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Abstract

This paper considers buffer overflow probabilities for stable queue-
ing systems with one server and different classes of arrivals. The ser-
vice priority is given to the class of customers whose current weighted
queue size is the largest (weighted-serve-the-longest-queue policy). We
explicitly identify the exponential decay rate for the rare-event prob-
abilities of interest, and construct asymptotically optimal importance
sampling schemes for simulation.

1 Introduction

It is common for communication and manufacturing systems to have differ-
ent classes of customer arrivals. A popular service discipline in such situa-
tions is the serve-the-longest-queue policy or its natural generalization, the
weighted-serve-the-longest-queue (WSLQ) policy. Under the WSLQ policy,
each class is given a prefixed weight, and the class of customers with the
largest weighted queue length is assigned the service priority.

This paper studies efficient rare-event simulation techniques for stable
WSLQ systems with one server and multiple classes of arrivals. Service
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policies such as WSLQ fall into the general category of systems with dis-
continuous dynamics and are difficult to analyze [1, 4, 8, 9, 10, 12, 11]. A
general sample path large deviations result for WSLQ systems was only
recently established [5].

The present paper concentrates on a class of individual buffer overflow
probabilities and resolves two questions: (1) the explicit identification of the
exponential decay rate of such overflow probabilities; (2) the construction of
asymptotically optimal importance sampling schemes for fast simulation of
such rare events. These two questions turn out to be intimately connected
in the following sense. To build efficient importance sampling schemes, we
use the game/subsolution approach [7] and construct suitable subsolutions
to the associated Isaacs equations. Not only do these subsolutions lead to
asymptotically optimal importance sampling schemes, they also play an es-
sential role in explicitly identifying the exponential decay rate of the overflow
probabilities via a verification argument.

The serve-the-longest policy has been studied in the context of wireless
communications, see for example [13, 2] and their references. There are
differences between the stochastic processes used in the wireless literature
and the processes used in our work, the most significant of which is that the
dynamics in the wireless context are not Markovian, but rather modulated
by an exogenous Markov process. However the methods used to deal with the
discontinuous interfaces in our paper can be combined with those presented
in [7] for Markov modulated rates to analyze such models.

The paper is organized as follows. In Sections 2 and 3 the model dy-
namics and problem formulation are described. Section 4 presents the large
deviations result regarding the overflow probabilities. A brief review of
importance sampling is conducted in section 5, and the associated Isaacs
equation is formally derived in Section 6. A classical subsolution to the
Isaacs equation and the corresponding importance sampling scheme are con-
structed in Section 7. In Section 8 we derive the exponential decay rate of
the overflow probabilities and establish the asymptotic optimality of the said
importance sampling scheme. Numerical results are presented in Section 9.
Many technical proofs are collected in an appendix.

2 Problem Formulation

The system model consists of a single server and d classes of customers.
Customers of class i, buffered at queue i, arrive according to a Poisson
process with rate λi. The service time for a class i customer is exponentially
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distributed with rate µi. Upon the completion of service, the customer leaves
the system. We will assume that the system satisfies the stability condition

d∑

j=1

λj

µj
< 1. (2.1)

λ2

λ1

λd

µ1

µ2

µd

Figure 1: WSLQ system

The service policy is determined according to the following WSLQ dis-
cipline. Let ci be the weight associated with class i. If the size of queue i is
qi, then the weighted length for queue i is defined as ciqi. Under the WSLQ
policy, the queue with the maximal weighted length is assigned the service
priority. When there are multiple queues with the maximal weighted length,
the assignment of priority among these queues is non-essential and can be
arbitrary. We adopt the convention that when there are ties, the priority
will be given to the queue with the largest index.

Denote the system state at time t by Q(t) .= (Q1(t), . . . , Qd(t)), where
Qi is the size of queue i. The process Q is a continuous time Markov jump
process defined on some probability space, say (Ω,F,P). The quantities of
interest are the buffer overflow probabilities

pn
.= P{the process Q exits domain nD before returning

to the origin, starting from the origin}, (2.2)

where n is a large integer and D is the domain

D
.= {x = (x1, . . . , xd) ∈ Rd

+ : cixi ≤ 1 for all i}. (2.3)

We also define the vector

c̄ = (1/c1, 1/c2, . . . , 1/cd) , (2.4)

which is a corner of D, and denote the boundary of D in Rd
+ by

∂
.= ∂D = {x ∈ Rd

+ : x ∈ D, cixi = 1 for some i}.
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Figure 2: System dynamics with d = 2.

See Figure 2 for illustration of the case of dimension d = 2.
Throughout the analysis, it is often convenient to consider the scaled

process
Xn(t) .= Q(nt)/n.

Note that we can now rewrite the overflow probability as

pn = P{Xn exits domain D before returning to the origin,
starting at the origin}.

3 System Dynamics

The collection of possible jumps for the process Q is denoted by

V .= {±ej : j = 1, 2, . . . , d},

where ei is the canonical unit vector with the i-th component 1 and other
components 0. For v ∈ V, let r(x, v) be the jump intensity of the process Q
from state x to state x + v. For x = (x1, . . . , xd) ∈ Rd

+ and x 6= 0, let π(x)
denote the indices of queues that have the maximal weighted length, that
is,

π(x) .=
{

1 ≤ i ≤ d : cixi = max
j
cjxj

}
.
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Then

r(x; v) =





λi if v = ei and i = 1, . . . , d,
µi if v = −ei where i = maxπ(x),
0 otherwise.

For x = 0, there is no service and the jump intensities are

r(0; v) =
{
λi if v = ei and i = 1, . . . , d,
0 otherwise.

We also set
π(0) .= {0, 1, 2, . . . , d}.

The dynamics of the process Q can be described by a stochastic transition
kernel, say Θ[dt, v|x]. To be more precise, define the total intensity by

R(x) .=
∑

v∈V
r(x, v), (3.1)

and let T1, T2, . . . be the random times at which the process Q jumps with
convention T0 = 0. Then for any x ∈ Rd

+ and n ∈ N such that nx ∈ Zd
+,

Θ[dt, v|x] .= P{Tj+1 − Tj ∈ dt, Q(Tj+1) = nx + v|Q(Tj) = nx}
= r(x, v)e−R(x)tdt. (3.2)

4 Large Deviations

One goal of this paper is to explicitly identify the exponential decay rate of
pn. Our approach is to reduce it to a calculus of variation problem using
the sample path large deviations principle established in [5]. In order to
explicitly solve the calculus of variation problem, we will use a verification
argument based on essentially the same subsolution that we will use to build
asymptotically optimal importance sampling schemes.

To ease notation, we will also denote by A the collection of non-empty
subsets of {1, 2, . . . , d}. That is

A = {A : A ⊂ {1, 2 . . . , d}, A is non-empty} . (4.1)

4.1 The rate functions

For each i = 1, . . . , d, let H(i) be the convex function given by

H(i)(α) .= µi(e−αi − 1) +
d∑

j=1

λj(eαj − 1),
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for all α = (α1, . . . , αd) ∈ Rd. We also define for i = 0 and α ∈ Rd

H(0)(α) .=
d∑

j=1

λj(eαj − 1).

For each non-empty subset A ⊂ {1, . . . , d} or A = {0, 1, . . . , d}, let LA be
the Legendre transform of maxi∈AH

(i), that is,

LA(β) .= sup
α∈Rd

[
〈α, β〉 − max

i∈A
H(i)(α)

]

for each β ∈ Rd. Clearly LA is convex and, since H(i)(0) = 0, it is also
non-negative. When A is a singleton {i}, we simply write LA as L(i). A
useful representation of LA [4, Corollary D.4.3] is

LA(β) = inf
∑

i∈A

ρ(i)L(i)(β(i)), (4.2)

where the infimum is taken over all {(ρ(i), β(i)) : i ∈ A} such that

ρ(i) ≥ 0,
∑

i∈A

ρ(i) = 1,
∑

i∈A

ρ(i)β(i) = β. (4.3)

Furthermore, for x ∈ Rd
+ let L(x, β) .= Lπ(x)(β). It turns out that L is the

local rate function associated with the scaled processes {Xn}, see [5].

4.2 The exponential decay rate

In this section we first identify a collection of important roots associated with
the Hamiltonians H(i), i = 1, . . . , d. The motivation for such roots will be
discussed in Remark 4.4. These roots will be used to construct subsolutions
and identify the large deviation rate for pn.

For each A ∈ A, thanks to the stability condition (2.1), there exists a
unique constant, say zA, such that

0 < zA < min
i∈A

µi,
∑

j∈A

λj

µj − zA
= 1. (4.4)

Define the vector αA ∈ Rd by

αA
i
.=





log
(

1 − zA

µi

)
if i ∈ A,

0 otherwise.
(4.5)

We have the following result, whose proof is elementary and thus omitted.
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Lemma 4.1. For each A ∈ A, αA is the unique vector that satisfies

1. αA
i = 0 for i 6∈ A,

2. αA
i < 0 for i ∈ A,

3. H(i)(−αA) = 0 for all i ∈ A.

4. H(i)(−αA) > 0 for all i 6∈ A.

Recall the definition of c̄ as in (2.4) and define

γ
.= min

{
〈−αA, c̄〉 : A ∈ A

}
. (4.6)

The following result identifies γ as the value of the calculus of variation
problem that is associated with the large deviations of {pn}. The proof is
technical and deferred to the appendix.

Theorem 4.2. We have the representation

γ = inf
∫ τ

0
L(φ(t), φ̇(t)) dt,

where the infimum is taken over all absolutely continuous functions φ : R+ →
Rd

+ such that φ(0) = 0 and τ .= inf{t ≥ 0 : φ(t) ∈ ∂} <∞.

Remark 4.3. It will be shown later on that γ is the exponential decay rate
of {pn} [Theorem 8.3], that is,

γ = − lim
n

1
n

log pn.

Remark 4.4. Large deviations rate functions are closely related to con-
trol problems and thus are also related to the solutions of appropriate
Hamiltonian-Jacobi-Bellman (HJB) equations [4]. Due to the homogene-
ity of the state dynamics, it is natural to conjecture that the large deviation
optimal trajectory leaving the domain will be a straight line, and the so-
lution to the HJB equation is piecewise affine. If the optimal trajectory
leaves the domain through interface {x : π(x) = A}, then it corresponds
to an affine piece whose gradient, say v, should satisfy the HJB equation
H(i)(v) = 0 for all i ∈ A. Furthermore, v should satisfy 〈v, ei〉 = 0 for all
i 6∈ A since the value function to the corresponding control problem will
take the same value 0 on the boundary {x : π(x) = A} ∩ ∂. Solving these
equations about v yields v = −αA.
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5 Importance Sampling

We are interested in efficient importance sampling schemes for estimating pn

when n is large. Importance sampling simulates the system under a different
probability distribution, i.e., change of measure.

5.1 Asymptotic optimality

Denote by An the event of buffer overflow, and rewrite pn = P(An). An
importance sampling scheme generates samples from a new probability mea-
sure, say Qn, such that P � Qn. The estimator is then given by the average
of independent replications of

p̂n
.= 1An

dP
dQn

,

where dP/dQn is the Radon-Nikodym derivative or likelihood ratio. Clearly
p̂n is unbiased for any such Qn.

The goal of importance sampling is to choose Qn to minimize the vari-
ance, or the second moment of p̂n. An obvious lower bound follows from
Jensen’s inequality and the large deviations properties of pn [Theorem 4.2
and Remark 4.3],

lim inf
n

1
n

logEQn
[
p̂2

n

]
≥ lim inf

n

2
n

logEQn [p̂n] = lim inf
n

2
n

log pn = −2γ.

An importance sampling scheme, or the change of measure Qn, is said to be
asymptotically optimal if this lower bound is achieved, i.e., if

lim sup
n

1
n

logEQn
[
p̂2

n

]
≤ −2γ.

For future analysis, it is worthwhile to note that the second moment equals

EQn
[
p̂2

n

]
= EP [p̂n] . (5.1)

5.2 State-dependent importance sampling schemes

In this paper we will consider state-dependent changes of measure for im-
portance sampling. Such changes of measure will be described by stochastic
transition kernels, say Θ̄n[dt, v|x], on R+ ×V given Rd

+. Thus in contrast to
(3.2), the dynamics of the state process Q are now determined by

Qn {Tj+1 − Tj ∈ dt, Q(Tj+1) = nx + v|Q(Tj) = nx} = Θ̄n[dt, v|x]
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for all j ≥ 0, where {T1, T2, . . .} are the jump times for the process Q with
convention T0 = 0.

In order to explicitly identify the importance sampling estimator, let
sj

.= Tj − Tj−1 and vj
.= Q(Tj) − Q(Tj−1). Define the hitting times

Nn .= inf {k ≥ 1 : Q(Tk) 6∈ nD} , (5.2)
N0 .= inf {k ≥ 1 : Q(Tk) = 0} . (5.3)

Recall the original stochastic transition kernel Θ as in (3.2). Then a single
sample of the the importance sampling estimator is

p̂n
.= 1{Nn<N0}

Nn∏

j=1

Θ [dsj , vj |Q(Tj−1)/n]
Θ̄n [dsj , vj|Q(Tj−1)/n]

. (5.4)

In practice we simulate a number of iid copies of p̂n, and use the sample
mean to estimate pn.

6 The Isaacs Equation

The connection between importance sampling and differential games/Isaacs
equations was explored in [7]. Since we are now dealing with continuous
time processes as opposed to the discrete time setup in [7], we will formally
derive the associated Isaacs equation in some detail. While the derivation
is formal, the analysis of importance sampling schemes that are based on
subsolutions to the equation will be rigorous.

Let R be the collection of functions mapping V to [0,∞) that are not
identically zero. Each element in R represents a set of jump intensities. We
will restrict our attention to those alternative stochastic transition kernels
that take the form

Θ̄n[dt, v|x] = r̄(x, v)e−R̄(x)t dt, r̄(x, ·) ∈ R, R̄(x) =
∑

v∈V
r̄(x, v). (6.1)

Consider the stochastic control problem of minimizing the second moment
of p̂n [see equation (5.1)] among such transition kernels, and define the value
function

Vn(x) .= inf
Θ̄n
EP[p̂n|Q(0) = nx]. (6.2)

Clearly Vn(x) satisfies the boundary condition Vn(x) = 1 for all x 6∈ D.
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Note that for Θ̄n defined as in (6.1), one can rewrite the likelihood ratio
term in the importance sampling estimator p̂n (5.4) as

exp





∫ TNn

0
[R̄(Q(s)/n)−R(Q(s)/n)]ds+

Nn∑

j=1

log
r(Q(Tj−1)/n, vj)
r̄(Q(Tj−1)/n, vj)



 .

Therefore, by the dynamic programming principle, the value function Vn

should satisfy the dynamic programming equation (DPE)

Vn(x) = inf
r̄∈R

∫ ∞

0

∑

v∈V
e[R̄−R(x)]t · r(x, v)

r̄(v)
· Vn

(
x+

v

n

)
· e−R(x)tr(x, v)dt.

Here instead of the fixed state dependent rates we minimize over r̄(v) and let
R̄ =

∑
v∈V r̄(v). In order to write down a limit partial differential equation,

we introduce the following result, which is indeed a special case of the relative
entropy representation for exponential integrals [4]. The proof is deferred to
the appendix. Note that the function ` : R → R+ ∪ {∞} is defined as

`(x) .=
{
x logx− x+ 1, if x ≥ 0,

∞ otherwise.

with convention 0`(0/0) = 0 and 0`(x/0) = ∞ if x 6= 0.

Lemma 6.1. For any θ ∈ R let

s[θ] .=
∑

v∈V
θ(v).

Then for any θ ∈ R, any constant c and function h : V → R

− log
∫ ∞

0

∑

v∈V
e−[ct+h(v)]e−s[θ]tθ(v)dt

= inf
θ̂∈R

1
s[θ̂]

[
c+

∑

v∈V
h(v)θ̂(v) +

∑

v∈V
θ(v)`

(
θ̂(v)
θ(v)

)]
.

We combine Lemma 6.1 with the DPE of Vn and a transform motivated by
the large deviation scaling

Wn(x) .= − 1
n

logVn(x)
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to obtain

nWn(x) = sup
r̄∈R

inf
r̂∈R

1
s[r̂]

[
R(x)− R̄+

∑

v∈V
r̂(v) log

r̄(v)
r(x, v)

+
∑

v∈V
nWn

(
x+

v

n

)
r̂(v) +

∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)]
.

To formally obtain a limit PDE, we assume that

Wn(x) → W (x), n [Wn(x+ v/n)−Wn(x)] → 〈DW (x), v〉. (6.3)

Observing that

R(x)− R̄+
∑

v∈V
r̂(v) log

r̄(v)
r(x, v)

=
∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)
−
∑

v∈V
r̄(v)`

(
r̂(v)
r̄(v)

)
,

the limit function W satisfies the equation

0 = sup
r̄∈R

inf
r̂∈R

1
s[r̂]

[∑

v∈V
〈DW (x), v〉r̂(v) + 2

∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)

−
∑

v∈V
r̄(v)`

(
r̂(v)
r̄(v)

)]
. (6.4)

Define for every x ∈ R+ and α ∈ Rd

H(x, α) = sup
r̄∈R

inf
r̂∈R

[∑

v∈V
r̂(v)〈v, α〉+ 2

∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)

−
∑

v∈V
r̄(v)`

(
r̂(v)
r̄(v)

)]
. (6.5)

It is not difficult to argue by the existence of saddle points for H [Proposition
6.2] that the equation (6.4) for W can be reduced to

H(x,DW (x)) = 0.

This is the Isaacs equation associated with a differential game of two players.
It should be mentioned that the r̄-player chooses the change of measure used
in the importance sampling scheme and the r̂-player is an artificial player
introduced by the representation formula.

11



Proposition 6.2. For any x ∈ Rd
+ \ {0} and α ∈ Rd,

1. H(x, α) = Hj(α) .= −2H(j)(−α/2), where j = max{i : i ∈ π(x)}.

2. The saddle point is given by

r̄∗(x, α)[v] = r̂∗(x, α)[v] = r(x, v)e−〈α,v〉/2.

Remark 6.3. The Isaacs equation H(x,DW (x)) = 0 should not be inter-
preted literally at the points of discontinuities, that is, points x such that
|π(x)| > 1. This is easy to understand from the above formal analysis since
the second part of the approximation (6.3) will not hold at such x. Instead,
a natural interpretation at such points is [3]

lim
ε↓0

inf
{y∈Rd

+:‖y−x‖≤ε}
H(y,DW (x)) = 0,

which amounts to
min

j∈π(x)
Hj(DW (x)) = 0. (6.6)

The intuition for this interpretation is that the behavior of the controlled
state process on a discontinuity interface is the asymptotic characterization
for the collective behavior of the process around the neighborhood of x. This
observation is also essential in the construction of classical subsolutions to
the Isaacs equation [that is, replace H(x,DW ) = 0 by H(x,DW ) ≥ 0], since,
owing to the infimum operation in (6.6), the subsolution property at x will
imply that it holds, at least approximately, for all nearby points of x in the
prelimit. See Lemma 7.3 for the precise statement.

7 Classical Subsolutions

A continuously differentiable function W̄ : Rd
+ → R is a classical subsolution

to the Isaacs equation if

1. H(x,DW̄(x)) ≥ 0 for all x ∈ D

2. W̄ (x) ≤ 0 for all x 6∈ D.

Classical subsolutions are the means by which the explicit representation for
γ in Theorem 4.2 is shown and asymptotically efficient importance sampling
schemes are built. We will construct the subsolutions by mollifying piecewise
affine subsolutions as in [7]. In order to achieve asymptotic optimality it is
necessary that the value of the subsolutions at the origin is maximal, i.e.,
W̄ (0) = 2γ.
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7.1 Piecewise affine subsolutions

Recall that A is the collection of all non-empty subsets of {1, 2, . . . , d}, the
definition of the roots {αA} in (4.4) and (4.5), and the definition of γ in
(4.6). For each A ∈ A define

ᾱA =
γ

〈−αA, c̄〉 · α
A. (7.1)

Note that γ ≤ 〈−αA, c̄〉 for all A ∈ A. Thanks to Lemma 4.1, the convexity
of H(i), and that H(i)(0) = 0, we have

Lemma 7.1. For every A ∈ A,

1. ᾱA
i = 0 for i 6∈ A,

2. ᾱA
i < 0 for i ∈ A,

3. H(i)(−ᾱA) ≤ 0 for all i ∈ A,

4. 〈−ᾱA, c̄〉 = γ.

Also define a sequence of positive constants {C1, C2, . . . , Cd} by

C1 = 0, Ck+1 = a∗k · (1 + Ck), (7.2)

where

a∗k = 1 ∨ max
{
ᾱB

i

ᾱA
i

: i ∈ A ⊂ B, |A| = k, |B| = k + 1
}

(7.3)

for 1 ≤ k ≤ d− 1. Fix an arbitrary δ > 0. Define the affine function

W δ
A(x) .= 〈2ᾱA, x〉+ 2γ − C|A|δ. (7.4)

for each A ∈ A. Their pointwise minimum is denoted by

W δ(x) .= min{W δ
A(x) : A ∈ A}. (7.5)

Note that W δ is a continuous piecewise affine function.

Lemma 7.2. The function W δ satisfies W δ(x) ≤ 0 for all x 6∈ D. Further-
more, given any x ∈ Rd

+ \ {0}, if W δ
A(x)−W δ(x) < δ then π(x) ⊂ A.

13



The proof of Lemma 7.2 is deferred to the appendix. This lemma implies
thatW δ is a piecewise affine subsolution, i.e., H(x,DW δ(x)) ≥ 0 at all those
x where DW δ(x) is well defined. Indeed, for any such x, there is a unique
A∗ ∈ A that attains the minimum in (7.5) and whence DW δ(x) = 2ᾱA∗

.
Let j = max{i : i ∈ π(x)}. It follows from Lemma 7.2 that j ∈ π(x) ⊂ A∗.
It is now immediate from Lemma 7.2 and Proposition 6.2 that

H(x,DW δ(x)) = Hj(2ᾱA∗
) = −2H(j)(−ᾱA∗

) ≥ 0.

7.2 Mollification

The construction of asymptotically optimal importance sampling schemes
requires smooth subsolutions with bounded second derivatives. To this end,
we consider a mollified version of W δ using exponential weighting [7, 6]. Let
ε be an arbitrary small positive number, and define

W ε,δ(x) .= −ε log
∑

A∈A
exp

{
−1
ε
W δ

A(x)
}
.

The function W ε,δ is smooth with

DW ε,δ(x) =
∑

A∈A
2ρε,δ

A (x)ᾱA, ρε,δ
A (x) .=

exp
{
−W δ

A(x)/ε
}

∑
B∈A exp

{
−W δ

B(x)/ε
} .

Furthermore, for every x,

−ε log |A| ≤ W ε,δ(x)−W δ(x) ≤ 0. (7.6)

The following Lemma 7.3 shows that W ε,δ is approximately a subsolution.

Lemma 7.3. The function W ε,δ satisfies W ε,δ(x) ≤ 0 for all x 6∈ D. Fur-
thermore, for every x ∈ Rd

+ \ {0} and j ∈ π(x),

Hj(DW ε,δ(x)) ≥
∑

A∈A
ρε,δ

A (x) · Hj(2ᾱA) ≥ −Ke−δ/ε,

where K is a positive constant that only depends on the system parameters.
In particular,

H(x,DW ε,δ(x)) ≥ −Ke−δ/ε.
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Proof. We first note that W ε,δ(x) ≤ 0 for all x 6∈ D is trivial from Lemma
7.2 and inequality (7.6). Now let x ∈ Rd

+ \ {0} and j ∈ π(x). Thanks to
Proposition 6.2 and the concavity of Hj ,

Hj(DW ε,δ(x)) ≥
∑

A∈A
ρ

ε,δ
A (x) ·Hj(2ᾱA).

For all those A ∈ A such that W δ
A(x) − W δ(x) < δ, Lemma 7.2 implies

π(x) ⊂ A, in particular j ∈ A, and therefore Hj(2ᾱA) = −2H(j)(−ᾱA) ≥ 0
by Lemma 7.1. On the other hand, for those A ∈ A such that W δ

A(x) −
W δ(x) ≥ δ, it is not difficult to see that ρε,δ

A (x) ≤ exp{−δ/ε}.

Remark 7.4. In general, the parameters ε and δ can depend on n, and we
will write them as εn and δn.

7.3 Importance sampling algorithm

For each A ∈ A, the vector 2ᾱA through Proposition 6.2 defines a new set
of jump intensities of form

r̄∗(x, 2ᾱA)[v] = r(x, v)e−〈ᾱA,v〉.

The change of measure used in our state-dependent importance sampling
scheme corresponds to a stochastic transition kernel of form

Θ̄n[dt, v|x] = R̄n(x)e−r̄n(x,v)dt,

where for x 6= 0

r̄n(x, v) .=
∑

A∈A
ρεn,δn

A (x)r̄∗(x, 2ᾱA)[v], R̄n(x) .=
∑

v∈V
r̄n(x, v).

The values at x = 0 are unimportant, and for simplicity we use the original
jump intensities, that is,

r̄n(0, v) .= r(0, v), R̄n(0) .=
∑

v∈V
r(0, v).

The corresponding importance sampling estimator p̂n is just as defined in
(5.4). Under this change of measure, the state process Q is again a contin-
uous time Markov jump process with jump intensity r̄n(x, v) from state nx
to nx+v whenever nx ∈ Zd

+. Note that the calculation of Θ̄n is simple since
ρεn,δn

A and r̄∗ can be easily obtained.
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Remark 7.5. The estimator p̂n described here is not exactly the one that
will be used in the numerical experiments. Indeed, we will use a closely re-
lated, easier-to-implement, discrete time version of p̂n, say p̄n. The precise
definition of p̄n can be found in Section 9. It turns out that p̄n is the expec-
tation of p̂n conditioned on a suitable σ-algebra, and therefore p̄n is unbiased
and has smaller second moment than p̂n. The motivation for focusing so far
on p̂n is that it is more suitable for the asymptotic analysis.

8 Asymptotic Efficiency

In this section we show that the importance sampling estimator p̂n is asymp-
totically optimal under suitable conditions. We will need the following re-
sult, which essentially says that the return time to the origin is exponentially
bounded. Recall that {T1, T2, . . .} are the random jump times of the process
Q and TN0 by (5.3) is the first time the process returns to the origin.

Lemma 8.1. There exist positive constants c and k such that for every
q ∈ Zd

+

logEP[exp{cTN0}|Q(0) = q] ≤ k(1 + ‖q‖).

The proof is deferred to the appendix.

Proposition 8.2. Suppose that δn → 0, εn/δn → 0, and nεn → ∞. Then
for any sequence {qn} ⊂ Zd

+ such that qn/n → 0, we have the upper bound
on the second moment of the importance sampling estimator

lim sup
n

1
n

logEP[p̂n|Q(0) = qn] ≤ −2γ.

Proof. Let xn = qn/n. Then xn → 0. Throughout the proof, to ease
notation, we denote W (x) .= W εn,δn(x), ρA(x) .= ρεn,δn

A (x), and EP
xn

[·] .=
EP[·|Q(0) = nxn]. Furthermore, note that all we need to show is that the
upper bound holds for xn 6= 0 since we can write

EP
0 [p̂n] =

d∑

i=1

λi

λ1 + · · ·+ λd
EP[p̂n|Q(0) = ei].

We will make use of Lemma A.1, which identifies certain saddle points
and is a generalization of Proposition 6.2. Assume from now on that xn 6= 0.
Fix an arbitrary s > 2. Since eventually we will send s to 2, we assume
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without loss of generality that s ∈ (2, 3]. Consider Ls as defined in (A.1).
We have, for every r̂ ∈ R,

Ls(x,DW (x); r̄n, r̂) =
s

2

∑

v∈V
r̂(v)〈DW (x), v〉+ s

∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)

− (s− 1)
∑

v∈V
r̄n(x, v)`

(
r̂(v)

r̄n(x, v)

)
.

Note that by definition

DW (x) =
∑

A∈A
ρA(x) · 2ᾱA, r̄n(x, v) =

∑

A∈A
ρA(x) · r̄∗(x, 2ᾱA)[v].

It follows by the concavity of the logarithmic function that

Ls(x,DW (x); r̄n, r̂) ≥
∑

A∈A
ρA(x)Ls(x, 2ᾱA; r̄∗(x, 2ᾱA), r̂).

In particular,

inf
r̂∈R

Ls(x,DW (x); r̄n, r̂) ≥
∑

A∈A
ρA(x) inf

r̂∈R
Ls(x, 2ᾱA; r̄∗(x, 2ᾱA), r̂).

By Lemma A.1,

inf
r̂∈R

Ls(x, 2ᾱA; r̄∗(x, 2ᾱA), r̂) =
s

2
Hj(2ᾱA)

where j = max{i : i ∈ π(x)}. Therefore, it follows from Lemma 7.3 that

inf
r̂∈R

Ls(x,DW (x); r̄n, r̂) ≥ −s
2
Ke−δn/εn

for some constant K that only depends on the system parameters λi, µi, etc.
However, by straightforward calculation (we omit the details)

inf
r̂∈R

Ls(x,DW (x); r̄n, r̂) = (s− 1)[R(x)− R̄n(x)]

+
∑

v∈V
r(x, v)

[
1 − e−s〈DW (x),v〉/2

(
r(x, v)
r̄n(x, v)

)s−1
]
.

Furthermore, by straightforward calculation it can be shown that every com-
ponent of the Hessian matrix D2W (x) is uniformly bounded by C/εn for
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some constant C that only depends on the system parameters. It follows
from Taylor’s expansion that

|〈DW (x), v〉 − n [W (x+ v/n) −W (x)]| ≤ C̄

nεn

for some constant C̄ , which again depends only on the system parameters.
Observing that r(x, v)/r̄n(x, v) is uniformly bounded, it follows easily that,
for all s ∈ (2, 3] and x ∈ Rd

+,

hn(x) .= (s− 1)[R(x)− R̄n(x)]

+
∑

v∈V
r(x, v)

[
1 − e−sn(W (x+v/n)−W (x))/2

(
r(x, v)
r̄n(x, v)

)s−1
]

≥ −βn,

where
βn

.= 2Ke−δn/εn + K̄
[
eC̄/(2nεn) − 1

]

for some constants K and K̄ that only depend on the system parameters.
Let Jn(t) = min{j : Tj ≥ t}, and let

p̂n(t) .= exp





∫ t

0
[R̄(Q(s)/n)− R(Q(s)/n)]ds+

Jn(t)∑

j=1

log
r(Q(Tj−1)/n, vj)
r̄(Q(Tj−1)/n, vj)



 ,

so that p̂n = p̂n(TNn). Note that two types of jump processes appear in
the exponent, namely Q and the sum of log terms up to Jn(t). Although
the sum is slightly non-standard in that the size of the jump depends on
several factors (including the state of Q at the time of the last jump), one
can construct a generalized Itô formula for p̂n(t).

Now consider the nonnegative process

Mn(t) .= e−βnt−snW (Q(t)/n)/2p̂s−1
n (t). (8.1)

By the definitions ofMn and p̂n and the generalized Itô formula, the process

Mn(t) +
∫ t

0

Mn(u) [hn(Q(u)/n) + βn]du

is a local martingale. Since hn(x) ≥ −βn, it follows that Mn(t) is local
supermartingale, whence a true supermartingale due to its non-negativity.
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Consequently, the optional sampling theorem implies that, with N .= Nn ∧
N0,

EP
xn

[Mn(TN)] ≤Mn(0) = e−snW (xn)/2.

Observing that Q(TN)/n 6∈ D on the set {Nn < N0}, while p̂n = 0 on the
set {Nn ≥ N0}, and that the boundary condition W (x) ≤ 0 holds for all
x 6∈ D, it follows that w.p.1

Mn(TN) ≥ e−βnTN p̂s−1
n .

Therefore,
EP

xn

[
e−βnTN p̂s−1

n

]
≤ e−snW (xn)/2.

Using Holder’s inequality

EP
xn

[p̂n] ≤
(
EP

xn

[
e−βnTN p̂s−1

n

]) 1
s−1
(
EP

xn

[
e

βn
s−2

TN 1{Nn<N0}

]) s−2
s−1

≤ e
− s

2(s−1)
nW (xn)

(
EP

xn

[
e

βn
s−2

TN0

]) s−2
s−1

.

Note that the above inequality is true for all s ∈ (2, 3]. In particular, let c
be the constant given by Lemma 8.1, and let s = sn where

βn

sn − 2
= c or sn = 2 +

βn

c
.

Note that by assumption βn → 0, thus sn ∈ (2, 3] for n large enough. Hence
by Lemma 8.1

EP
xn

[p̂n] ≤ e
− sn

2(sn−1)
nW (xn)

(
EP

xn

[
ecTN0

]) sn−2
sn−1 ≤ e

− sn
2(sn−1)

nW (xn)
e

k(sn−2)
sn−1

(1+‖xn‖).

Therefore,

1
n

logEP
xn

[p̂n] ≤ − sn
2(sn − 1)

W (xn) +
1
n

k(sn − 2)
sn − 1

(1 + ‖xn‖)

Note that sn → 2 and ‖xn‖ → 0 as n→ ∞, and that

Wn(0) ≥ 2γ − log |A| · εn − Cdδn.

Now letting n→ 0 we have

lim sup
n

1
n

logEP
xn

[p̂n] ≤ −2γ.

This completes the proof.
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Theorem 8.3. The exponential decay rate of {pn} is γ, that is,

lim
n

1
n

log pn = −γ.

Proof. It follows (5.1), the unbiasedness of p̂n, and Jensen’s inequality that
EP

0 [p̂n] ≥ p2
n. Therefore, by Proposition 8.2 the upper bound

lim sup
n

1
n

log pn ≤ −γ

holds. It remains to show the lower bound. Thanks to Theorem 4.2, it
suffices to show that

lim inf
n

1
n

log pn ≥ −
∫ τ

0
L(φ(t), φ̇(t)) dt (8.2)

for any absolutely continuous φ : R+ → Rd
+ such that φ(0) = 0 and τ

.=
inf{t ≥ 0 : φ(t) ∈ ∂} < ∞. Note that due to the non-negativity of L it
suffices to consider φ such that φ(t) 6= 0 for all t ∈ (0, τ ]. For any T ≥ 0
denote by D[0, T ] the collection of cadlag functions on [0, T ] taking values
in Rd

+, equipped with the Skorohod topology. Let 1 .= (1, 1, . . . , 1) and

ϕ(t) .=
{
φ(t) if t ≤ τ ,

φ(τ) + (t − τ) · 1 if t > τ.

For any ε, δ > 0, define

Bε(ϕ; δ) .= {ψ ∈ D[0, τ ] : ‖ψ(t)− ϕ(t+ ε)‖ < δ for all 0 ≤ t ≤ τ}.

Observing that ϕ̇(t) = 1 for t > τ and that LA(1) is finite for any A ⊂
{1, . . . , d}, it follows that

lim
ε→0

∫ τ+ε

ε
L(ϕ(t), ϕ̇(t)) dt =

∫ τ

0
L(φ(t), φ̇(t)) dt. (8.3)

For every ε, there exists a δ = δ(ε) such that for every ψ ∈ Bε(ϕ; δ), ψ(t) 6= 0
for all t ∈ [0, τ ] and ψ(τ) 6∈ D. Now for each n define

xn
.=

1
n
bnφ(ε)c,

where the integer part is applied component-wise. Then

pn ≥ P0(Xn hits xn before 0)Pxn(Xn exits D before hitting 0).
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However, note that Bε(ϕ; δ) is open under the Skorohod topology [12, Ap-
pendix A] since ϕ is continuous, and that ψ(t) .= ϕ(t + ε) for t ∈ [0, τ ] is
an element of Bε(ϕ; δ). Moreover xn → φ(ε), and {Xn} satisfies the sample
path large deviation principle with local rate function L [5]. It follows that

lim inf
n

1
n

logPxn(Xn exits D before hitting 0) (8.4)

≥ lim inf
n

1
n

log Pxn(Xn ∈ Bε(ϕ; δ))

≥ − inf
{∫ τ

0
L(ψ(t), ψ̇(t)) dt : ψ ∈ Bε(ϕ; δ)

}

≥ −
∫ τ

0
L(ϕ(t+ ε), ϕ̇(t+ ε)) dt.

Furthermore, it is easy to see that

P0(hitting xn before 0) ≥
d∏

i=1

(
λi∑d

j=1(λi + µi)

)(nxn)i

.

Therefore

lim inf
n

1
n

logP0(hitting xn before 0) (8.5)

≥
d∑

i=1

lim
1
n

(nxn)i log
λi∑d

j=1(λi + µi)

=
d∑

i=1

(φ(ε))i log
λi∑d

j=1(λi + µi)
.

Combining (8.3), (8.4), and (8.5), and letting ε→ 0, we arrive at the desired
inequality (8.2).

The following result is immediate from Proposition 8.2 and Theorem 8.3.

Corollary 8.4. Suppose that δn → 0, εn/δn → 0, and nεn → ∞. Then the
importance sampling estimator p̂n is asymptotically optimal. That is,

lim
n

1
n

logEP
0 [p̂n] = −2γ.
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9 Numerical Experiments

For ease of computation the numerical results are obtained using the em-
bedded discrete time Markov chain Z = {Z(j) = Q(Tj), j ≥ 0}. This means
that given that the current state Z(j) is nx, the next jump ∆j+1 is chosen
according to

Q(∆j+1 = v) = r̄n(x, v)/R̄n(x).

The actual importance sampling estimator is then

p̄n
.= 1{Z(N)/∈D}

N−1∏

j=0

r(Z(j)/n,∆j+1)/R(Z(j)/n)
r̄n(Z(j)/n,∆j+1)/R̄n(Z(j)/n)

, (9.1)

where
N = inf{k ≥ 1 : Q(Tk) ∈ ∂ or Q(Tk) = 0}.

By referring to the definition (5.4), a simple calculation shows that

EQ[p̂n|Q(T1), . . . , Q(TN)] = p̄n.

Therefore the asymptotic optimality of p̄n follows from the asymptotic op-
timality of p̂n.

In the tables below we present results from three different systems in 2,
4, and 6 dimensions. For each system we consider n = 20, 50, and 80. All
results are achieved using 20, 000 samples.

n = 20 n = 50 n = 80
Theoretical value 1.90× 10−5 4.36× 10−13 8.31× 10−21

Estimate 1.94× 10−5 4.36× 10−13 8.18× 10−21

Std. Err. 0.04× 10−5 0.12× 10−13 0.32× 10−21

95% C.I. [1.86,2.02]× 10−5 [4.12,4.59]× 10−13 [7.55,8.81]× 10−32

Table 1. (λ1, λ2) = (1, 2), (µ1, µ2) = (3, 4), and (c1, c2) = (1/2, 1)

n = 20 n = 50 n = 80

Theoretical value 5.62× 10−9 1.54× 10−14 7.01× 10−23

Estimate 5.52× 10−9 1.51× 10−14 6.91× 10−23

Std. Err. 0.27× 10−9 0.09× 10−14 0.33× 10−23

95% C.I. [4.99,6.04]× 10−9 [1.33,1.69]× 10−14 [6.26,7.56]× 10−23

Table 2. (λ1, λ2, λ3, λ4) = (1, 2, 2, 4), (µ1, µ2, µ3, µ4) = (5, 12, 10, 15), and (c1, c2, c3, c4) =

(1/2, 1, 1, 1)

n = 20 n = 50 n = 80

Theoretical value 2.1× 10−8 4.2× 10−13 3.7× 10−20

Estimate 2.21× 10−8 4.21× 10−13 3.75× 10−20

Std. Err. 0.08× 10−8 0.15× 10−13 0.14× 10−20

95% C.I. [2.05,2.37]× 10−8 [3.91,4.50]× 10−13 [3.48,4.02]× 10−20
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Table 3. (λ1, λ2, λ3, λ4, λ5, λ6) = (1, 2, 2, 3, 1, 8), (µ1, µ2, µ3, µ4, µ5, µ6) =

(10, 15, 16, 16, 15, 24), and (c1, c2, c3, c4, c5, c6) = (1/2, 1, 1, 1, 1, 1/3)

For all cases the values of the constants C|A| are determined using the
formulas in (7.2) and (7.3). The constants δn and εn are determined by the
formulas εn = 1

5 logn and δn = εn log εn. The results are robust with respect
to the choice of the parameters εn and δn. For example εn = c/

√
n yields

similar quality results for varying values of c.
For the two and four dimensional systems the exact values are obtained

by solving the linear system that arises from a first step analysis. This ap-
proach is computationally infeasible for the six dimensional system, thus for
that system the exact value is obtained by running the importance sampling
algorithm for 2 million iterations.

A Appendix. Collection of Proofs

A.1 Proof of Lemma 6.1

We will consider two cases separately.

Case 1. c + s[θ] ≤ 0. It is not difficult to see that the integral on the
left-hand-side (LHS) is ∞. Therefore, it suffices to show that the infimum
on the right-hand-side (RHS) is −∞. Fix an arbitrary ε > 0 and consider
θ̂ε ∈ R such that

θ̂ε(v)
.= εe−h(v)θ(v).

Then simple algebra yields

RHS =
c+ s[θ]

ε
∑

v∈V e
−h(v)θ(v)

+ log ε− 1.

Letting ε→ 0, since c+ s[θ] ≤ 0, we conclude that the infimum on the RHS
does equal −∞.

Case 2. c + s[θ] > 0. Abusing notation, for each θ ∈ R, we define the
probability measure induced by θ on R+ × V by

Pθ(dt, v) = e−s[θ]tθ(v)dt.

Then we can write

LHS = − log
∫

R+

∑

v∈V
e−[ct+h(v)]Pθ(dt, v).
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Further abusing the notation, let P denote the collection of all probability
measures on R+ × V. Then by a slight extension of [4, Proposition 1.4.2],
namely [7, Lemma A.1], we have

LHS = inf
Q∈P

[∫

R+

∑

v∈V
[ct+ h(v)]Q(dt, v) +R(Q‖Pθ)

]
,

with the minimizing Q∗ given by

dQ∗

dPθ
= ke−ct−h(v),

where k is the normalizing constant. It is not difficult to see that the mini-
mizing Q∗ is an element of {P

θ̂
: θ̂ ∈ R}. Therefore,

LHS = inf
θ̂∈R

[∫

R+

∑

v∈V
[ct+ h(v)]P

θ̂
(dt, v) +R(P

θ̂
‖Pθ)

]
.

But it is straightforward to verify that
∫

R+

∑

v∈V
[ct+ h(v)]Pθ̂(dt, v) =

1

s[θ̂]

[
c+

∑

v∈V
h(v)θ̂(v)

]
.

and

R(Pθ̂‖Pθ) =
1
s[θ̂]

∑

v∈V
θ(v)`

(
θ̂(v)
θ(v)

)
.

A.2 Proof of Proposition 6.2

We will prove a stronger version of Proposition 6.2, which will be useful
in the asymptotic analysis of the importance sampling estimators. Fix an
arbitrary s ≥ 1. We define, for any x ∈ Rd

+ and r̄, r̂ ∈ R,

Ls(x, α; r̄, r̂) .=
s

2

∑

v∈V
r̂(v)〈α, v〉+ s

∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)

− (s− 1)
∑

v∈V
r̄(v)`

(
r̂(v)
r̄(v)

)
(A.1)

and
Hs(x, α) = sup

r̄∈R
inf
r̂∈R

Ls(x, α; r̄, r̂).
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Note that H is the special case of Hs with s = 2. The following result
subsumes Proposition 6.2.

Lemma A.1. Assume that s ≥ 1. For any x ∈ Rd
+ \ {0} and α ∈ Rd,

1. Hs(x, α) = −sH(j)(−α/2) = sHj(α)/2 where j = max{i : i ∈ π(x)}.
In particular, for every x, Hs(x, ·) is concave.

2. The saddle point of Ls is independent of s and takes the form

r̄∗(x, α)[v] = r̂∗(x, α)[v] = r(x, v)e−〈α,v〉/2.

Proof. We first argue that (r̄∗(x, α), r̂∗(x, α)) is a saddle point, that is,

Ls(x, α; r̄, r̂∗(x, α)) ≤ Ls(x, α; r̄∗(x, α), r̂∗(x, α)) ≤ Ls(x, α; r̄∗(x, α), r̂)

for all r̄, r̂ ∈ R. The first inequality is trivial due to that s ≥ 1, the non-
negativity of r̄ and function `, and that `(z) = 0 if and only if z = 1. As for
the second inequality, straightforward calculation yields that

Ls(x, α; r̄∗(x, α), r̂) =
1
2

∑

v∈V
r̂(v)〈α, v〉+

∑

v∈V
r(x, v)`

(
r̂(v)
r(x, v)

)

− (s− 1)H(j)(−α/2).

By elementary calculus, the right-hand-side is minimized at r̂ = r̂∗(x, v).
Therefore, the second inequality holds, and (r̄∗(x, α), r̂∗(x, α)) is a saddle
point. In particular,

Hs(x, α) = Ls(x, α; r̄∗(x, α), r̂∗(x, α)) = −sH(j)(−α/2) = sHj(α)/2.

This completes the proof.

A.3 Proof of Lemma 7.2.

Fix an arbitrary x ∈ Rd
+ \ {0}. Let w∗ .= max{cixi : i = 1, . . . , d} and

x∗
.= w∗c̄ = (w∗/c1, w

∗/c2, . . . , w
∗/cd) .

Then xi − x∗i ≤ 0 for all i with equality if and only if i ∈ π(x). Moreover,
for any nonempty subset F ⊂ {1, . . . , d}, the definition (7.1) and Lemma
7.1 imply that

〈2ᾱF , x〉 = 〈2ᾱF , x∗〉 + 〈2ᾱF , x− x∗〉
= 2w∗〈2ᾱF , c̄〉 +

∑

i 6∈π(x)

2ᾱF
i (xi − x∗i )

= −2w∗γ +
∑

i∈F\π(x)

2ᾱF
i (xi − x∗i ).
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It follows that for any A ⊂ {1, . . . , d}

W δ
A(x)−W δ

F (x) =
∑

i∈A\π(x)

2ᾱA
i (xi − x∗i ) −

∑

i∈F\π(x)

2ᾱF
i (xi − x∗i )

+ (C|F | − C|A|)δ. (A.2)

Since W δ
F (x) ≥ W δ(x) for any F , we have by assumption

W δ
A(x) −W δ

F (x) ≤ W δ
A(x)−W δ(x) < δ.

In particular, the above inequality holds for F = π(x) and F = A ∪ π(x)
and (A.2) then becomes

δ >
∑

i∈A\π(x)

2ᾱA
i (xi − x∗i ) + (C|π(x)| − C|A|)δ, (A.3)

δ >
∑

i∈A\π(x)

2(ᾱA
i − ᾱ

A∪π(x)
i )(xi − x∗i ) + (C|A∪π(x)| − C|A|)δ. (A.4)

We now argue by contradiction that |A ∪ π(x)| = |A| or π(x) ⊂ A. To this
end, assume that |A| = m and |A ∪ π(x)| = m + j with j > 0. It follows
easily from the definition of {a∗k} that for every i ∈ A

ᾱ
A∪π(x)
i

ᾱA
i

≤ a∗ma
∗
m+1 · · ·a∗m+j−1.

Note that a∗k ≥ 1 for all k, and ᾱA
i < 0 and xi − x∗i < 0 for all i ∈ A \ π(x).

Therefore, it follows from (A.4) and (A.3), that

(C|A∪π(x)| − C|A| − 1)δ <
∑

i∈A\π(x)

2(ᾱA∪π(x)
i − ᾱA

i )(xi − x∗i )

≤ (a∗ma
∗
m+1 · · ·a∗m+j−1 − 1)

∑

i∈A\π(x)

2ᾱA
i (xi − x∗i )

< (a∗ma
∗
m+1 · · ·a∗m+j−1 − 1)(C|A| − C|π(x)| + 1)δ

≤ (a∗ma
∗
m+1 · · ·a∗m+j−1 − 1)(C|A| + 1)δ,

or
Cm+j − Cm − 1 < (a∗ma

∗
m+1 · · ·a∗m+j−1 − 1)(Cm + 1),

or
Cm+j < a∗ma

∗
m+1 · · ·a∗m+j−1(Cm + 1).
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But this is impossible since

Cm+j = a∗m+j−1(1 + Cm+j−1)
> a∗m+j−1Cm+j−1

= a∗m+j−1a
∗
m+j−2(1 + Cm−j+2)

> · · ·
= a∗ma

∗
m+1 · · ·a∗m+j−1(Cm + 1),

a contradiction. Thus j = 0 and |A ∪ π(x)| = |A|, and whence π(x) ⊂ A.
For every x 6∈ D, observe that xi ≥ 1/ci for all i ∈ π(x). Therefore, by

Lemma 7.1 and the definition of W δ,

W δ(x) ≤ W δ
π(x)(x) ≤ 〈2ᾱπ(x), x〉+ 2γ ≤ 〈2ᾱπ(x), c̄〉 + 2γ = 0.

We complete the proof.

A.4 Proof of Lemma 8.1

Assume for now that Q(0) = q 6= 0. To ease notation, unless specified, we
simply denote

EP[·] .= EP[·|Q(0) = q].

We first show that TN0 is finite with probability one. Define a vector

d = (1/µ1, 1/µ2, . . . , 1/µd)

and let

ε
.= 1 −

d∑

i=1

λi

µi
> 0.

Consider the process Y = {Y (t)} where

Y (t) .= 〈Q(t), d〉+ εt.

It is easy to check that the compensation process for {〈Q(t), d〉} is

∫ t

0




d∑

j=1

λj〈d, ej〉 −
d∑

j=1

µj〈d,−ej〉1{j=maxπ(Q(t))}


 ds = −εt.

Therefore, Y is a local martingale. Since Y is a non-negative, it is a super-
martingale. In particular, by the optional sampling theorem

εEP[TN0] ≤ EP[Y (TN0)] ≤ Y (0) = 〈q, d〉.
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This implies that TN0 has finite expectation. In particular, it is finite with
probability one.

The proof for the exponential bound is based on a similar argument and
the existence of a strict smooth subsolution. Fix an arbitrary ν ∈ (0, 1) and
for ease of notation let α∗ = ᾱ{1,...,d}. We claim that there exists a c > 0
such that the process M = {M(t) : t ≥ 0} with

M(t) = exp{ct− 〈Q(t), να∗〉} (A.5)

is a supermartingale. Indeed, by the generalized Itô formula the process

M(t) −
∫ t

0
M(s)h(Q(s)) ds

is a local martingale with

h(z) .= c+
∑

v∈V
r(z, v) (exp{−〈να∗, v〉}− 1) = c+H(i)(−να∗)

with i = max{π(z)}. It follows from Lemma 7.1 and the strict convexity of
H(i) that

H(i)(−να∗) < 0

for all i. Therefore there exists a c > 0 such that h(z) ≤ 0, which in turn
implies that M is a local supermartingale. But M is nonnegative, whence a
true supermartingale. By the optional sampling theorem,

exp{−〈q, να∗〉} ≥ EP[M(TN0)] = EP[exp{cTN0}].

In particular, this implies that there exists some k1 > 0 such that for any
q 6= 0,

logEP[exp{cTN0}|Q(0) = q] ≤ k1‖q‖.

It remains to show for the case where Q(0) = 0. By conditioning on the
first jump of Q, it follows that

EP[exp{cTN0}|Q(0) = 0] =
d∑

i=1

λi

Λ(Λ + c)
EP[exp{cTN0}|Q(0) = ei] <∞,

where Λ .= λ1 + · · ·+ λd. Letting

k
.= max{k1, logEP[exp{cTN0}|Q(0) = 0]},

we complete the proof.
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A.5 Proof of Theorem 4.2

The proof of Theorem 4.2 is essentially a verification argument, utilizing the
smooth subsolution W ε,δ.

We first argue that, for any absolutely continuous function φ : R+ → Rd
+

with φ(0) = 0 and τ = inf{t ≥ 0 : φ(t) ∈ ∂} <∞, the inequality

γ ≤
∫ τ

0
L(φ(t), φ̇(t)) dt (A.6)

holds. To this end, fix arbitrarily ε, δ > 0, and to ease notation denote
W = W ε,δ. Then by the definition of L,

L(φ(t), φ̇(t)) = Lπ(φ(t))(φ̇(t)) = sup
α∈Rd

[
〈α, φ̇(t)〉 − max

i∈π(φ(t))
H(i)(α)

]
.

In particular, thanks to Lemma 7.3 and that Hi(α) = −2H(i)(−α/2),

L(φ(t), φ̇(t)) ≥ 〈−DW (φ(t))/2, φ̇(t)〉 + min
i∈π(φ(t))

Hi(DW (φ(t)))/2

≥ 〈−DW (φ(t))/2, φ̇(t)〉 −Ke−δ/ε/2.

Integrating both sides from t = 0 to t = τ , it follows that
∫ τ

0
L(φ(t), φ̇(t)) dt ≥ 1

2

[
W (φ(0))−W (φ(τ))−Ke−δ/ετ

]
.

Observe that the boundary condition W (x) ≤ 0 holds for all x ∈ ∂, and
that by inequality (7.6)

W (φ(0)) = W (0) ≥ W δ(0)− ε log |A| = 2γ − ε log |A| − Cdδ.

Therefore,
∫ τ

0
L(φ(t), φ̇(t)) dt ≥ γ − 1

2

(
ε log |A|+ Cdδ +Ke−δ/ετ

)
.

Letting ε, δ → 0 but δ/ε→ ∞, we arrive at the desired inequality (A.6).
In order to show the other direction, it suffices to construct an absolutely

continuous function φ∗ : R+ → Rd
+ such that φ∗(0) = 0 and τ∗ .= inf{t ≥ 0 :

φ∗(t) ∈ ∂} <∞ with

∫ τ∗

0
L(φ∗(t), φ̇∗(t)) dt = γ. (A.7)
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This φ∗ is actually an optimal trajectory for the calculus of variation prob-
lem. To this end, fix arbitrarily

A∗ ∈ argmin
{
〈−αA, c̄〉 : A ∈ A

}
.

Consider the set valued function F ∗ : Rd
+ → Rd defined by

F ∗(x) .= the convex hull of {DH(i)(−αA∗
) : i ∈ π(x)}

for every x ∈ Rd
+. Clearly F ∗ is upper semicontinuous since π is so. It follows

the classical theory of differential inclusions that there exists an absolutely
continuous solution to

φ̇(t) ∈ F ∗(φ(t)), φ(0) = 0. (A.8)

With φ∗ denoting this solution, we will argue that φ∗ satisfies all the desired
properties. Note that by definition, we can write for almost every t

φ̇∗(t) =
∑

i∈π(φ∗(t))

ρ∗i (t)DH
(i)(−αA∗

) (A.9)

where ρ∗i (t) ≥ 0 and ∑

i∈π(φ∗(t))

ρ∗i (t) = 1. (A.10)

Since

DH(i)(−αA∗
) = −µie

αA∗
i ei +

d∑

j=1

λje
−αA∗

j ej ,

it follows that

φ̇∗(t) =
d∑

j=1

λje
−αA∗

j ej −
∑

i∈π(φ∗(t))

ρ∗i (t)µie
αA∗

i ei. (A.11)

Define for each t ≥ 0,

h(t) .= min
1≤i≤d

ci(φ∗(t))i,

I(t) .= argmin1≤i≤dci(φ
∗(t))i.

Obviously h is absolutely continuous. We claim that there exists a constant
a > 0 such that

ḣ(t) ≥ a (A.12)
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for almost every t. We first assume that I(t) 6= {1, . . . , d}. It follows that
I(t) ∩ π(φ∗(t)) = ∅. Therefore for any j ∈ I(t) (A.11) implies that

(φ̇∗(t))j = λje
−αA∗

j

Note that there exists a small neighborhood of t, say U , such that I(s) ⊂ I(t)
for every s ∈ U . The claim (A.12) follows readily. It remains to show for
the case where I(t) = {1, . . . , d}. In this case, I(t) = π(φ∗(t)) = {1, . . . , d}.
Since the Lebesgue measure of the set

{
t ≥ 0 : π(φ∗(t)) = {1, . . . , d}, π(φ̇∗(t)) 6= {1, . . . , d}

}

is zero [4, Theorem A.6.3], we can further assume that π(φ̇∗(t)) = {1, . . . , d}.
In other words, there a exist constant b such that

b = ci(φ̇∗(t))i, i = 1, . . . , d.

Thanks to (A.11) and (4.5),

b

cj
= (φ̇∗(t))j =





λjµj

µj − zA∗ − ρ∗j(t)(µj − zA∗
) if j ∈ A∗,

λj − ρ∗j(t)µj if j /∈ A∗.

Since the summation of {ρ∗j(t) : j = 1, . . . , d} is one, it is not difficult to
solve for b to obtain that

b =


∑

j 6∈A∗

1
cjµj

+
∑

j∈A∗

1
cj(µj − zA∗)



−1

·


∑

j 6∈A∗

λj

µj
+
∑

j∈A∗

λjµj

(µj − zA∗)2
− 1


 .

However, by the definition of zA∗
of (4.4),

∑

j∈A∗

λjµj

(µj − zA∗)2
− 1 =

∑

j∈A∗

λjz
A∗

µj − zA∗ > 0.

It follows that b > 0 and the claim (A.12) again holds.
The inequality (A.12) implies that the trajectory φ∗ stays in the positive

orthant Rd
+ and the corresponding exit time τ∗ is finite. It remains to show

the equality (A.7). Note that by (4.2), (A.9), and (A.10),

L(φ∗(t), φ̇∗(t)) ≤
∑

i∈π(φ∗(t))

ρ∗i (t)L
(i)(DH(i)(−αA∗

)).
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By Lemma 4.1 and the conjugacy of −αA∗
and DH(i)(−αA∗

),

L(i)(DH(i)(−αA∗
)) = 〈−αA∗

, DH(i)(−αA∗
)〉 −H(i)(−αA∗

)
≤ 〈−αA∗

, DH(i)(−αA∗
)〉

Therefore
L(φ∗(t), φ̇∗(t)) ≤ 〈−αA∗

, φ̇∗(t)〉.

Integrating both sides from 0 to τ∗ and using φ∗(0) = 0, we have

∫ τ∗

0
L(φ∗(t), φ̇∗(t))dt ≤ 〈−αA∗

, φ∗(τ∗)〉 ≤ 〈−αA∗
, c̄〉 = γ.

Since the inequality (A.6) holds for every φ, in particular for φ∗, the equality
(A.7) follows readily.
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