies the equation (4.26) except now

∑
j∈Ak

hj(t) = 1.

Compared with equation (4.27), it follows easily that hj(t) = ρ
(j)
k . Note that equa-

tions (4.9) and (4.12) imply

∑

i∈Ak

β
(i)
k ρ

(i)
k = βk,

whence

d

dt
X̄(t) =

∑

i∈Ak

β
(i)
k hi(t) =

∑

i∈Ak

β
(i)
k ρ

(i)
k = βk = ψ̇∗(t),

which implies X̄(t) = ψ̇∗(t) for all t ∈ (tk, tk+1 ∧ τk).
For the case where Ak = {0, 1, . . . , d}, we must have X̄(t) = ψ∗(t) = 0. It is

not difficult to see that equations (4.26) and (4.27) reduce to

ci(λ̄i,k − hi(t)µ̄i,k) = 0 = ci(λ̄i,k − ρ
(i)
k µ̄i,k), i = 1, 2, . . . , d.

Thus hi(t) = ρ
(i)
k for all i = 1, 2, . . . , d, and also h0(t) = ρ

(0)
k since

∑d
i=0 hi(t) =∑d

i=0 ρ
(i)
k = 1.

�

4.7. Analysis of the cost

In this section, we prove the Laplace lower bound, or inequality (4.4).
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Proof. Thanks to (4.11) and (4.10),

lim
n→∞

Exn

[∫ tk+1

tk

∑

v∈Θ

r(X̄n(t); v)`
(
r̄(X̄n(t), t; v)
r(X̄n(t); v)

)
dt

]

= lim
n→∞

Exn



∫ tk+1

tk

∑

i∈Ak,i 6=0

µi`

(
µ̄i,k
µi

)
γni (dt) +

d∑

j=1

λj`

(
λ̄j,k
λj

)
dt




=
∫ tk+1

tk


 ∑

i∈Ak,i 6=0

µi`

(
µ̄i,k
µi

)
hi(t) +

d∑

j=1

λj`

(
λ̄j,k
λj

)
 dt

= (tk+1 − tk)


 ∑

i∈Ak,i 6=0

µi`

(
µ̄i,k
µi

)
ρ
(i)
k +

d∑

j=1

λj`

(
λ̄j,k
λj

)


≤ (tk+1 − tk) · [LAk(βk) + ε]

=
∫ tk+1

tk

L(ψ∗(t), ψ̇∗(t))dt + (tk+1 − tk)ε.

Summing over k and observing

lim
n→∞

Exnh(X̄
n) = Exh(X̄) = h(ψ∗),

(4.4) follows readily. This completes the proof of inequality (4.4) and also the proof
of Theorem 3.1. �

5. Summary

In this paper we analyze the large deviation properties for a class of systems with
discontinuous dynamics, namely, the WSLQ policy for a network with multiple
queues and a single server. A key observation that allows us to derive explicitly
the large deviation rate function on path space is that the stability condition
about the interface is automatically implied in the formulation of a general large
deviation upper bound.

This is not an unprecedented situation, and indeed analogous results are
proved in [2] for processes that model Jackson networks and head-of-the-line pro-
cessor sharing. These problems also feature discontinuous statistics, though the
discontinuities appear on the boundary of the state space rather than the interior,
and whence alternative techniques based on Skorokhod mapping can be used. With
the inclusion of the WSLQ policy there are now a number of physically meaning-
ful models with discontinuous statistics for which the upper bound of [6] is tight.
An intriguing question that will be investigated elsewhere is whether there is a
common property of these models that can be easily identified and recognized.
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Appendix A. Proof of Lemma 4.1.

Before getting into the details of the construction, it is worth pointing out that
the main difficulty in the proof is dealing with the situation where the function
ψ may spiral into (or away from) a low dimensional interface while hitting higher
dimensional interfaces infinitely many times in the process. More precisely, there
can be a time t and a sequence tn ↑ t (or tn ↓ t) such that |π(ψ(tn))| < |π(ψ(t))|,
but with the sets {π(ψ(tn))} different for successive n. The problem is how to
approximate ψ on a small neighborhood of t with a small cost, which is made
difficult by the fact that the domain of finiteness of L(x, ·) is not continuous in x.

Proof. Throughout this section we assume that ψ is Lipschitz continuous. This
is without loss of generality, since for a given continuous function ψ and any
δ > 0, there exists a Lipschitz continuous function ζ such that ‖ζ − ψ‖∞ ≤ δ and
Ix(ζ) ≤ Ix(ψ) + δ. The proof of this claim is based on a time-rescaling argument
very much analogous to that of [4, Lemma 6.5.3], and we omit the details.

A.1. Dividing the time interval

The approximation requires a suitable division of the time interval [0, 1]. The
following results are useful in proving the main result of this section, namely,
Lemma A.4. Note that whenever we say two intervals are “non-overlapping”, it
means that the two intervals cannot have common interiors but may have a same
endpoint.

Lemma A.1. Consider a non-empty closed interval [a, b] and assume

k
.= max{|π(ψ(t))| : t ∈ [a, b]} ≥ 2.

Then for arbitrary σ > 0, there exists a finite collection of non-overlapping inter-
vals {[αj, βj]} such that

1. αj, βj ∈ [a, b] and 0 ≤ βj − αj ≤ σ for every j.
2. |π(ψ(t))| ≤ k − 1 for every t ∈ [a, b] \ ∪j[αj, βj ].

Lemma A.2. Consider a non-empty interval (a, b) such that for some k ≥ 2,
|π(ψ(t))| ≤ k for t ∈ (a, b) and |π(ψ(a))| ∧ |π(ψ(b))| ≥ k + 1. Then for arbi-
trary σ > 0 and ε > 0, there exist a finite collection of non-overlapping intervals
{[αj, βj ]} and ε1, ε2 ∈ [0, ε) such that

1. αj, βj ∈ [a+ ε1, b− ε2] and 0 ≤ βj − αj ≤ σ for each j,
2. for t ∈ (αj , βj), π(ψ(t)) ⊂ π(ψ(αj)) = π(ψ(βj )),
3. |π(ψ(αj))| = |π(ψ(βj ))| = k for each j,
4. for any t ∈ (a, a+ ε1], π(ψ(t)) is a strict subset of π(ψ(a)) and |π(ψ(t))| ≤
k ≤ |π(ψ(a+ ε1))|,

5. for any t ∈ [b − ε2, b), π(ψ(t)) is a strict subset of π(ψ(b)) and |π(ψ(t))| ≤
k ≤ |π(ψ(b− ε2))|,

6. |π(ψ(t))| ≤ k − 1 for every t 6∈ ∪j[αj, βj] ∪ (a, a+ ε1] ∪ [b− ε2, b).
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Lemma A.3. Consider a non-empty interval [a, b) such that for some 2 ≤ k ≤ d,
|π(ψ(t))| ≤ k for t ∈ [a, b) and |π(ψ(b))| ≥ k + 1. Then for arbitrary σ > 0 and
ε > 0, there exist a finite collection of non-overlapping intervals {[αj, βj]} and
ε2 ∈ [0, ε) such that

1. αj, βj ∈ [a, b− ε2] and 0 ≤ βj − αj ≤ σ for each j,
2. for t ∈ (αj , βj), π(ψ(t)) ⊂ π(ψ(αj)) = π(ψ(βj )),
3. |π(ψ(αj))| = |π(ψ(βj ))| = k for each j,
4. for every t ∈ [b− ε2, b), π(ψ(t)) is a strict subset of π(ψ(b)) and |π(ψ(t))| ≤
k ≤ |π(ψ(b− ε2))|,

5. |π(ψ(t))| ≤ k − 1 for every t 6∈ ∪j[αj, βj] ∪ [b− ε2, b).

Symmetric results hold for a non-empty interval (a, b] such that for some k ≥ 2,
|π(ψ(t))| ≤ k for t ∈ (a, b] and |π(ψ(a))| ≥ k + 1.

We will only provide the details of the proof for Lemma A.2. The proofs for
Lemma A.1 and Lemma A.3 are very similar (indeed, simpler versions of the proof
for Lemma A.2), and thus omitted.

Proof. If the set {t ∈ (a, b) : |π(ψ(t))| = k} is empty, then the claim holds trivially
since we can let ε1 = ε2 = 0 and {[αj, βj]}

.= ∅. Assume from now on that this set
is non-empty. We first define ε1 and ε2. Let

ā
.= inf{t ∈ (a, b) : |π(ψ(t))| = k}, b̄ .= sup {t ∈ (a, b) : |π(ψ(t))| = k} .

If ā = a, then the upper semicontinuity of π implies that there exists 0 < ε1 < ε
such that |π(ψ(a + ε1))| = k and π(ψ(t)) is a subset (whence a strict subset) of
π(ψ(a)) for every t ∈ (a, a + ε1]. If ā > a then we let ε1 = 0. ε2 is defined in a
completely analogous fashion. It is easy to see that parts 4 and 5 of the claim are
satisfied. We will define αj and βj recursively.

1. Let α1
.= a + ε1 if ā = a and α1

.= ā if ā > a. Clearly, in either case
α1 ∈ [a+ε1, b−ε2]. Moreover, we have |π(ψ(α1))| = k. Indeed, when ā = a it
follows from the definition, and when ā > a, it follows from a simple argument
by contradiction, thanks to the upper semicontinuity of π and the assumption
that |π(ψ(t))| ≤ k for every t ∈ (a, b).

2. Suppose now αj ∈ [a+ ε1, b− ε2] is given such that |π(ψ(αj))| = k. We wish
to define βj . Let

tj
.= inf {t ∈ (αj, b) : π(ψ(t)) 6⊂ π(ψ(αj))} ,

sj
.= sup{t ∈ [αj, tj ∧ (αj + σ)) : π(ψ(t)) = π(ψ(αj))},

βj
.= sj ∧ (b− ε2).

It is easy to check that π(ψ(sj )) = π(ψ(αj)). We claim that π(ψ(βj )) =
π(ψ(αj)). This is trivial when βj = sj . Assume for now that βj < sj . Then
we must have sj > b− ε2 and βj = b− ε2. This could happen only if ε2 > 0,
in which case |π(ψ(b−ε2))| = k, or |π(ψ(βj))| = k. But π(ψ(βj )) ⊂ π(ψ(αj))
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since βj < sj ≤ tj. Thus we must have π(ψ(αj)) = π(ψ(βj )). It is clear now
that parts 1, 2, and 3 of the lemma holds.

3. If βj = b̄ (when b̄ < b) or βj = b − ε2 (when b̄ = b), we stop. Otherwise,
define αj+1

.= inf{t ∈ (βj , b) : |π(ψ(t))| = k}. Then αj+1 ∈ [a + ε1, b − ε2]
and |π(ψ(αj+1))| = k. Now repeat step 2.

Note that part 6 holds by the construction. It only remains to show that the
construction will terminate in finitely many steps. Observe that αj+1 ≥ tj ∧ (αj +
σ), since by definition, for every t ∈ (βj , tj ∧ (αj + σ)), π(ψ(t)) is a strict subset
of π(ψ(αj)) and whence |π(ψ(t))| < k. Therefore, αj+1 − αj ≥ (tj − αj) ∧ σ, and
it suffices to show that tj − αj is uniformly bounded away from 0.

We should first consider the case k ≤ d− 1. Observe that in the construction
we indeed have αj, βj ∈ Ī

.= [(a+ ε1) ∨ ā, (b− ε2) ∧ b̄] ⊂ (a, b). Define

c
.= inf

{
max
i=1,...,d

ci(ψ(t))i − max
i6∈π(ψ(t))

ci(ψ(t))i : t ∈ Ī , |π(ψ(t))| = k

}
.

We claim that c > 0. If this is not the case, there exists a sequence of {tn} ⊂ Ī
such that

max
i=1,...,d

ci(ψ(tn))i − max
i6∈π(ψ(tn))

ci(ψ(tn))i ↓ 0.

One can find a subsequence of {tn}, still denoted by {tn}, such that tn → t∗ ∈
I and π(ψ(tn)) ≡ B for some B ⊂ {1, 2, . . ., d} with |B| = k. Thanks to the
upper semicontinuity of π, B ⊂ π(ψ(t∗)). But |π(ψ(t∗))| ≤ k, thus B = π(ψ(t∗)).
However, for every j ∈ B,

0 = lim
n

[
max

i=1,...,d
ci(ψ(tn))i − max

i6∈π(ψ(tn))
ci(ψ(tn))i

]

= lim
n

[
cj(ψ(tn))j − max

i6∈B
ci(ψ(tn))i

]

= cj(ψ(t∗))j − max
i6∈B

ci(ψ(t∗))i

> 0,

a contradiction. Therefore c > 0.
Now, by the definition of tj , there exists l 6∈ π(ψ(αj)) such that l ∈ π(ψ(tj )).

Therefore, for every i ∈ π(ψ(αj)),

ci(ψ(tj))i − cl(ψ(tj ))l ≤ 0.

But ci(ψ(αj))i − cl(ψ(αj))l ≥ c and ψ is Lipschitz continuous. It follows readily
that tj − αj is uniformly bounded away from 0.

The case k = d can be treated in a completely analogous fashion with

c
.= inf

{
max

i=1,...,d
ci(ψ(t))i : t ∈ Ī , |π(ψ(t))| = d

}
.

We omit the details. �
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The next lemma is the main result of this section, from which one can con-
struct the approximating function in N. The intervals {Ei} in the lemma are indeed
introduced to take care of the “spiraling” problem.

Lemma A.4. Consider the interval [0, 1]. Given σ > 0, there exist two finite col-
lections of non-overlapping intervals {Ij} and {Ei} such that

1. Ij ⊂ [0, 1] is of the form [aj, bj] with 0 ≤ bj − aj ≤ σ for each j,
2. Ei ⊂ [0, 1] is either of the form [zi, di) or (zi, di], and

∑
i(di − zi) ≤ σ,

3. |π(ψ(t))| = 1 for all t 6∈ (∪jIj) ∪ (∪iEi),
4. for every j and every t ∈ (aj , bj), π(ψ(t)) ⊂ π(ψ(aj)) = π(ψ(bj)),
5. for every j, |π(ψ(aj))| = |π(ψ(bj))| ≥ 2,
6. for all t ∈ Ei = (zi, di], π(ψ(t)) is a strict subset of π(ψ(zi)) and |π(ψ(t))| ≤

|π(ψ(di))|,
7. for all t ∈ Ei = [zi, di), π(ψ(t)) is a strict subset of π(ψ(di)) and |π(ψ(t))| ≤

|π(ψ(zi))|.

Proof. Let N .= max{|π(ψ(t))| : t ∈ [0, 1]}. If N = 1 then the claim holds trivially.
Assume from now on that N ≥ 2. The construction can be done in N steps.

Step 1.. Apply Lemma A.1 to the interval [0, 1] with k = N . This will produce
a collection of closed intervals {I(1)

j }. Let U1
.= [0, 1] \ ∪jI(1)

j .
Step 2.. Note that U1 is the union of finitely many non-overlapping intervals.

These intervals are of two types. They are either open intervals that satisfy
the conditions of Lemma A.2 with k = N − 1, or intervals of type [0, a)
or (b, 1] that satisfy the conditions of Lemma A.3. Apply the corresponding
lemma to these intervals to generate a collection of closed intervals {I(2)

j } and

intervals {E(2)
i } of type [a, b) or (b, a]. Since the number of intervals in {E(2)

i }
is at most twice the number of intervals in U1, one can choose ε in Lemma
A.2 and Lemma A.3 so small that the total Lebesgue measure of ∪iE(2)

i is
bounded from above by σ/N . Define U2

.= U1 \ ((∪jI(2)
j ) ∪ (∪iE(2)

i )).
Step m.. For 3 ≤ m ≤ N −1, the procedure of Step m is just like Step 2, except
U1 is replaced by Um−1.

Step N .. Note that UN−1 consists of intervals on which π(ψ(·)) is a singleton.
We stop the construction.

Let {Ij}
.= ∪l{I(l)

j } and {Ei}
.= ∪l{E(l)

j }, and it is not difficult to see that {Ij}
and {Ei} have the required properties. �

A.2. Construction of the approximating function

In this section we construct an approximating function of ψ parameterized by
σ. Note that the set [0, 1] \ ((∪jIj) ∪ (∪iEi)) is the union of finitely many non-
overlapping intervals, and we will denote these intervals by {Gk}. Without loss of
generality assume that the length of each interval Gk is bounded above by σ (if
necessary, we can divide Gk into the union of several smaller intervals each with
a length less than σ).
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Define a piece-wise constant function uσ on interval [0, 1] as follows. Given
any interval D ∈ {Ij} ∪ {Ei} ∪ {Gk} with positive length, define for every t ∈ D,

uσ(t) .=
1

length of D

∫

D

ψ̇(s) ds.

Then the candidate approximating function will be

ψσ(t) .= ψ(0) +
∫ t

0

uσ(s)ds.

Note that ψσ(t) coincides with ψ(t) at those t that are end points of intervals {Ij},
{Ei}, and {Gk}. Furthermore, ψσ is affine on each of these intervals.

We claim that ψσ ∈ N. All we need is to show is that π(ψσ(t)) remain
unchanged in the interior of each interval. This is immediate from the following
result, whose proof is simple and straightforward, and thus omitted.

Lemma A.5. Let φ be an affine function on interval [a, b]. If π(φ(a))∩π(φ(b)) 6= ∅,
then for every t ∈ (a, b) we have π(φ(t)) = π(φ(a)) ∩ π(φ(b)).

A.3. The analysis of the rate function

Since the length of any interval in {Ij}, {Ei}, and {Gk} is bounded from above by
σ, limσ→0 ‖ψσ − ψ‖∞ = 0. Therefore it only remains to show that given δ > 0 we
have Ix(ψσ) ≤ Ix(ψ) + δ for σ small enough. Clearly we can assume Ix(ψ) < ∞
hereafter.

The analysis for intervals in {Ij} and {Gk} is simple. Consider an interval
D ∈ {Ij} ∪ {Gk}, and denote the interior of D by (a, b) [D itself could be [a, b],
(a, b), (a, b], or [a, b)]. Since ψ(a) = ψσ(a) and ψ(b) = ψσ(b) by construction, it
follows from Lemma A.4 and Lemma A.5 that

π(ψ(t)) ⊂ π(ψ(a)) ∩ π(ψ(b)) = π(ψσ(a)) ∩ π(ψσ(b)) = π(ψσ(t)) .= B.

for every t ∈ (a, b). Note that LB(β) ≤ LA(β) for every β whenever A ⊂ B, thanks
to Lemma 4.3. Therefore,

∫ b

a

L(ψ(t), ψ̇(t)) dt =
∫ b

a

Lπ(ψ(t))(ψ̇(t)) dt ≥
∫ b

a

LB(ψ̇(t)) dt.

Furthermore, for t ∈ (a, b), the construction of ψσ implies that

ψσ(t) ≡ ψ(b) − ψ(a)
b− a

.= v.

Thanks to the convexity of LB and Jensen’s inequality, we arrive at
∫ b

a

LB(ψ̇(t)) dt ≥ (b− a)LB(v) =
∫ b

a

L(ψσ(t), ψσ(t))dt,

whence ∫ b

a

L(ψ(t), ψ̇(t)) dt ≥
∫ b

a

L(ψσ (t), ψσ(t))dt. (A.1)

for any σ.
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Now we turn to analyze the intervals in {Ei}. The next two lemmas claim
that over any interval, say D ∈ {Ei}, ψ̇σ will always be in the domain of finiteness
of the local rate function L. The first lemma considers the case where D = (a, b]
and the second considers the case where D is of form [a, b).

Lemma A.6. Suppose that Ix(ψ) < ∞ and there exists an interval (a, b] ⊂ [0, 1]
such that π(ψ(t)) is a strict subset of π(ψ(a)) for t ∈ (a, b]. Then (ψ(a))j ≤ (ψ(b))j
for all j ∈ {1, . . . , d}.

Proof. For notational simplicity, we assume c1 = c2 = · · · = cd. The case of general
(c1, . . . , cd) is shown in exactly the same fashion with (ψ(t))j replaced by cj(ψ(t))j ,
and whence omitted.

Let B .= π(ψ(a)). For j 6∈ B, we have j 6∈ π(ψ(t)) and thus ψ̇(t) ≥ 0 for
almost every t ∈ (a, b], thanks to Remark 4.5 and the assumption that Ix(ψ) is
finite. Therefore for j 6∈ B the claim holds. Now we consider those j ∈ B. Fix
arbitrarily ε > 0 and let

t∗
.= inf{t > a : (ψ(t))j < (ψ(a))j − ε for some j ∈ B} ∧ b.

It suffices to show that t∗ = b always holds. Indeed, if this is the case, we have
(ψ(b))j ≥ (ψ(a))j − ε for every j ∈ B. Since ε is arbitrary, we arrive at the desired
inequality for j ∈ B.

We will argue by contradiction and assume t∗ < b. It follows that (ψ(t∗))j ≥
(ψ(a))j − ε for every j ∈ B, and there exist j∗ ∈ B and a sequence tn ↓ t∗ such
that

(ψ(tn))j∗ < (ψ(a))j∗ − ε. (A.2)
In particular, (ψ(t∗))j∗ = (ψ(a))j∗ − ε.

We claim that (ψ(t∗))j = (ψ(a))j − ε holds for every j ∈ B. If this is not the
case, then there exists (abusing the notation) j ∈ B such that

(ψ(t∗))j > (ψ(a))j − ε.

Since j, j∗ ∈ B = π(ψ(a)) we have (ψ(a))j = (ψ(a))j∗ , and whence (ψ(t∗))j >
(ψ(t∗))j∗ . Therefore we can find a small interval, say [t∗, t∗ + δ) such that for any
t in this interval we have (ψ(t))j > (ψ(t))j∗ , which in turn implies j∗ 6∈ π(ψ(t)).
Thanks to the finiteness of Ix(ψ) and Remark 4.5, (ψ̇(t))j∗ ≥ 0 for almost every t ∈
[t∗, t∗ + δ). In particular, (ψ(t))j∗ ≥ (ψ(t∗))j∗ = (ψ(a))j∗ − ε for all t ∈ [t∗, t∗ + δ),
which contradicts equation (A.2) for large n. Therefore (ψ(t∗))j = (ψ(a))j − ε
holds for every j ∈ B.

Since B = π(ψ(a)), it follows that (ψ(t∗))j takes the same value for every
j ∈ B. This contradicts the assumption that π(ψ(t∗)) is a strict subset of B. We
complete the proof. �

Lemma A.7. Suppose that Ix(ψ) < ∞ and there exists an interval [a, b) ⊂ [0, 1]
such that π(ψ(t)) is a strict subset of π(ψ(b)) for every t ∈ [a, b). Let B .= π(ψ(a)).
If |π(ψ(t))| ≤ |B| for every t ∈ [a, b), then (ψ(a))j ≤ (ψ(b))j for all j 6∈ B and
j 6= 0.
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Proof. As in the proof of Lemma A.6 we assume without loss of generality that
c1 = c2 = · · · = cd = 1. Let A .= π(ψ(b)). For j 6∈ A, (ψ̇(t))j ≥ 0 for almost every
t ∈ [a, b) since j 6∈ π(ψ(t)). Thus the claim holds for j 6∈ A. It remains to show for
those j ∈ A \B such that j 6= 0. We will argue by contradiction and assume that
there is a j∗ ∈ A \B such that (ψ(a))j∗ > (ψ(b))j∗ .

For each i ∈ B let ti
.= inf {t > a : (ψ(t))i ≤ (ψ(a))j∗}. Note that (ψ(a))i >

(ψ(a))j∗ since i ∈ B = π(ψ(a)) and j∗ 6∈ B, whence ti > a. Similarly, since
j∗ ∈ A = π(ψ(b)), (ψ(b))i ≤ (ψ(b))j∗ < (ψ(a))j∗ , whence ti < b. It follows that
(ψ(ti))i = (ψ(a))j∗ .

We claim that i ∈ π(ψ(ti)) for all i ∈ B. Otherwise, there exists a small
positive number δ such that i 6∈ π(ψ(t)) for t ∈ (ti − δ, ti + δ). Thanks to the
assumption that Ix(ψ) is finite, (ψ̇(t))i ≥ 0 for almost every t ∈ (ti − δ, ti + δ). In
particular, (ψ(ti − δ))i ≤ (ψ(ti))i = (ψ(a))j∗ , which contradicts the definition of
ti. Therefore, i ∈ π(ψ(ti)) for all i ∈ B. An immediate consequence is that for any
i, k ∈ B, (ψ(ti))k ≤ (ψ(ti))i = (ψ(a))j∗ , whence tk ≤ ti by definition. Therefore,
for all i, k ∈ B, ti = tk

.= t∗ and B ⊂ π(ψ(t∗)). However, since |π(ψ(t∗))| ≤ |B| by
assumption, we have necessarily B = π(ψ(t∗)).

Since j∗ 6∈ B = π(ψ(t∗)), we have (ψ(t∗))j∗ < (ψ(a))j∗ . Define

s
.= sup {t ∈ [a, t∗) : (ψ(t))j∗ ≥ (ψ(a))j∗} ∧ t∗.

Clearly s ∈ [a, t∗) and (ψ(s))j∗ = (ψ(a))j∗ . By the definitions of s and ti and that
t∗ ≡ ti for all i ∈ B, we have, for any t ∈ (s, t∗) and any i ∈ B,

(ψ(t))j∗ < (ψ(a))j∗ < (ψ(t))i.

Therefore, j∗ 6∈ π(ψ(t)) and whence (ψ̇(t))j∗ ≥ 0 for almost every t ∈ (s, t∗).
In particular, (ψ(a))j∗ = (ψ(s))j∗ ≤ (ψ(t∗))j∗ < (ψ(a))j∗ , a contradiction. We
complete the proof. �

We are now ready to show that Ix(ψσ) ≤ Ix(ψ) + δ for σ small enough. Let
M be the Lipschitz constant for ψ, and define

C
.= max
A⊂{1,...,d}

sup{LA(β) : β ∈ dom(LA), ‖β‖ ≤ M}.

That C is finite follows easily from Lemma 4.3 and the definition of `.
We now analyze the intervals in {Ei}. If Ei = [zi, di), then by Lemma A.5

and Lemma A.4, π(ψσ(t)) = π(ψ(zi))
.= B for all t ∈ (zi, di). Since

ψ̇σ(t) ≡ ψ(di) − ψ(zi)
di − zi

.= v,

it follows from Lemma A.7 and Remark 4.5 that v ∈ dom(LB). Therefore
∫ di

zi

L(ψσ(t), ψ̇σ(t)) dt = (di − zi)LB(v) ≤ C(di − zi). (A.3)

The same inequality holds for the case Ei = (zi, di], where Lemma A.6 is invoked
in place of Lemma A.7.
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By (A.1), (A.3), the non-negativity of L, and Lemma A.4, we have
∫ 1

0

L(ψσ(t), ψ̇σ(t)) dt ≤
∫ 1

0

L(ψ(t), ψ̇(t)) dt +C
∑

i

(di − zi)

≤
∫ 1

0

L(ψ(t), ψ̇(t)) dt +Cσ.

Choose σ < δ/C and we complete the proof. �
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