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Abstract

Importance sampling is a variance reduction technique for efficient

estimation of rare-event probabilities by Monte Carlo. In standard im-

portance sampling schemes, the system is simulated using an a priori

fixed change of measure suggested by a large deviation lower bound

analysis. Recent work, however, has suggested that such schemes do

not work well in many situations. In this paper, we consider dynamic

importance sampling in the setting of uniformly recurrent Markov

chains. By “dynamic,” we mean that in the course of a single sim-

ulation, the change of measure can depend on the outcome of the

simulation up till that time. Based on a control-theoretic approach

to large deviations, the existence of asymptotically optimal dynamic

schemes is demonstrated in great generality. The implementation of

the dynamic schemes is carried out with the help of a limiting Bellman

equation. Numerical examples are presented to contrast the dynamic

and standard schemes.

1 Introduction

Among variance reduction techniques for efficient Monte Carlo simulation

is importance sampling, in which the data is generated using a probability

distribution different from the true underlying distribution. It can be es-

pecially effective when applied to the estimation of expectations that are
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largely determined by rare events. To demonstrate the difficulty involved in

simulating rare events by naive Monte Carlo, we consider a simple example.

Let X be a random variable taking values in Rd, and suppose we are inter-
ested in estimating p = P{X ∈ A} for some Borel set A ⊂ Rd. To this end,
a sequence of independent and identically distributed (iid) copies X0, X1, . . .

of X are generated. With Ik
.
= 1{Xk∈A}, an unbiased estimate for p based on

the first K samples is just the sample mean: QK
.
= (I0+I1+ · · ·+IK−1)/K.

The relative error associated with this estimator is

relative error
.
=
standard deviation of QK

mean of QK
=

0
p− p2
p

· 1√
K
.

Since
0
p− p2/p→∞ as p tends 0, a large sample size K is required for the

estimator QK to achieve a reasonable relative error bound. For example, if

p = 10−8, ten billion samples are required to achieve a relative error bound
of 10%.

The basic idea of importance sampling is as follows. Suppose that X has

distribution θ, and consider an alternative sampling distribution τ . It is re-

quired that θ be absolutely continuous with respect to τ , so that the Radon-

Nikodym derivative f(x)
.
= (dθ/dτ)(x) exists. Independent and identically

distributed samples X̄0, X̄1, . . . with distribution τ are generated. Form the

estimate

Q̄K
.
=
1

K

K−13
k=0

f(X̄k)1{X̄k∈A}

in lieu of QK . It is easy to check that Q̄K is an unbiased estimate of p, with

a rate of convergence determined by

var
�
f(X̄0)1{X̄0∈A}

=
=

8
R
1{x∈A}f(x)θ(dx)− p2.

The optimization of this quantity over all possible τ is inappropriate. Indeed,

taking f(x) = p−11{x∈A} (i.e., τ is the conditional distribution of X given

X ∈ A), the variance becomes 0, but this change of measure requires the
knowledge of the unknown parameter p. Instead, one typically seeks to

minimize over parameterized families of alternative sampling distributions.

When the distribution of X is connected to a large deviations problem, a

standard heuristic is that the change of measure used to prove the large de-

viation lower bound should be a good (perhaps nearly optimal) distribution

to use for the purposes of importance sampling. The first result of this type

was given by Siegmund [34]. The basic idea was subsequently investigated

in many contexts, and a small selection of the literally hundreds of papers
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on the topics is [1, 2, 3, 7, 8, 9, 11, 12, 15, 17, 18, 20, 24, 25, 29, 30, 33].

Necessary and sufficient conditions under which a prescribed scheme is as-

ymptotically optimal are discussed in [10, 31, 32], while [21] gives a survey

of rare-event simulation.

The validity of the heuristic, however, was challenged in [19]. Counterex-

amples were constructed to show that, under some very common settings,

the change of measure suggested by large deviations leads to importance

sampling scheme with very poor properties.

In order to explain these counterexamples, and more importantly, to

find asymptotically optimal importance sampling algorithms in great gener-

ality, [16] introduces a dynamic importance sampling scheme and shows its

asymptotic optimality in the setup of iid random variables (Cramér’s The-

orem). The key observation is that many changes of measure are suggested

by the large deviation lower bound analysis, and one must consider this

larger class if one hopes to identify importance sampling schemes that work

well in general. This leads to the development of schemes where the sam-

pling distribution is dynamic (or, “adaptive”) in the sense that the change

of measure in the course of a single simulation can depend on the outcome

of the simulation up till that time. For this reason, we also call such schemes

adaptive importance sampling schemes.

The present paper analyzes the estimation of rare-event probabilities

associated with uniformly recurrent Markov chains. More precisely, let

{Yj, j ∈ N0} be a uniformly recurrent Markov chain taking values in a
Polish space S, and let g : S → Rd be a bounded measurable function.
Define Sn

.
= g(Y0) + g(Y1) + · · · + g(Yn−1). The probability of interest is

P{Sn/n ∈ A} for a Borel set A ⊂ Rd and n large. An asymptotic optimality
result for traditional importance sampling is available in the one-dimensional

case (d = 1), under the assumption which implies that the set A is within a

half interval that does not contain the expectation of g under the invariant

distribution [9]. A “dissection” approach was introduced for the high di-

mensional case [9]. This approach was later on applied to Markov additive

sequences [11], and was also implicitly used in [19]. This dissection approach

requires that one appropriately partition the set A into a finite number of

subsets, and that a (possibly different) change of measure be applied to ef-

ficiently estimate the probability of each individual subset. However, there

is no constructive way to obtain a suitable partition in general.

In this paper we develop adaptive importance sampling schemes for uni-

formly recurrent Markov chains. The existence of asymptotically optimal

adaptive schemes is demonstrated for arbitrary dimension d, under very mild

conditions on the set A. It turns out that one must study the asymptotics
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of a small noise stochastic game in order to analyze the optimality of impor-

tance sampling schemes. The distinction between the change of measures

used in traditional importance sampling and adaptive importance sampling

amounts, in control terminology, to the difference between “open-loop” and

“feedback” controls. However, open loop controls are usually not optimal in

the setting of stochastic games, except for very special cases. For this rea-

son, the traditional importance sampling will not be asymptotically optimal

in general. Our analysis indicates that the adaptive scheme also works for

estimating functionals (other than probabilities) largely determined by rare

events.

The paper is organized as follows. The setting of the problem is intro-

duced in Section 2, with a brief description of the large deviations principle

for uniformly recurrent Markov chains. We also give the definition of as-

ymptotic optimality in this section. In Section 3 we show that adaptive

importance sampling schemes designed to minimize the second moment are

asymptotically optimal. Section 4 discusses an alternative formal PDE ap-

proach to the adaptive scheme, and describes a method for the construction

of an asymptotically optimal adaptive scheme that does not directly depend

on the large deviation parameter n. Numerical examples are presented in

Section 4.3. Certain technical proofs are deferred to the appendices to ease

exposition.

2 Problem setup and background

2.1 Problem setup

Let Y = {Yj, j ∈ N0} be a time-homogeneous Markov chain taking values
in a Polish space S, with transition probability kernel

p(x, dy) = P {Yj+1 ∈ dy |Yj = x} .

Let g : S → Rd be a bounded Borel-measurable function, and define

Sn
.
= g(Y0) + g(Y1) + · · ·+ g(Yn−1).

For an arbitrary Borel set A ⊂ Rd, we wish to estimate

pn
.
= P {Sn/n ∈ A} .

Throughout the paper, we will make use of the following uniform recurrency

assumption.
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Condition 2.1 There exists a probability measure νp on S, an integer m0 ∈
N, and a pair of strictly positive real numbers a, b such that

aνp(B) ≤ p(m0)(x,B) ≤ bνp(B)
for all x ∈ S and Borel sets B. Here p(m) denotes the m-step probability
transition kernel.

For example, an irreducible Markov chain with a finite state space is always

uniformly recurrent.

The large deviation principle for a uniformly recurrent Markov chain is

well known. It asserts that {Sn/n} satisfies the large deviation principle
with a convex rate function L : Rd → [0,∞]. The identification of L is

deferred to the next subsection. We will impose the following assumption

throughout the paper.

Condition 2.2 The Borel set A ⊂ Rd satisfies the condition
inf
β∈Ā

L(β) = inf
β∈A◦

L(β).

Under Conditions 2.1 and 2.2, we have the large deviations approximation

lim
n→∞

1

n
logP{Sn/n ∈ A} = − inf

β∈A
L(β).

Remark 2.1 The uniform recurrency assumption (Condition 2.1) is conve-

nient to work with. It includes the important case of irreducible finite state

Markov chains, and generalizes the results in [16] where iid sequences were

considered. However, this strong recurrency assumption also excludes many

important Markov chains. One difficulty in extending the present results to

more general Markov chains is that the uniform positivity and boundedness

of the eigenfunctions (see Section 2.2) may not be preserved [26, 27]. It is

clear that generalization in this direction will require a much more involved

analysis.

2.2 LDP for a uniformly recurrent Markov chain

In this subsection we discuss two different approaches to the identification

of the rate function L. The first approach suggests a parameterized family

of change of measures (see Remark 2.2) that will be used later on to build

importance sampling schemes. The second approach identifies the rate func-

tion L in terms of relative entropy, and will be used in the analysis of the

asymptotic optimality of adaptive schemes.

5



The first approach is based on a generalized Perron-Frobenius theorem.

Fix any α ∈ Rd. Then by [22], the non-negative kernel

exp{�α, g(y)X}p(x, dy)

admits a unique real eigenvalue exp{H(α)} and a unique (up to a multi-
plicative constant) eigenfunction r(x;α) in the sense that, for every x ∈ S,8

S
e�α,g(y)Xr(y;α)p(x, dy) = eH(α)r(x;α), (2.1)

and with the following properties. H(α) is an analytic, strictly convex func-

tion of α ∈ Rd with H(0) = 0, and there exist 0 < cα < Cα < ∞ such

that

cα ≤ r(x;α) ≤ Cα, ∀ x ∈ S. (2.2)

The paper [22] also shows that the rate function of the large deviation prin-

ciple for {Sn/n} is the convex conjugate of H, i.e.,

L(β) = sup
α∈Rd

[�α,βX −H(α)] . (2.3)

Note that in the special case when the Markov chain Y is an iid sequence,

H(α) is the logarithm moment generating function of g(Yj) and r(x;α) ≡ 1.
Therefore, this result generalizes the classical Cramér’s Theorem, at least for

bounded iid random variables. For the case when Y is an irreducible Markov

chain with finite state space, exp{H(α)} is just the maximal eigenvalue of
the irreducible non-negative matrix exp{�α, g(y)X}p(x, dy), and r(·;α) is the
associated right eigenvector.

Remark 2.2 It is not difficult to see that, thanks to (2.1), for each α ∈ Rd,

exp {�α, g(y)X −H(α)} · r(y;α)
r(x;α)

· p(x, dy)

defines a probability transition kernel.

Another approach is the weak convergence methodology which utilizes

a stochastic control representation for certain exponential integrals [14]. It

first identifies the large deviations rate function for the empirical measure

of the Markov chain in the τ -topology, then uses contraction principle to

obtain the rate function for {Sn/n}. We will need the following definitions.
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For an arbitrary Polish space Z, we denote by P(Z) the collection of all
probability measures on space (Z,B(Z)). For a pair of probability measures
γ, µ ∈ P(Z), the relative entropy of γ with respect to µ is defined as

R(γ,µ) .=
8
Z
log

dγ

dµ
dγ

if γ U µ and R(γ,µ) .=∞ otherwise. Given a probability transition kernel

q(x, dy) on space Z, we define µq ∈ P(Z), µ⊗ q ∈ P(Z × Z) by

µq(B)
.
=

8
Z
q(x,B)µ(dx)

(µ⊗ q)(D ×B) .
=

8
D×B

µ(dx)q(x, dy) =

8
D
q(x,B)µ(dx)

for all Borel sets D,B ⊂ Z. The collection of all probability transition
kernels on Z is denoted by T (Z).

The weak convergence approach identifies the rate function for {Sn/n}
in terms of relative entropy:

L(β) = inf

F
R(µ⊗ q,µ⊗ p) : µ ∈ P(S), q ∈ T (S), µq = µ,

8
S
g dµ = β

k
.

(2.4)

The validity of the representation (2.4) is implied by the results in [14, Chap-

ters 8 & 9], where the large deviation principle of the empirical measures

associated with Markov chains are studied under weaker assumptions.

For future reference, we summarize the preceding discussion into the

following proposition. The only part that has not been mentioned is the

superlinearity of the rate function L, which is an easy consequence of (2.3)

and the finiteness of H [14, Lemma 6.2.3(c)].

Proposition 2.1 Under Condition 2.1, the sequence {Sn/n} satisfies the
large deviation principle with rate function L, which is given by equations

(2.3) and (2.4). Moreover, the rate function L is convex, lower-semicontinuous,

and superlinear in the sense that

lim
N→∞

inf
{β∈Rd:,β,≥N}

L(β)

,β, =∞.

In particular, L has compact level sets.
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2.3 Asymptotic optimality

In this subsection we define asymptotic optimality for an importance sam-

pling scheme.

Consider a probability space (Ω,F , P ) and a family of events {An} with

lim
n→∞

1

n
logP{An} = −γ,

for some γ ≥ 0. A general formulation of importance sampling for this

problem can be described as follows. In order to estimate P{An}, a generic
random variable Z̄n is constructed such that P{An} = EZ̄n. Independent

replications (Z̄0n, Z̄
1
n, . . . , Z̄

K−1
n ) of Z̄n are then generated, and we obtain an

estimator by averaging:

Q̄Kn
.
=
Z̄0n + Z̄

1
n + · · ·+ Z̄K−1n

K
.

The estimator is unbiased, i.e., EQ̄Kn = P{An}. The rate of convergence
associated with this estimator is determined by the variance of the sum-

mands, or equivalently, their second moment E[(Z̄n)
2]. The smaller the

second moment, the faster the convergence, whence the smaller sample size

K required. However, it follows from Jensen’s inequality that

lim sup
n→∞

− 1
n
logE[(Z̄n)

2] ≤ lim
n→∞−

1

n
log
D
EZ̄n
i2
= 2γ.

The estimator Q̄Kn is said to be asymptotically optimal if

lim
n→∞−

1

n
logE[(Z̄n)

2] = 2γ.

Remark 2.3 Since the performance of the estimator Q̄Kn is completely de-

termined by the second moment of its generic, iid building block Z̄kn, we will

drop the superscript k hereafter. Note that n does not stand for sample size,

but for the large deviation parameter.

3 Statement of the main result

The adaptive importance sampling scheme we consider dynamically selects

the change of measure (or the parameter α) in the form suggested by Remark

2.2, according to the sample history. Naturally, the scheme is closely related

to a control problem. Let the control αn = {αnj (·, ·), j = 1, . . . , n − 1} be
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given, where each αnj : S × Rd → Rd is a Borel-measurable function. Then
the state dynamics are governed by

S̄nj
.
=

j−13
i=0

g(Ȳ ni ), j = 0, 1, . . . , n.

Here we set Ȳ0 = Y0 ≡ y0, and for j ≥ 1, Ȳ nj is conditionally distributed,

given {Ȳ ni , i = 0, 1, . . . , j − 1}, according to

vnj (dy) = exp
+
�αnj , g(y)X −H(αnj )

�
· r(y;αnj )

r(Ȳ nj−1;αnj )
· p(Ȳ nj−1, dy)

with (abusing notation a bit) αnj = αnj (Ȳ
n
j−1, S̄nj /n).

An unbiased estimator of P{Sn/n ∈ A} is defined as the average of
independent copies of

X̄n = 1{S̄nn/n∈A}e
�n−1

j=1 (−�αnj ,g(Ȳ nj )X+H(αnj )) ·
n−1�
j=1

r(Ȳ nj−1;αnj )
r(Ȳ nj ;α

n
j )
.

Our goal is to minimize the second moment, hence the variance, of the

summands X̄n by judiciously choosing the control α
n. Thus we consider the

value function defined by

V n(y0)
.
= inf

αn
E[X̄2

n]

= inf
αn
E

1{S̄nn/n∈A}e�n−1
j=1 (−2�αnj ,g(Ȳ nj )X+2H(αnj )) ·

n−1�
j=1

r2(Ȳ nj−1;αnj )
r2(Ȳ nj ;α

n
j )


For convenience we write V n(y0) as V

n when no confusion is incurred. We

also consider the log transform

W n = − 1
n
log V n.

We have the following result, which asserts the existence of asymptotically

optimal adaptive importance sampling schemes.

Theorem 3.1 Under Conditions 2.1 and 2.2, we have

lim
n→∞W

n = 2 inf
β∈A

L(β).
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The detailed proof is deferred to Appendix A. It is worth to point out

that the construction of asymptotically optimal or nearly optimal adaptive

schemes (i.e., selection of the control αn) is implied by a dynamic program-

ming equation (DPE) appearing in the proof. Since the proof is rather

lengthy and technical, it makes sense to give an outline and some intuitive

discussion below, so that readers can proceed to the construction of the

adaptive schemes (Section 4), without having to delve into the technical

details of the proof.

Outline and intuition of the proof: Thanks to the discussion in Section

2.3, it suffices to show the lower bound

lim inf
n

Wn ≥ 2 inf
β∈A

L(β). (3.1)

The proof will utilize the DPE that is satisfied by W n. In order to do so,

we first extend the dynamics. Abusing notation a bit, for x ∈ Rd, y ∈ S,
and i ∈ {0, 1, . . . , n}, define the dynamics

S̄ni,j = nx+

j−13
f=i

Ȳ ni,f, j = i, . . . , n.

Here we set Ȳi,i ≡ y, and for j ≥ i+1, Ȳ ni,j is conditionally distributed, given
{Ȳi,f, f = i, . . . , j − 1}, according to

vni,j(dz) = exp
+
�αnj , g(z)X −H(αnj )

�
· r(z;αnj )

r(Ȳ ni,j−1;αnj )
p(Ȳ ni,j−1, dz),

where αnj = αnj (Ȳ
n
i,j−1, S̄ni,j/n). The original control problem corresponds to

x = 0, i = 0, y = y0. Define analogously

V n(x, y; i)

.
= inf

αn
E

1{S̄ni,n/n∈A}e�n−1
j=i+1(−2�αnj ,g(Ȳ ni,j)X+2H(αnj ))

n−1�
j=i+1

r2(Ȳ ni,j−1;αnj )
r2(Ȳ ni,j;α

n
j )


and its log transform

Wn(x, y; i) = − 1
n
log V n(x, y; i).

The terminal conditions are

V n(x, y;n) = 1A(x), Wn(x, y;n) =∞ · 1Ac(x).
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Since it is inconvenient to study a problem with an∞ terminal condition, we

instead work with a mollified version of the control problem. Let F : Rd → R
be an arbitrary bounded and Lipschitz continuous function. Suppose that

V nF is defined as V
n, save that the indicator function 1{S̄ni,n/n∈A} is replaced

by exp{−2nF (S̄ni,n/n)}. Similarly define

Wn
F (x, y; i)

.
= − 1

n
log V nF (x, y; i). (3.2)

Since V nF is the value function of a control problem, one can write down the

DPE for V nF . Substituting (3.2) in this DPE, one obtains an equation for

W n
F ; see (A.1). The proof of the desired inequality (3.1) is based on the

analysis of this recursive equation for W n
F .

The relative entropy representation for exponential integrals [14, Propo-

sition 1.4.2] states that

− log
8
S
e−f(x)µ(dx) = inf

γ∈P(S)

}
R(γ ,µ) +

8
fdγ

]
(3.3)

for all bounded and Borel measurable functions f . Applying this represen-

tation formula to the equation (A.1) for Wn
F , one obtains

W n
F (x, y; i) = sup

α∈Rd
inf

γ∈P(S)

}8
Wn
F

w
x+

1

n
g(y), z; i+ 1

W
γ(dz)

+
1

n

w
R(γ(·) ,p(y, ·)) +

8
�α, g(z)X γ(dz)−H(α)

W
+
1

n

8
log

r(z;α)

r(y;α)
γ(dz)

]
. (3.4)

This equation suggests that Wn
F is the lower value of a discrete-time sto-

chastic game. One of the two players of the game (the α-player) selects the

parameter α, and is the weaker player. The other player (the γ-player) is the

stronger player, and selects the distribution γ that determines the evolution

of the state. The right hand side of (3.4) would take a simpler form if we

could permute the sup and inf. However, this is not (in general) possible,

since the last term
1

n

8
log

r(z;α)

r(y;α)
γ(dz) (3.5)

may not be concave in α.

This difficulty is also the main distinction from the setting of Cramér’s

Theorem where the Markov chain Y reduces to an iid sequence of random
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variables. The latter case gives r(x;α) ≡ 1 and the unpleasant term (3.5)

disappears, whence the min/max theorem can be applied to convert the

DPE of W n
F into a DPE associated with a control problem, which is much

simpler to analyze than a game [16]. However, the interchange of sup and

inf is not possible with (3.4) as written.

The key idea to overcome this difficulty and to obtain a lower bound

for W n
F is as follows. Fix an integer m, and consider a variant of the game

where the α-player is constrained to policies such that α must be constant

over time intervals of length 1/m. This new game is even more favorable

to the γ-player, whence it will have a smaller lower-value. Letting n go to

infinity, the lower value of the new game converges to a function UmF , and

we expect

lim inf
n→∞ W n

F (x, y; unk/mJ) ≥ UmF (x; k), k = 0, 1, . . . ,m.

A bonus of taking the limit is that the troubling terms (3.5), which can be

interpreted as part of the running cost, cancel off, and it is not difficult to

guess that UmF should satisfy

UmF (x; k) = sup
α∈Rd

inf
β∈Rd

}
UmF

w
x+

1

m
β; k + 1

W
+
1

m
(L(β) + �α,βX −H(α))

]
,

(3.6)

with terminal condition

UmF (x;m)
.
= 2F (x). (3.7)

In the proof, UmF is in fact defined recursively through equations (3.6) and

(3.7).

Equation (3.6) is much easier to analyze. Analogous to [16], one can

show by a weak convergence argument that

lim inf
m→∞ UmF (x, 0) ≥ 2 inf

β∈Rd
{L(β) + F (x+ β)}, (3.8)

which in turn implies

lim inf
n→∞ Wn

F (x, y; 0) ≥ 2 inf
β∈Rd

{L(β) + F (x+ β)}.

Letting x = 0 and the mollifier F tend to ∞ · 1Ac , one arrives at the desired
inequality (3.1).

The following result is useful in the identification of optimal adaptive

importance sampling scheme in Section 4.
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Corollary 3.2 Fix an arbitrary x ∈ Rd, and a bounded Lipschitz continuous
function F : Rd → R. Assume Condition 2.1, and define UmF recursively by

(3.6) with the terminal condition (3.7). Then

lim
m→∞U

m
F (x; utmJ) = 2UF (x, t), ∀ t ∈ [0, 1],

where

UF (x, t)
.
= inf

β∈Rd
{(1− t)L(β) + F (x+ (1− t)β)}. (3.9)

Proof. We will show the equality for t = 0. The case with general t ∈ [0, 1]
is similar and thus omitted.

Thanks to (3.8), it suffices to prove

lim sup
m→∞

UmF (x; 0) ≤ 2UF (x, 0) = 2 inf
β∈Rd

{L(β) + F (x+ β)}.

Fix an arbitrary β ∈ Rd. The recursive definition of UmF (3.6) and equation

(2.3) yield

UmF (x; k) ≤ sup
α∈Rd

}
UmF

w
x+

1

m
β; k + 1

W
+
1

m
(L(β) + �α,βX −H(α))

]
= UmF

w
x+

1

m
β; k + 1

W
+
2

m
L(β).

Repeatedly applying this inequality for k = 0, 1, . . . ,m− 1, we arrive at

UmF (x; 0) ≤ UmF (x+ β;m) + 2L(β) = 2F (x+ β) + 2L(β),

thanks to (3.7). This completes the proof.

4 Implementation issues and examples

4.1 The limit control problem and implementation issues

Theorem 3.1 establishes the existence of asymptotically optimal adaptive

sampling schemes. However, it does not explicitly discuss the construction

of such schemes. On the other hand, the proof of the theorem implies that

one approach of construction would be to solve, numerically if need be,

the DPE (3.4) associated with W n
F (Wn equals W n

F when F = ∞ · 1Ac).
However, this approach may not only require a lot of computation effort,

but the resulting adaptive sampling control (i.e., control αn) will directly

depend on n. In general, one would prefer schemes without this dependence.
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An alternative approach is to consider the DPE associated with the limit

problem of UmF as m tends to infinity. To this end, we rewrite equation (3.6)

as

0 = sup
α∈Rd

inf
β∈Rd

}
PUmF +

1

m
(L(β) + �α, βX −H(α))

]
,

where

PUmF .
= UmF

w
x+

1

m
β; k + 1

W
− UmF (x; k).

Suppose that a t subscript denotes the partial derivative with respect to

t, and that an x subscript denotes the vector of partials with respect to

xi, i = 1, . . . , d. Since Corollary 3.2 (for F bounded and Lipschitz continu-

ous) asserts that

lim
m→∞U

m
F (x; utmJ) = 2UF (x; t),

we have formally the approximation

PUmF ≈
L
1

m
β, (2UF )x

q
+
1

m
(2UF )t.

Substituting this back, we have

0 = sup
α∈Rd

inf
β∈Rd

[�β, (2UF )xX+ (2UF )t + L(β) + �α, βX −H(α)]

= (2UF )t + sup
α∈Rd

inf
β∈Rd

[L(β) + �α+ (2UF )x,βX −H(α)] .

Representing the infimum in terms of the Legendre transform H of L gives

0 = (2UF )t + sup
α∈Rd

[−H (−α− (2UF )x)−H(α)] .

The strict convexity of H implies that

α∗(x, t) = −(UF )x(x, t), (4.1)

and that

0 = (UF )t −H (−(UF )x) . (4.2)

The equation (4.1) identifies, at least formally, an optimal feedback con-

trol policy. However, this observation is not entirely satisfactory since UF
does not usually have an explicit solution, and even if there is an exact

formula for UF , the partial derivatives may not be defined for all time and

spatial points. In order to obtain a formal characterization of α∗ that is

14



more useful, we observe that, thanks to the definition (3.9) of UF and the

convexity of L, UF is the value function of the deterministic control problem

UF (x, t) = inf
φ

}8 1
t
L(φ̇(s)) ds+ F (φ(1))

]
,

where the infimum is over all absolutely continuous φ which satisfy φ(t) = x.

It is straightforward to see from this control problem that an optimal control

at (x, t) is the minimizer in (3.9), say β∗(x, t), thanks to the convexity of L.
The standard dynamic programming argument implies that UF (in a weak

sense) satisfies the DPE

0 = (UF )t + inf
a∈Rd

[L(a) + �a, (UF )xX] = (UF )t −H(−(UF )x),

which, not surprisingly, is just equation (4.2). The optimal control β∗(x, t)
is, at least formally, the minimizer in the DPE, or, β∗(x, t) and −(UF )x(x, t)
are conjugate. It follows that

α∗(x, t) is conjugate to the minimizer β∗(x, t) in (3.9).

At points where (UF )x(x, t) exists this definition gives α
∗(x, t) = −(UF )x(x, t).

At points where (UF )x(x, t) does not exist there are multiple minimizing

β∗(x, t), and one should define α∗(x, t) through conjugacy in any Borel mea-
surable way.

Remark 4.1 The original (unmollified) problem corresponds to F = ∞ ·
1Ac . In this case,

β∗(x, t) ∈ argmin{(1− t)L(β) : x+ (1− t)β ∈ A}, (4.3)

and α∗(x, t) is its conjugate.

4.2 Numerical examples

We give two numerical examples in order to illustrate the asymptotic op-

timality of the adaptive schemes in general, and the pitfalls of the tradi-

tional importance sampling schemes. The first example is concerned with

a simple Markov chain with two states, while the second example studies

a discrete time Markov chain embedded in a tandem Jackson network with

finite buffers.
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Example 1: Consider a simple finite-state Markov chain Y with state space

S = {1,−1}, and probability transition matrix

Q =

^
p 1− p
1 0

�
.
= [Q(i, j)]2×2,

for some constant p ∈ (0, 1). Define g : S → R by g(x)
.
= x, and Sn =

g(Y0) + g(Y1) + · · ·+ g(Yn−1) = Y0 + Y1 + · · ·+ Yn−1.
Since Y is an irreducible finite-state Markov chain, the eigenvalue eH(α)

and eigenfunction r(·;α), as defined in (2.1) for α ∈ R, are just the maxi-
mal eigenvalue of the kernel [eαjQ(i, j)] and the corresponding eigenvector,

respectively. Simple algebra gives

H(α) = log
peα +

0
p2e2α + 4(1− p)
2

, ∀ α ∈ R,

which is a convex function with H(0) = 0, and an eigenvector^
r(1;α)

r(−1;α)

�
=

^
eH(α)

eα

�
.

Therefore, for any given α ∈ R, the corresponding change of measure is
represented by the probability transition matrix

Qα =

}
eαj−H(α)

r(j;α)

r(i;α)
Q(i, j)

]
=

^
peα−H(α) (1− p)e−2H(α)

1 0

�
. (4.4)

Let L be the convex conjugate of H. It is not difficult to check that L(β) =

∞ if β < 0 or β > 1, and that for β ∈ (0, 1),

L(β) = sup
α∈R

[αβ −H(α)]

=
β

2
log

4(1− p)β2
p2(1− β2) +

1

2
log

1− β
1 + β

− 1
2
log(1− p)

with the minimizer

α∗ .= α∗(β) =
1

2
log

4(1− p)β2
p2(1− β2) , (4.5)

and

L(0) = lim
β↓0
L(β) = −1

2
log(1− p), L(1) = lim

β↑1
L(β) = − log p.
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Furthermore, L(β) = 0 if and only if β = H I(0) = p/(2− p).
Assume Y0 ≡ 1. We are interested in estimating pn .= P{Sn/n ∈ A} for

the Borel set

A = (−∞, a] ∪ [b,∞), 0 < a < H I(0) < b < 1.

In all the following discussion, we take p = 1/2, a = 1/6, b = 1/2, which

implies

inf
β∈A

L(β) = L(b) < L(a). (4.6)

We will compare the naive Monte Carlo simulation, traditional importance

sampling, and adaptive importance sampling schemes below.

The naive Monte Carlo simulation will simulate the Markov chain under

the original transition probability kernel Q. One can also regard this as a

special change of measure with the corresponding α = 0. In this case, the

estimate is just the sample mean of K iid replications of Xn = 1{Sn/n∈A}.
Since the second moment of Xn satisfies

lim
n→∞−

1

n
logE

�
(Xn)

2
=
= lim
n→∞−

1

n
log pn = inf

β∈A
L(β) = L(b) < 2L(b),

the naive Monte Carlo sampling is not asymptotically optimal.

Thanks to (4.6), the traditional importance sampling will take β∗ = b,

and α∗ is then defined by (4.5). The algorithm will generate a Markov

chain Ỹ with probability transition matrix Qα∗ and Ỹ0 ≡ 1. Let S̃n
.
=

Ỹ0 + · · ·+ Ỹn−1. The estimate is the sample mean of K iid replications of

X̃n = 1{S̃n/n∈A}
n−1�
j=1

e−α
∗Ỹj+H(α∗) ·

n−1�
j=1

r(Ỹj−1;α∗)
r(Ỹj ;α∗)

= 1{S̃n/n∈A}e
−α∗S̃n+nH(α∗) · eα∗Ỹ0−H(α∗) r(Ỹ0;α

∗)
r(Ỹn−1;α∗)

.

Since r(·;α∗) is clearly bounded from above and bounded away from zero,

it is not difficult to see that

lim
n→∞−

1

n
logE

�
(X̃n)

2
=
= lim
n→∞−

1

n
logE

�
1{S̃n/n∈A}e

−2n(α∗S̃n/n−H(α∗))
=
.

Simple computation yields that {S̃n/n} satisfies the large deviation principle
with rate function L̃(β) = L(β) + H(α∗) − α∗β. Now one can apply the

Varadhan’s Theorem [14, Theorem 1.3.4] (with slight modification) to show

lim
n→∞−

1

n
logE

�
(X̃n)

2
=
= inf

β∈A

�
2α∗β − 2H(α∗) + L̃(β)

=
= inf

β∈A
[α∗β −H(α∗) + L(β)] .

17



In the configuration of this example, the infimum in the right-hand-side is

achieved at β = a, and

lim
n→∞−

1

n
logE

�
(X̃n)

2
=
= aα∗ −H(α∗) + L(a) < 2L(b).

Therefore, the traditional importance sampling scheme is not asymptotically

optimal either.

In Section 3, we argued the existence of asymptotically optimal adaptive

importance sampling schemes in general. The construction of such adaptive

schemes involved the selection of a nearly optimal control αn = {αnj (·, ·) :
j = 0, 1, . . . , n − 1}. It was formally suggested in Section 4.1 that a good
choice is to sample Ȳ nj , conditional on {Ȳ ni , i = 0, . . . , j−1}, according to the
transition probability matrix Qα as in (4.4) with α being the conjugate of

β∗(x, t) given in (4.3) where x = S̄nj /n = (Ȳ n0 +· · ·+Ȳ nj−1)/n and t = 1−j/n.
In case the conjugate of β∗(x, t) is ∞ or −∞, α is taken as a large positive
or negative number; see Remark 4.3 for more details. The estimate is the

sample mean of K iid replications of

X̄n = 1{S̄nn/n∈A}e
�n−1

j=1 (−�αnj ,g(Ȳ nj )X+H(αnj )) ·
n−1�
j=1

r(Ȳ nj−1;αnj )
r(Ȳ nj ;α

n
j )
.

The numerical results show that the controls constructed in this way have

asymptotically optimal performance (Table 6).

The numerical results are reported below for n = 60. The theoretical

value of pn is

pn = P{Sn/n ≤ a}+ P{Sn/n ≥ b} = 0.83% + 2.44% = 3.27%.
See Remark 4.2 for the computation of this theoretical value. For each

tableau, we run four simulations each with sample size K = 10000.

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (%) 3.11 3.20 3.23 3.09

Standard Error (%) 0.17 0.18 0.18 0.17

95% Confidence Interval (%) [2.76, 3.46] [2.85, 3.55] [2.88,3.58] [2.74,3.44]

Table 1. Naive Monte Carlo Scheme

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (%) 2.41 2.48 2.44 16.71

Standard Error (%) 0.04 0.04 0.04 14.22

95% Confidence Interval (%) [2.34, 2.48] [2.41, 2.56] [2.37,2.51] [-11.73,45.15]

Table 2. Traditional Importance Sampling Scheme
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No. 1 No. 2 No. 3 No. 4

Estimate p̂n (%) 3.17 3.21 3.35 3.33

Standard Error (%) 0.15 0.13 0.17 0.18

95% Confidence Interval (%) [2.86, 3.47] [2.85, 3.47] [3.00,3.69] [2.96,3.70]

Table 3. Adaptive Importance Sampling Scheme

An interesting observation is that the traditional importance sampling

scheme exhibits seemingly bizarre and inconsistent simulation results (Table

2). Similar phenomenon also occurs in the setting of Cramér’s Theorem, that

is, where the Markov chain Y reduces to a sequence of iid random variables;

see [19, 16]. The explanation is also very similar. Under the alternative

sampling distribution Qα∗ , most of the sample means S̃n/n will end up near

the point b. However, a few samples (“rogue” trajectories) have means that

fall into the interval (−∞, a]. Even though the “rogue” trajectories are rare,
the Radon-Nikodym derivatives associated with them are so large that they

dominate the variance. In simulation No. 4, the presence of a single “rogue”

trajectory greatly raises the standard error associated with the estimate.

Indeed, the proportion of the contribution to the second moment from this

single “rogue” trajectories is more than 99%. In simulations No. 1, No. 2,

and No. 3, however, there are no “rogue” trajectories, and the standard

error associated with the estimate is deceptively small. The reason is that

the standard error is itself estimated from the sample. Without “rogue”

trajectories, we actually underestimate the standard error. Therefore, we

cannot put much confidence in the standard errors thus obtained, or in the

“tight” confidence intervals that follow. Indeed, the confidence intervals

from these three simulations do not contain the true value.

In contrast, the adaptive importance sampling, on the other hand, yields

more accurate estimates and its performance is much more stable. Even

though it does not show great advantage over naive Monte Carlo simulation

for n = 60, it quickly does so when n gets larger. The numerical results for

different n (with K = 10000 fixed as before) are reported in Table 4—6.

The naive Monte Carlo does not work well for bigger n. For n = 120

and n = 180, it yields estimates with large standard errors, and for n = 240,

the simulation yields an estimate 0, i.e., no sample mean reaches the target

set A. As for the traditional importance sampling, each simulation gives a

very “tight” confidence interval, due to the absence of “rogue” trajectories.

However, as discussed before, we cannot put much belief into these estimates.

Indeed, none of these confidence intervals cover the true value of pn.

On the other hand, the adaptive importance scheme yields much more

accurate estimates. In Table 6, the variable V̂ n denotes the sample estimate
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of the second moment E
J
(X̄n)

2
o
. Observe that as n gets larger, the ratio

− 1
n
logE

J
(X̄n)

2
o

− 1
n
log pn

=
− logE J(X̄n)2o
− log pn ≈ − log V̂

n

− log p̂n

approaches 2. In other words, the adaptive importance sampling scheme is

approaching optimality.

n = 120 n = 180 n = 240

Theoretical pn 1.61× 10−3 9.66× 10−5 6.35× 10−6
Estimate p̂n 1.80× 10−3 20.00× 10−5 0

Standard Error 0.42× 10−3 14.14× 10−5 NA

95% Confidence Interval [0.95, 2.65]× 10−3 [−8.28, 48.28]× 10−5 NA

Table 4. Naive Monte Carlo Simulation

n = 120 n = 180 n = 240

Theoretical pn 1.61× 10−3 9.66× 10−5 6.35× 10−6
Estimate p̂n 1.40× 10−3 8.76× 10−5 6.01× 10−6
Standard Error 0.02× 10−3 0.18× 10−5 0.13× 10−6
95% Confidence Interval [1.35, 1.45]× 10−3 [8.41, 9.12]× 10−5 [5.74, 6.28]× 10−6

Table 5. Traditional Importance Sampling Scheme

n = 120 n = 180 n = 240

Theoretical pn 1.61× 10−3 9.66× 10−5 6.35× 10−6
Estimate p̂n 1.56× 10−3 9.73× 10−5 6.29× 10−6
Standard Error 0.04× 10−3 0.15× 10−5 0.07× 10−6
95% Confidence Interval [1.49, 1.63]× 10−3 [9.44, 10.02]× 10−6 [6.15, 6.43]× 10−6
(− log V̂ n)/(− log p̂n) 1.72 1.87 1.93

Table 6. Adaptive Importance Sampling Scheme: Asymptotic Optimality

Remark 4.2 The theoretical value of pn can be computed as follows. Let

Xn be the number of −1’s in a trajectory, i.e. Xn .
=
�n−1
j=0 1{Yj=−1}. Since

Y0 ≡ 1 and Q(−1, 1) = 1, we have 0 ≤ Xn ≤ n/2 with probability one.

Clearly Sn = n − 2Xn, whence it suffices to compute P (Xn ≥ m) for

all non-negative integers m such that 2m ≤ n. But if we define T1
.
=

inf {j ≥ 0 : Yj = −1}, then T1 ≥ 1 and T1 − 1 is geometrically distributed
with parameter (1 − p). Moreover, YT1 = −1, and Y1+T1 = 1. Now re-

cursively define for i ≥ 2, Ti
.
= inf{j ≥ 1 + Ti−1 : Yj = −1}. Then

{T1−1, T2−T1−2, T3−T2−2, . . .} is clearly a sequence of iid geometrically
distributed random variables with parameter (1− p), and

P (Xn ≥ m) = P (Tm ≤ n) = P (Tm − 2m+ 1 ≤ n− 2m+ 1).
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But Tm − 2m+ 1 = (T1 − 1) + (T2 − T1 − 2) + · · ·+ (Tm − Tm−1 − 2) is the
sum of iid geometrically distributed random variables, whence has a negative

binomial distribution with parameterm and (1−p). Standard softwares such
as Splus contain the cumulative distribution functions of negative binomial

distributions, and can easily yield the desired probabilities.

Remark 4.3 If β∗(x, t) ≥ 1, then its conjugate is α∗(x, t) = +∞, in the
sense that

L(β∗(x, t)) = sup
α
[αβ∗(x, t)−H(α)] = lim

α→+∞ [αβ
∗(x, t)−H(α)] .

The corresponding change of measure (at least formally) is

Q+∞
.
= lim

α→+∞Qα =

^
1 0

1 0

�
.

Similarly, if β∗(x, t) ≤ 0, then its conjugate is α∗(x, t) = −∞, with the
corresponding change of measure

Q−∞
.
= lim

α→−∞Qα =

^
0 1

1 0

�
.

However, neither of these two probability transition kernels is suitable for

the purpose of importance sampling, since the probability measure induced

by the original probability transition kernel Q is not absolutely continuous

with respect to the probability measure induced by Q+∞ or Q−∞.
To overcome this difficulty, we just take α to be a large positive or neg-

ative number whenever α∗(x, t) = +∞ or α∗(x, t) = −∞. In our numerical
simulation, α is taken to be 5 if α∗(x, t) = +∞ and −5 if α∗(x, t) = −∞.
The probability transition kernels corresponding to α = ±5 are

Q+5 =

^
0.9999 0.0001

1 0

�
, Q−5 =

^
0.0047 0.9953

1 0

�
,

which are very close to Q±∞.

Example 2: Consider a two-node tandem Jackson network with arrival rate

λ and consecutive service rates µ1, µ2. We assume the queueing system is

stable, that is λ < min{µ1, µ2}, and without loss of generality, λ+µ1+µ2 =
1. The sizes of the first buffer and the second buffer are denoted by B1 and

B2 respectively. Both buffer sizes are assumed to be finite.
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We will work with the embedded discrete-time Markov chain Y = {Yi =
(Y 1i , Y

2
i ) : i = 0, 1, . . .} representing the queue lengths of the nodes at

the epochs of transitions in the network. The chain Y is irreducible and

with finite state space S = {(y1, y2) : yi = 0, 1, . . . , Bi; i = 1, 2}, whence
uniformly recurrent. It is assumed throughout this example that the initial

state is Y0 = (0, 0).

We are interested in estimating a class of probabilities associated with

buffer overflow. More precisely, define g = (g1, g2) : S → {0, 1}2 by

g1(y)
.
= 1{y1=B1}, g2(y)

.
= 1{y2=B2}

for every y = (y1, y2) ∈ S, and let Sn .
= g(Y0) + g(Y1) + · · · + g(Yn−1). We

wish to estimate pn
.
= P{Sn/n ∈ A} for some Borel set A of form

A = {(x1, x2) : x1 ≥ ε1 or x2 ≥ ε2} ⊂ R2,

where 0 ≤ ε1, ε2 ≤ 1. Note that the set A is non-convex.
The construction of the traditional and adaptive importance sampling

schemes are very similar to Example 1. However, here the functionH : R2 →
R and its conjugate L : R2 → R+ do not admit closed-form expressions, and
are computed numerically.

Analogous to Example 1, if we let β∗ be the minimizer that attains
inf{L(β) : β ∈ A} and let X̃n denote the traditional importance sampling
estimate, then we have

lim
n→∞−

1

n
logE

�
(X̃n)

2
=
= inf

β∈A
[α∗β −H(α∗) + L(β)] , (4.7)

where α∗ is the conjugate of β∗. It is not difficult to see that the traditional
importance sampling scheme is asymptotically optimal if and only if β∗ is
also a minimizer to the right-hand-side of equation (4.7). However, this

is often not the case, due to the non-convexity of set A; see [16] for more

discussion on this issue.

The simulation results for the traditional and adaptive schemes are re-

ported below. For comparison, the theoretical value of pn is also obtained

via recursively computing the conditional distribution of g(Yk) + g(Yk+1) +

· · ·+g(Yn−1) given Yk, for each k = n−1, n−2, . . . , 0. Unlike Example 1, we
choose not to report the results from naive Monte Carlo simulation (which

is not asymptotically optimal). Actually, the naive Monte Carlo simulation,

often giving an estimate 0 or an estimate with intolerably large standard

error, is far inferior to either of the importance sampling schemes.
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We choose B1 = B2 = 6, and λ = 0.2, µ1 = µ2 = 0.4. The state space S
consists of (B1 + 1)(B2 + 1) = 49 states. Set n = 50 and ε1 = 0.3, ε2 = 0.4.

Analogous to Example 1, one can check that the traditional importance

sampling is not asymptotically optimal. Indeed, the infimum of L(β) over

set A is attained at β∗ ≈ (0.02, 0.4), while the minimizer for the right-hand-
side of equation (4.7) is β̄ ≈ (0.3, 0.01).

Each tableau consists of four simulation runs each with sample size K =

10000. The theoretical value is pn = 4.10× 10−5.

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−5) 2.14 2.37 2.29 9.20

Standard Error (×10−5) 0.11 0.15 0.14 6.85

95% Confidence Interval (×10−5) [1.92, 2.36] [2.07, 2.67] [2.01,2.57] [-4.50, 22.90]

Table 7. Traditional Importance Sampling Scheme

No. 1 No. 2 No. 3 No. 4

Estimate p̂n (×10−5) 3.96 3.93 4.18 4.16

Standard Error (×10−5) 0.17 0.15 0.30 0.16

95% Confidence Interval (×10−5) [3.62, 4.30] [3.63, 4.23] [3.58, 4.78] [3.84, 4.48]

Table 8. Adaptive Importance Sampling Scheme

The explanation for the behavior of traditional importance sampling (Ta-

ble 8) is quite similar to that of Example 1 – most of the sample means will

end up near point β∗, while a few “rogue” trajectories will have means near
point β̄. Even though these “rogue” trajectories are rare, they carry huge

Radon-Nikodym derivatives. Without the presence of “rogue” trajectories

(simulations No. 1, No. 2, and No. 3), we have tight confidence intervals

that we cannot put much faith in. With the presence of “rogue” trajectories

(simulations No. 4), we get an estimate with very large standard error. On

the contrast, the performance of adaptive schemes is much more stable and

much better.

Similar phenomenon is also observed for various sets of parameters. We

just list some numerical results below for the same setup except the arrival

rate and service rates are now (λ, µ1, µ2) = (0.1, 0.4, 0.5). The sample size

K = 10000 is fixed as before. The erratic behavior of traditional schemes

is more conspicuous. The asymptotic optimality of adaptive schemes is also

clear from these numerical results.
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n = 50 n = 80 n = 110

Theoretical pn 5.15× 10−9 3.47× 10−12 1.83× 10−15
Estimate p̂n 0.83× 10−9 0.81× 10−12 0.53× 10−15
Standard Error 0.03× 10−9 0.02× 10−12 0.01× 10−15
95% Confidence Interval [0.77, 0.89]× 10−9 [0.77, 0.85]× 10−12 [0.51, 0.55]× 10−15

Table 9. Traditional Importance Sampling Scheme

n = 50 n = 80 n = 110

Theoretical pn 5.15× 10−9 3.47× 10−12 1.83× 10−15
Estimate p̂n 4.82× 10−9 3.36× 10−12 1.76× 10−15
Standard Error 0.18× 10−9 0.11× 10−12 0.07× 10−15
95% Confidence Interval [4.46, 5.18]× 10−9 [3.14, 3.58]× 10−12 [1.62, 1.90]× 10−6
(− log V̂ n)/(− log p̂n) 1.86 1.91 1.92

Table 10. Adaptive Importance Sampling Scheme: Asymptotic Optimality
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Appendix A: Proof of Theorem 3.1

Proof of Theorem 3.1. Proposition 2.1 and Condition 2.2 imply that

lim
n→∞

1

n
logP{Sn/n ∈ A} = − inf

β∈A
L(β).

Thanks to the discussion in Section 2.3, it suffices to show the lower bound

(3.1), or

lim inf
n

Wn ≥ 2 inf
β∈A

L(β).

To this end, we extend the dynamics as in Section 3, and consider a mollified

version of the original control problem. In other words, let F : Rd → R be
an arbitrary bounded and Lipschitz continuous function, and define V nF ,W

n
F

correspondingly; see the discussion from equation (3.1) to equation (3.2).

Since V nF is the value function of a control problem, it satisfies the Bell-

man equation [4]

V nF (x, y; i)

= inf
α∈Rd

8
S
e−2�α,g(z)X+2H(α) · r

2(y;α)

r2(z;α)
V nF

w
x+

1

n
g(z), z; i+ 1

W
·
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· e�α,g(z)X−H(α) · r(z;α)
r(y;α)

p(y, dz)

= inf
α∈Rd

8
S
e−�α,g(z)X+H(α) · r(y;α)

r(z;α)
V nF

w
x+

1

n
g(y), z; i+ 1

W
p(y, dz),

together with terminal condition V nF (x, y;n) = exp{−2nF (x)}. It follows
from (3.2) that

W n
F (x, y; i) (A.1)

= − 1
n
log inf

α∈Rd

8
S
e−�α,g(z)X+H(α) · r(y;α)

r(z;α)
e−nW

n
F (x+

1
n
g(y),z;i+1)p(y, dz)

and that W n
F (x, y;n) = 2F (x).

The discussion in Section 3 now prompts the following definition. Fixing

an arbitrary m ∈ N, for 0 ≤ k ≤ m− 1 define recursively,

UmF (x; k) = sup
α∈Rd

inf
β∈Rd

}
UmF

w
x+

1

m
β; k + 1

W
+
1

m
(L(β) + �α, βX −H(α))

]
,

(A.2)

given the terminal condition

UmF (x;m)
.
= 2F (x), ∀ x ∈ Rd. (A.3)

See Section 3 for the interpretation of Wn
F and U

m
F as lower values of games.

The key observation is the following lemma, whose proof is deferred to Ap-

pendix C.

Lemma A.1 For an arbitrary sequence xn → x ∈ Rd, we have
lim inf
n→∞ inf

y∈S
W n
F (x

n, y; unk/mJ) ≥ UmF (x; k), k = 0, 1, . . . ,m.

Assume Lemma A.1 holds for the moment. All that remains to show is the

inequality

lim inf
m→∞ UmF (x; 0) ≥ 2 inf

β∈Rd
{L(β) + F (x+ β)}. (A.4)

Indeed, suppose (A.4) is true. Fix an arbitrary j ∈ N, and define Fj(y) .=
j(d(y, Ā) ∧ 1), which is bounded and Lipschitz continuous. Since 1A(y) ≤
exp{−2nFj(y)}, we have

lim inf
n→∞ Wn ≥ lim inf

n→∞ W n
Fj
(0, y0; 0)

≥ lim inf
m→∞ UmFj (0; 0)

≥ 2 inf
β∈Rd

[L(β) + Fj(β)] .
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Exactly as on [14, pages 10-11], a compactness argument shows that

lim
j→∞ inf

β∈Rd
{L(β) + Fj(β)} = inf

β∈Ā
L(β),

and we complete the proof.

Now we show inequality (A.4). The idea is to represent UmF as the value

function of a control problem with the help of the min/max theorem. To

this end, define

C .=
F
θ ∈ P(Rd) :

8
L(β) θ(dβ) <∞

k
and rewrite (A.2) as

UmF (x; k) = sup
α∈Rd

inf
θ∈C

}8
UmF

w
x+

1

m
β; k + 1

W
θ(dβ)

+
1

m

w8
L(β) θ(dβ) +

L
α,

8
βθ(dβ)

q
−H(α)

W]
.

We make the following useful observation, whose proof is deferred to Ap-

pendix C.

Lemma A.2 UmF (·; k) is bounded and Lipschitz continuous for every k. In-
deed

,UmF (x; k), ≤ 2,F,∞, ∀ x ∈ Rd, k = 0, 1, . . . ,m,
and UmF (·; k) is Lipschitz continuous with Lipschitz constant 2LF , where LF
is the Lipschitz constant for the mollifier F .

The next lemma is a version of min/max theorem, whose proof is almost

identical to [16, Lemma 2.2] and thus omitted.

Lemma A.3 For any bounded and lower semi-continuous function f : Rd →
R, we have

sup
α∈Rd

inf
θ∈C

}8
f(β) dθ +

8
L(β) dθ +

L
α,

8
β dθ

q
−H(α)

]
= inf

θ∈C
sup
α∈Rd

}8
f(β) dθ +

8
L(β) dθ +

L
α,

8
β dθ

q
−H(α)

]
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Thanks to Lemma A.2 and Lemma A.3, we obtain

UmF (x; k) = inf
θ∈C

sup
α∈Rd

}8
UmF

w
x+

1

m
β; k + 1

W
θ(dβ)

+
1

m

w8
L(β) θ(dβ) +

L
α,

8
βθ(dβ)

q
−H(α)

W]
= inf

θ∈C

}8
UmF

w
x+

1

m
β; k + 1

W
θ(dβ)

+
1

m

w8
L(β) θ(dβ) + L

w8
βθ(dβ)

WW]
. (A.5)

This last display implies that UmF has an interpretation as the minimal cost of

a stochastic control problem. To simplify the notation, we state the control

problem only for the case k = 0. The control problem will be defined

on a probability (Ω̃, F̃ , P̃ ), and Ẽx will denote that the initial condition
of the state process is x. An admissible control is a sequence {νmj , j =
0, 1, . . . , m − 1}, with each νmj being a stochastic kernel on Rd given Rd.
Given an admissible control sequence, the state dynamics are defined by

S̃m0 = mx and

S̃mj+1
.
= S̃mj + Ỹ

m
j ,

where

P̃
+
Ỹ mj ∈ dy | Ỹ mi , 0 ≤ i < j

�
= P̃
+
Ỹ mj ∈ dy | S̃mj /m

�
= νmj (dy | S̃mj /m).

We then define the value function

ṽmF (x; 0)

.
= inf

{νmj }
Ẽx

m−13
j=0

1

m

}8
L(y)νmj (dy) + L

w8
yνmj (dy)

W]
+ 2F (S̃mm/m)

 ,
where the infimum is taken over all controls {νmj } and resulting controlled
processes {S̃mj /m} that start at x at time 0. Since ṽmF also satisfies the DPE
(A.5) [4, Chapter 8] and terminal condition ṽmF (x;m) = U

m
F (x;m) = 2F (x),

we obtain by induction that UmF (x; k) = ṽmF (x; k) for all x ∈ Rd and k ∈
{0, . . . ,m}.

Define a stochastic kernel νm on Rd given [0, 1] by

νm(dy|t) .=
l
νmj (dy) if t ∈ [j/m, (j + 1)/m), j = 0, 1, . . . ,m− 2
νmm−1(dy) if t ∈ [(m− 1)/m, 1] .
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Let λ denote Lebesgue measure. Then the definition of νm(dy|t) and the
convexity of L imply that

UmF (x; 0)

= inf
{νmj }

Ẽx

8 1
0

8
Rd
L(y)νm(dy|t) dt+

m−13
j=0

1

m
L

w8
Rd
yνmj (dy)

W
+ 2F (S̃mm/m)


≥ inf

{νmj }
Ẽx

8 1
0

8
Rd
L(y)νm(dy|t) dt+ L

m−13
j=0

1

m

8
Rd
yνmj (dy)

+ 2F (S̃mm/m)


= inf
{νmj }

Ẽx

^ 8
Rd×[0,1]

L(y)νm(dy × dt) + L
X8

Rd×[0,1]
yνm(dy × dt)

~

+ 2F (S̃mm/m)

�
,

where νm(dy × dt) .= νm(dy|t)dt. A straightforward weak convergence ap-
proach will be adopted to derive the desired inequality (A.4). Since the

proof is essentially the same as [14, Theorem 5.3.5], we only give a sketch.

For each ε > 0, there exist a sequence of controls {νm,m ∈ N} such that,
for every m, we have

UmF (x; 0)+ε ≥ Ẽx
^8
Rd×[0,1]

L(y) dνm + L

X8
Rd×[0,1]

y dνm

~
+ 2F (S̃mm/m)

�
.

Furthermore, since L is non-negative and F is bounded, we have

sup
m∈N

Ẽx

8
Rd×[0,1]

L(y)νm(dy × dt) <∞

However, since function L is superlinear (Proposition 2.1), it is not difficult

to check that {νm} is uniformly integrable in the sense that

lim
C→∞

sup
m∈N

Ẽx

8
{y:,y,>C}×[0,1]

,y,νm(dy × dt) = 0.

It follows from that proof of [14, Proposition 5.3.2] that {νm} is indeed
tight. Therefore we can extract a weakly convergent sub-subsequence, still

denoted by {νm}, such that νm ⇒ ν for some stochastic kernel ν whose

second marginal is Lebesgue measure [14, Lemma 5.3.4]. We utilize the

Skorokhod representation [6], which allows us to assume (when calculating

the limits of the integrals) that the convergence is actually w.p.1. It follows
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from the uniform integrability of {νm} and the proof of [14, Proposition
5.3.5] that 8

Rd×[0,1]
yνm(dy × dt) P→

8
Rd×[0,1]

yν(dy × dt)

and

S̃mm/m
P→ Z

.
= x+

8
Rd×[0,1]

yν(dy × dt).

Furthermore, it follows from the lower semicontinuity and non-negativity of

L [14, Lemma A.3.12] that, with probability one,

lim inf
m

8
Rd×[0,1]

L(y)νm(dy × dt) ≥
8
Rd×[0,1]

L(y)ν(dy × dt).

Thanks to convexity of L and Jensen’s inequality, we have8
Rd×[0,1]

L(y)ν(dy × dt) ≥ L
X8

Rd×[0,1]
yν(dy × dt)

~

By Fatou’s Lemma and the lower-semicontinuity of L [28], we have

lim inf
n

UmF (x; 0) + ε ≥ Ẽx
^
2L

X8
Rd×[0,1]

yν(dy × dt)
~
+ 2F (Z)

�
.

It is now trivial that the right hand side of the last inequality is bounded

below by

2 inf
β∈Rd

[L(β) + F (x+ β)] .

Since ε > 0 is arbitrary, (A.4) follows readily, which completes the proof.

Appendix B: A large deviation upper bound

In this section, we study a uniform large deviation principle upper bound,

which is essential for proving the key Lemma A.1. We present a proof based

on the weak convergence approach [14]. Alternatively, one can adapt the

methodology in [13].

The following two lemmas will be useful.

Lemma B.1 Suppose S is a Polish space and P(S) is the space of proba-
bility measures on S endowed with the weak convergence topology. Consider
a sequence of random variables µn : (Ω

n,Fn, Pn)→ P(S). In other words,
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{µn} is a sequence of random probability measures. Then {µn} is tight if
and only if the sequence {Enµn} is tight. Here Enµn ∈ P(S) is defined by

(Enµn)(A)
.
=

8
Ωn
µn(ω)(A)Pn(dω)

for every Borel set A in P(S).
Proof. See [23, Theorem 6.1, Chapter 1].

Lemma B.2 Suppose S is a Polish space, {µn} ⊂ P(S), and p(·, ·) a prob-
ability transition kernel. If µn → µ in the τ -topology for some µ ∈ P(S),
then

µn ⊗ p→ µ⊗ p
in the τ -topology. Here µ⊗p denotes the probability measure on S ×S given
by

(µ⊗ p)(B) .=
8
B
µ(dx)p(x, dy)

for every Borel set B ⊆ S × S.
Proof. It suffices to show that8

S×S
f(x, y)µn(dx)p(x, dy)→

8
S×S

f(x, y)µ(dx)p(x, dy)

for every bounded, measurable function f . Since µn → µ in the τ -topology,

it remains to show that 8
S
f(x, y)p(x, dy)

is a bounded and measurable function (over x). The boundedness is trivial,

and the measurability follows from Fubini’s Theorem; c.f. [5, Exercise 18.20].

Proposition B.3 Suppose Y = {Yj , j ∈ N} is a Markov chain that takes
values in a Polish space S. Let p denote the probability transition kernel
of Y , and assume Condition 2.1 holds. Suppose g : S → Rd is a bounded
measurable function, and define H and L as in (2.1) through (2.3). Then

for any fixed α ∈ Rd, bounded and continuous function f : Rd → R, and
sequence xn → x ∈ Rd, we have

lim inf
n→∞ inf

y∈S
− 1
n
logEy

^
e
−�α,�n−1

j=0
g(Yj)Xe

−nf
p
xn+ 1

n

�n−1
j=0

g(Yj)

Q�
≥ If (x),

where

If (x)
.
= inf

β
[f(x+ β) + L(β) + �α,βX] .
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Proof. Let

vn(x, y)
.
= − 1

n
logEy

^
e
−�α,�n−1

j=0
g(Yj)Xe

−nf
p
x+ 1

n

�n−1
j=0

g(Yj)

Q�

= − 1
n
log

8
e
−�α,�n−1

j=0
g(yj)Xe

−nf
p
x+ 1

n

�n−1
j=0

g(yj)

Q
dπny .

Here πny is the joint distribution of (Y0, Y1, . . . , Yn−1), or

πny (dy0, dy1, · · · , dyn) .= δy(dy0)p(y0, dy1)p(y1, dy2) · · · p(yn−1, dyn).

Clearly vn is bounded, thanks to the boundedness of g and f . It suffices to

show that for every sequence xn → x and {yn} ⊆ S,

lim inf
n→∞ vn(xn, yn) ≥ If (x). (B.1)

For an arbitrary ε > 0, the relative entropy representation of exponential

integrals (3.3) [14, Proposition 1.4.2] yields the existence of a probability

measure µn on Sn+1 such that

vn(xn, yn) + ε (B.2)

≥ 1

n
R(µn,πnyn) +

r
α,

8
1

n

n−13
j=0

g(yj)dµ
n

S
+

8
f

xn + 1

n

n−13
j=0

g(yj)

 dµn.
In particular, it is not hard to see that

sup
n∈N

1

n
R(µn,πnyn) <∞. (B.3)

We can factor µn as [14, Theorems A.5.4, A.5.6]

µn(dy0, dy1, · · · , dyn) = µn0 (dy0)µn1 (dy1|y0) · · ·µnn(dyn|yn−1, yn−2, . . . , y0).

Now consider a probability space (Ω̃, F̃ , P̃ ), on which we define a stochastic
process given by

P̃ (Ỹ n0 ∈ dy) = µn0 (dy0)

P̃ (Ỹ nj+1 ∈ dy|Ỹ ni , i = 0, 1, . . . , j) = µnj+1(dy|Ỹ ni , i = 0, 1, . . . , j)

for j = 0, 1, . . . , n− 1. To ease exposition, let

µ̄nj+1(dy)
.
= µnj+1(dy|Ỹ ni , i = 0, 1, . . . , j),
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which is a random probability measure on S. Also define a random proba-

bility measure on S × S by

γn(dx× dy) = 1

n

n−13
j=0

δỸ nj
(dx)× µ̄nj+1(dy),

whose marginals are

(γn)1 =
1

n

n−13
j=0

δ
Ỹ nj

.
= L̃n, (γn)2 =

1

n

n−13
j=0

µ̄nj+1.

Thanks to the chain rule [14, Theorem B.2.1], we have

1

n
R(µn,πnyn) =

1

n
Ẽ

R(µn0,δyn) + n−13
j=0

R
p
µ̄nj+1(·),p(Ỹj, ·)

Q . (B.4)

However,

1

n

n−13
j=0

R
p
µ̄nj+1(·),p(Ỹ nj , ·)

Q

=
1

n

n−13
j=0

R(δỸ nj
(dy)× µ̄nj+1(dz),δỸ nj (dy)× p(Ỹ

n
j , dz))

=
1

n

n−13
j=0

R(δỸ nj
(dy)× µ̄nj+1(dz),δỸ nj (dy)⊗ p(y, dz))

≥ R

 1
n

n−13
j=0

δỸ nj
(dy)× µ̄nj+1(dz)

EEEEEE 1n
n−13
j=0

δỸ nj
(dy)⊗ p(y, dz)


= R(γn,L̃n ⊗ p),

where the inequality follows from the convexity of relative entropy R(·,·).
Thanks to (B.2), and observing that

8
1

n

n−13
j=0

g(yj) dµ
n = Ẽ

8
g dL̃n

8
f

xn + 1

n

n−13
j=0

g(yj)

 dµn = Ẽf

w
xn +

8
g dL̃n

W
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we arrive at

vn(xn, yn) + ε ≥ Ẽ
}
R(γn,L̃n ⊗ p) +

L
α,

8
g dL̃n

q
+ f

w
xn +

8
g dL̃n

W]
.

It suffices to show {γn} is tight. Indeed, if this is true, the same argument as
in [14, Theorem 8.2.8] allows us to extract a weak convergent subsequence

of (γn, L̃n), still indexed by n, such that

(γn, L̃n)⇒ (γ, L̃)

for some stochastic kernel γ on S × S and some stochastic kernel L̃ on S,
and a (random) transition probability function q such that

γ(dy × dz) = L̃(dy)⊗ q(y, dz)

and

L̃q = L̃ (B.5)

hold almost surely. In particular, we have

(γn)2 ⇒ (γ)2 = L̃q = L̃

Note equation (B.5) says that L̃ is indeed the invariant measure for the

transition probability function q. Also observe that

sup
n∈N

ẼR(γn,L̃n ⊗ p) <∞.

This implies the existence of a subsequence, still indexed by n, such that

L̃n → L̃, (γn)2 → L̃

in the τ -topology; see the proof of [14, Lemma 9.3.3]. Therefore,8
g dL̃n →

8
g dL̃

almost surely. Furthermore, thanks to Lemma B.2, L̃n ⊗ p → L̃ ⊗ p in the
τ -topology (hence in the weak-topology) almost surely. The lower semi-

continuity of R(·,·) implies

lim inf
n→∞ R(γn,L̃n ⊗ p) ≥ R(γ,L̃⊗ p).
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It follows readily from Fatou’s Lemma that

lim inf
n→∞ vn(xn, yn) + ε

≥ Ẽ

}
R(γ,L̃⊗ p) +

L
α,

8
g dL̃

q
+ f

w
x+

8
g dL̃

W]
= Ẽ

}
R(L̃⊗ q,L̃⊗ p) +

L
α,

8
g dL̃

q
+ f

w
x+

8
g dL̃

W]
≥ inf

{µq=µ}

}
R(µ⊗ q,µ⊗ p) +

L
α,

8
g dµ

q
+ f

w
x+

8
g dµ

W]
.

Recalling equation (2.4) and letting ε→ 0, we obtain

lim inf
n→∞ vn(xn, yn) ≥ inf

β
[L(β) + �α, βX+ f(x+ β)].

which is the desired inequality (B.1).

It remains to show the tightness of {γn}. All we need is the tightness
of the two marginals, {(γn)1} and {(γn)2}. However, it is not difficult to
observe that

Ẽ(γn)1 = ẼL̃
n =

1

n

n−13
j=0

ẼδỸ nj
=
1

n

n−13
j=0

µn,j ,

where µn,j denotes the j-th marginal of the probability µn, and similarly

Ẽ(γn)2 =
1

n

n−13
j=0

Ẽµ̄nj+1 =
1

n

n−13
j=0

µn,j+1.

Letting , · ,v denote the total variation metric, we have

,Ẽ(γn)1 − Ẽ(γn)2,v = 1

n
,µn,0 − µn,n,v ≤ 2

n
. (B.6)

If we can show {(γn)2} is tight, then Lemma B.1 implies {Ẽ(γn)2} is tight,
which in turns yields the tightness of {Ẽ(γn)1}, thanks to (B.6). Applying
Lemma B.1 once again, we have the tightness of {(γn)1}. Therefore, it is
sufficient to show that {(γn)2} is tight. The proof will distinguish two cases:
m0 = 1 and m0 > 1.

Suppose that m0 = 1. Note that the non-negativity of relative entropy,

(B.3), and (B.4) imply

sup
n∈N

Ẽ
1

n

n−13
j=0

R(µ̄nj+1(·),p(Ỹ nj , ·)) <∞
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It follows from the assumption of uniform recurrency

aνp(·) ≤ p(y, ·) ≤ bνp(·), ∀ y ∈ S,

that

R(µ̄nj+1(·),p(Ỹ nj , ·)) ≥ cR(µ̄nj+1,νp)
for some constant c > 0. It is now easy to derive from the convexity of

relative entropy that

sup
n∈N

ẼR((γn)2,νp) ≤ sup
n∈N

Ẽ
1

n

n−13
j=0

R(µ̄nj+1,νp) <∞,

which further implies the tightness of {(γn)2} since R(·,νp) is a tightness
function on P(S). Note that

Ẽ(γn)2 =
1

n

n−13
j=0

µn,j+1

is also tight, thanks to Lemma B.1.

The general case with m0 > 1 is slightly more complicated. We will give

a proof with m0 = 2, and observe that the proof for m0 > 2 is essentially the

same and thus omitted. Without loss of generality, we show {(γn)2 : n even}
to be tight. The tightness for {(γn)2 : n odd} is similar.

To ease notation, let πn
.
= πnyn , and π

n,e be the marginal distribution of

πn over even coordinates; i.e.

πn,e(dy0, dy2, . . . , dyn−2, dyn) = δy(dy0)p
(2)(y0, dy2) · · · p(2)(yn−2, dyn).

One can similarly define µn,e, or

µn,e(dy0, dy2, . . . , dyn) = µ
n
0 (dy0)µ

n,e
2 (dy2|y0) · · ·µn,en (dyn|yn−2, . . . , y2, y0).

Thanks to the chain rule [14, Theorem B.2.1] and non-negativity of the

relative entropy, we have

R(µn,e,πn,e) ≤ R(µn,πn),

and thus supn
1
n
R(µn,e,πn,e) < ∞. With the same proof as for the case

m0 = 1, we have that

2

n

n
2
−13
j=0

µn,e,j+1
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is tight; here µn,e,j is the j-th marginal of µn,e; i.e.

µn,e,j(dy2j) = µ
n,e(S, . . . ,S, dy2j ,S, . . . ,S).

One can similarly define µn,o as the marginal distribution of µn over odd co-

ordinates, and the same argument can be carried over to prove the tightness

of

2

n

n
2
−13
j=0

µn,o,j+1.

However, observe that

µn,e,j = µn,2j , µn,o,j = µn,2j+1.

We have

1

2

 2
n

n
2
−13
j=0

µn,e,j+1 +
2

n

n
2
−13
j=0

µn,o,j+1

 = 1

2

n−13
j=0

µn,j+1 = Ẽ(γn)2.

This implies the tightness of {Ẽ(γn)2 : n even}, which is equivalent to the
tightness of {(γn)2 : n even}, thanks to Lemma B.1.

Appendix C: Proof of Lemma A.1 and Lemma A.2

Proof of Lemma A.2. That UmF (·; k) is Lipschitz continuous with Lip-
schitz constant 2LF follows trivially by induction, and the terminal condition

(A.3).

As for the boundedness of UmF (·; k), we first show it is bounded from

below. Since H(0) = 0 and L is non-negative, definition (A.2) gives

UmF (x; k) ≥ inf
β∈Rd

}
UmF

w
x+

1

m
β; k + 1

W
+
1

m
L(β)

]
≥ inf

β∈Rd
UmF

w
x+

1

m
β; k + 1

W
= inf

z∈Rd
UmF (z; k + 1)

for every x. It follows that, for every k,

inf
x∈Rd

UmF (x; k) ≥ inf
x∈Rd

UmF (x; k + 1) ≥ · · · ≥ inf
x∈Rd

UmF (x;m) ≥ −2,F,∞.
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It remains to show that UmF is bounded from above. Let β̄ be a subdifferential

of the convex function H at α = 0. Then

L(β̄) = sup
α∈Rd

[�α, β̄X −H(α)] = 0

and the supremum is achieved at α = 0. By definition (A.2) again, we have

UmF (x; k) ≤ sup
α∈Rd

}
UmF

w
x+

1

m
β̄; k + 1

W
+
1

m

D�α, β̄X −H(α)i]
= UmF

w
x+

1

m
β̄; k + 1

W
≤ sup

z∈Rd
UmF (z; k + 1)

for every x. It follows that, for every k,

sup
x∈Rd

UmF (x; k) ≤ sup
x∈Rd

UmF (x; k + 1) ≤ · · · ≤ sup
x∈Rd

UmF (x;m) ≤ 2,F,∞.

This completes the proof.

Proof of Lemma A.1. The proof is by induction. For k = m, we have

unk/mJ = n. By definition,

lim inf
n→∞ inf

y∈S
Wn
F (x

n, y;n) = lim inf
n→∞ inf

y∈S
2F (xn) = lim inf

n→∞ 2F (xn),

and Lemma A.1 follows trivially from the continuity of F .

Assume now the claim holds for k+1. Let f(n)
.
= un(k+1)/mJ−unk/mJ.

Also, let πjy be the probability measure on Sj+1 defined by

πjy(dy0, dy1, · · · , dyj) .= δy(dy0)p(y0, dy1)p(y1, dy2) · · · p(yj−1, dyj)

for every y ∈ S and every j ∈ N.
For an arbritrary α ∈ Rd, let

Umα,F (x; k)
.
= inf

β∈Rd

}
UmF

w
x+

1

m
β; k + 1

W
+
1

m
(L(β) + �α,βX −H(α))

]
.

It follows from the definition that UmF (x; k) = supα U
m
α,F (x; k). Therefore,

all we need to show is that, for every α ∈ Rd and any sequence xn → x,

lim inf
n→∞ inf

y∈S
Wn
F (x

n, y; unk/mJ) ≥ Umα,F (x; k).
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However, for an arbitrary fixed α ∈ Rd, the dynamic programming prin-
ciple implies that

W n
F (x, y; unk/mJ) ≥ − 1

n
log

8
e
−�α,
� (n)

j=1
g(yi)X+f(n)H(α) ·

f(n)�
j=1

r(yj−1;α)
r(yj ;α)

· e−nW
n
F

p
x+ 1

n

� (n)−1
j=0

g(yj),y (n);un(k+1)/m)J
Q
dπf(n)y

= − 1
n
log

8
e
−�α,� (n)

j=1
g(yi)X+f(n)H(α) · r(y0;α)

r(yf(n);α)

· e−nW
n
F

p
x+ 1

n

� (n)−1
j=0

g(yj),y (n);un(k+1)/m)J
Q
dπf(n)y .

Since g is bounded and r(·;α) is both bounded from above and bounded

away from zero by (2.2), it suffices to show

lim inf
n→∞ inf

y∈S
v̄nF (x

n, y; 0) ≥ Umα,F (x; k), (C.1)

where

v̄nF (x, y; 0)
.
= − 1

n
log

8
e
−�α,� (n)−1

j=0
g(yi)X+f(n)H(α)

· e−nW
n
F

p
x+ 1

n

� (n)−1
j=0

g(yj),y (n);un(k+1)/mJ
Q
dπf(n)y .

We claim that inequality (C.1) is a direct consequence of

lim inf
n→∞ inf

y∈S
vnF (x

n, y; 0) ≥ Umα,F (x; k), (C.2)

where

vnF (x, y; 0)
.
= − 1

n
log

8
e
−�α,� (n)−1

j=0
g(yi)X+f(n)H(α)

· e−nU
m
F

p
x+ 1

n

� (n)−1
j=0

g(yj);k+1

Q
dπf(n)y .

Indeed, since f(n) ≤ n, one can always find a compact set K ⊆ Rd such that

xn +
1

n

f(n)−13
j=0

g(yj) ∈ K, ∀ (y0, y1, · · · , yf(n)), ∀ n ∈ N,

thanks to the boundedness of g and the assumption xn → x. It is also

not hard to show by contradiction from the induction hypothesis and the
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continuity of UmF (Lemma A.2) that, for any ε > 0, there exists N(ε) ∈ N
such that for all x ∈ K and n ≥ N(ε),

inf
y∈S

W n
F (x, y; un(k + 1)/mJ)− UmF (x; k + 1) ≥ −ε.

We arrive at

lim inf
n→∞ inf

y∈S
v̄nF (x

n, y; 0) ≥ lim inf
n→∞ inf

y∈S
vnF (x

n, y; 0)− ε

for every ε > 0. It follows that (C.1) is implied by (C.2).

It remains to show (C.2), which is an easy consequence of the uniform

large deviation bound Proposition B.3, Lemma A.2, boundedness of g, and

that eeeef(n)n − 1

m

eeee→ 0

This completes the proof.
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