
Chapter 5. Bayesian Statistics



Principles of Bayesian Statistics

Anything unknown is given a probability distribution, representing
degrees of belief [subjective probability].

Degrees of belief [subjective probability] is updated by data. In
this sense, Bayesian statistical inference is more like a learning
process.

Degrees of belief [subjective probability] can be handled as if it
were classical probability, and therefore, mathematically there is
no difference.



Classical probability as a measurement of uncertainty interpreted
as “long run relative frequency”. Extremely useful (kind of a con-
structive way of understanding uncertainty).

Difficulties in interpreting common-sense statements such as “What
is the probability that it will rain tomorrow?” “What is the chance
that Heat will repeat this season?” “What is Hillary’s chance of
becoming the next President?”



Example: Horse Betting

Amount bet on odds payoff for
Horse horse (in thousands) “probability” against $1 bet
H1 500
H2 250
H3 100
H4 100
H5 50

Total 1000

odd against event E : O(E)
.
=

1 − P (E)

P (E)



The real track odds table, after 17% of track take.

Amount bet on Adjusted Track odds Track payoff for
Horse horse (in thousands) “probability” against $1 bet
H1 500
H2 250
H3 100
H4 100
H5 50

Total 1000

The odds are set after all the money are collected. So the odds
represent a concensus of the bettors’ subjective perception on the
abilities of horses.



Example: Coherence of bets

If you attach probability p to an event E

P (E) = p

if and only if you would exchange $p for a return of $1 if E occurs
and 0 if E does not occur.



Basic Procedure of Bayesian Statistics

1. Model setup. The parameters of interest θ [unknown].

2. Prior distribution. Assign a prior probability distribution to θ,
representing your degree of belief with respect to θ.

3. Posterior distribution. Update your degree of belief with respect
to θ, based on the data. The new degree of belief is called the
posterior probability distribution of θ.

An observed result changes our degrees of belief
in parameter values by changing a prior

distribution into a posterior distribution.



Computing Posterior Distribution: Bayes Rule

Example: Suppose Y has distribution B(n; θ). What can we say
about θ if the observation is Y = y?

1. Assign the prior π. Let π(θ) = 1 for θ ∈ [0, 1].

2. Compute the posterior p(θ|y).

p(θ|y) =
p(θ, y)

p(y)
=

p(y|θ)π(θ)

p(y)

= (n + 1)

(
n
y

)
θy(1 − θ)n−y

∝ θy(1 − θ)n−y.



The graphs of the posterior distribution p(θ|y) for different sets
of (n, y).
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Figure 1: Posterior density p(θ|y) with uniform prior



If we assign a different prior distribution,

1. Assign the prior π. Let π(θ) = 6θ(1 − θ) for θ ∈ [0, 1].

2. Compute the posterior p(θ|y).

p(θ|y) =
p(θ, y)

p(y)
=

p(y|θ)π(θ)

p(y)

= (n + 3)

(
n + 2
y + 1

)
θy+1(1 − θ)n+1−y

∝ θy+1(1 − θ)n+1−y.

then we arrive at a different posterior distribution.



The graphs of the posterior distribution p(θ|y) for different sets
of (n, y).

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

n=5, y=3
n=20, y=12
n=100, y=60
n=1000, y=600

Figure 2: Posterior density p(θ|y) with Beta(2,2) prior
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Digression to Beta distribution [Textbook, Section 4.7]

For α, β > 0, Beta(α, β) distribution has density

Γ(α + β)

Γ(α)Γ(β)
· θα−1(1 − θ)β−1, θ ∈ [0, 1]

and 0 otherwise.

Here the special function Γ is defined as

Γ(α)
.
=

∫ ∞

0
xα−1e−x dx.

1. For all α > 0, Γ(α + 1) = αΓ(α)

2. For all integers n, Γ(n) = (n − 1)!.



Beta(α, β) has

mean =
α

α + β

variance =
αβ

(α + β)2(α + β + 1)

and for α ≥ 1, β ≥ 1, α + β > 2,

Mode [hightest point in density curve] =
α − 1

α + β − 2
.



Back to previous example.

If the prior takes form

π(θ) = Beta(α, β),

then the posterior is

p(θ|y) = Beta(α + y, β + n − y).

Remark: The parameters in the prior, α and β, are often re-
ferred to as the hyperparameters.

Remark: Discussion on n → ∞.



General posterior calculation.

1. π(θ): Prior for parameter θ.

2. y
.
= {y1, y2, . . . , yn}: observations, data.

3. p(y|θ): likelihood function [probability function or density].

4. p(θ|y): Posterior distribution.

p(θ|y) ∝ π(θ) · p(y|θ).

Remark: The normalizing constant in the formula of p(θ|y)
cannot be explicitly evaluated in general, which is the source of
difficulties in Bayesian computation.



Some general relations between prior and
posterior

1.
E[θ] = E[E[θ|y]]

Prior mean of θ = Average posterior mean of θ over data distribution.

2.
Var[θ] = E[Var(θ|y)] + Var(E[θ|y])

Posterior variance of θ is, on average, less than prior variance of θ.



Remark: Adding more data is very convenient in Bayesian frame-
work. [The “learning” aspect of Bayesian statistics].

[1]. Prior ⇒ Data ⇒ Posterior [Prior] ⇒ More Data ⇒ Posterior

[2]. Prior ⇒ All Data ⇒ Posterior

Same Posterior! Since

p(θ|y1, y2) ∝ π(θ) · p(y1, y2|θ) = π(θ) · p(y1|θ) · p(y2|θ)

∝ p(θ|y1) · p(y2|θ)



Abstract Examples

1. Normal data: unknown mean, known variance.

y = {y1, . . . , yn} are iid samples from N(θ, σ2) with σ2 known.

The prior distribution for θ is assumed to be N(µ, τ 2).

The posterior distribution for θ is

p(θ|y) ∝ π(θ) · p(y|θ)

=
1√
2πτ

e
−(θ−µ)2

2τ2 ·
(

1√
2πσ

)n

e
−

∑
i(yi−θ)2

2σ2

∝ e
−1

2

(
1
τ2+ n

σ2

)
θ2−

(
nȳ

σ2+ µ

τ2

)
θ



Thus p(θ|y1, . . . , yn) is N(µn, τ 2
n) with

µn =
nȳ/σ2 + µ/τ 2

n/σ2 + 1/τ 2
,

1

τ 2
n

=
1

τ 2
+

n

σ2

Discussion on precisions and posterior mean for normal data.

Remark: Discussion on n → ∞.



2. Poisson data. y = {y1, . . . , yn} are iid Poisson with rate θ.

Assign prior distribution π(θ) as Gamma(α, β), that is,

π(θ) =
βα

Γ(α)
· θα−1e−βθ, θ > 0.

See [Textbook, Section 4.6] for Gamma distribution.

Note: The β in textbook corresponds to 1/β here.

The posterior distribution of θ is

p(θ|y) ∝ π(θ) · p(y|θ)

=
βα

Γ(α)
· θα−1e−βθ · e−nθθ

y1+···+yn

y1! · yn!

∝ θα+nȳ−1e−(β+n)θ.

Therefore, [Discussion on n → ∞]

p(θ|y) = Gamma(α + nȳ, β + n).



Digression to Gamma distribution: Gamma(α, β)

mean =
α

β

variance =
α

β2

mode =
α − 1

β
, for α ≥ 1.

(a)
χ2(d) = Gamma(d/2, 1/2).

(b)
Exp(λ) = Gamma(1, λ).



3. Exponential distribution. y = {y1, . . . , yn} are iid exponential
with rate θ.

Assign prior distribution π(θ) as Gamma(α, β), that is,

π(θ) ∝ θα−1e−βθ, θ > 0.

The posterior distribution of θ is

p(θ|y) ∝ π(θ) · p(y|θ)

∝ θα−1e−βθ · θne−(y1+···+yn)θ

= θα+n−1e−(β+nȳ)θ.

Therefore, [Discussion on n → ∞]

p(θ|y) = Gamma(α + n, β + nȳ).



Concrete Examples

1. A friend of yours claims to be able to toss a coin and get heads
every time. You suspect he may have a two-headed coin and
convince him to toss the coin 10 times (without examining it).
Your probability of two-headed is 0.01 and the remaining 0.99
is associated with the coin being fair. In 10 tosses, each time he
gets a heads. Now what is your probability of two-headed?

0.01 × 1

0.01 × 1 + 0.99 × (0.5)10
= 0.91



2. How much do I weigh? A scale that is not perfectly accurate is
used. I weighed myself 10 times in succession and the readings
(yi) were:

142 132 133 136 136 140 133 134 139 135

with ȳ = 136. Assume that each reading is distributed as
N(θ, 12) with θ as my true weight [discussion on the variance].

Assume that my prior of θ is N(134, 25) [discussion on how this
prior comes from, and its importance for small sample sizes].
Calculate the posterior.

N(135.1, 1.1)



3. A small pilot study evaluated the effectiveness of an experi-
mental drug. The changes in blood pressure (in mmHg, yi) be-
fore/after drug intake are observed for 16 patients with ȳ = −8.
Assume the change of blood pressure has population distribu-
tion N(θ, 36).

Assume that your prior distribution for θ is N(0, 100) [discus-
sion on this prior distribution]. Find the posterior of θ.

N(−7.8, 2.2)



4. Suppose that for a city in USA it was found that 3 persons,
out of population 200,000, died of asthma, giving a crude esti-
mate of mortality rate in the city of 1.5 cases per 100,000, in a
single year. A Poisson model is often used for epidemiological
data, and we assume that the number of deaths each year from
asthma is Poisson(2θ) with θ being the true underlying asthma
mortality rate per 100,000 persons per year in the city.

Assume that your prior distribution for θ is Gamma(3, 5) [dis-
cussion on this prior distribution]. Find the posterior of θ.

Gamma(6, 7).



Assume now we observe a mortality rate of 1.5 per 100,000 in
ten years for the city, and the population size remains constant
at 200,000 each year [so there are total 30 deaths in ten years].
Assume that the outcome from each year is independent with
distribution Poisson(2θ). What is you posterior now?

Gamma(33, 25).
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Dependence on prior distribution

1. Different prior leads to different posterior. But this difference
tends to be negligible when the data is very informative.

2. For large samples, the Bayesian inference is in a sense consistent
with classical (frequency-based probability) inference, irregard-
less of the prior.

3. Informative priors and non-informative priors.

(a) Informative prior: state of knowledge.

(b) Non-informative prior: “let the data speak for themselves”.
Bayes’ justification of uniform prior in Binomial model and
Laplace’s less clear rationale “principle of insufficient reason”.

Remark: Can prior be wrong?



Building Prior Distributions

Informative priors

Advantages:

1. often analytically convenient (esp for conjugate priors).

2. can take advantage of your informed understanding, beliefs, and
experience.

Disadvantages:

1. not always easy to quantity the state of knowledge.

2. not always appropriate in situations such as public policy.



1. Conjugate priors: The prior and the posterior belong to the
same parametric class. Very convenient to use.

Many examples we have discussed indeed used conjugate prior!

2. Non-conjugate priors.



Non-informative priors

Advantages:

1. sometimes used as benchmark that will not reflect the bias of
the analyst.

2. appropriate when little is known on the underlying processes.

3. useful as public policy priors.

Disadvantages:

1. may lead to improper priors (see below).

2. the definition of knowing little may depend on different param-
eterizations.

3. different interpretation regarding “non-informative” may lead
to different prior distributions.



Improper prior distribution: “Distributions” that integrates to ∞.

For example, suppose y = {y1, . . . , yn} are iid N(θ, 1) with im-
proper prior π(θ) ∝ 1. The posterior is

p(θ|y) = π(θ) · p(y|θ) ∝ e
−(θ−ȳ)2

2/n

or
p(θ|y) = N(ȳ, 1/n)

Remark: For improper prior distribution, the calculation is for-
mally the same as that for proper prior distributions. One has to
be careful that the posterior distribution is proper (which is not
always the case!).



Bayesian Inference

General remarks on Bayesian inference

The posterior distribution p(θ|y) including all the information we
need for statistical inference!

Numerical summaries are still desirable for practical purpose: mean,
mode, median, standard deviations, quantiles, posterior intervals
(confidence intervals), to name a few.

Classical hypothesis testing is in some sense a decision problem – a
solution which is optimal relative to certain criteria [e.g. Neyman-
Pearson Lemma]. While Bayesian frameworks admits genuine in-
ference for hypothesis, and P-value has a much more natural in-
terpretation.



Posterior (confidence) Interval

(1 − α) posterior interval is the interval [θ1, θ2] such that

P (θ < θ1) =

∫

{θ<θ1}
p(θ|y) dθ =

α

2

P (θ > θ2) =

∫

{θ>θ2}
p(θ|y) dθ =

α

2

Remark: Sometimes one uses another definition of (1−α) posterior
interval such that any value outside it is less plausible than any
value in it.

Remark: The interpretation of Bayesian confidence interval is
more satisfactory than that of the classical frequentist one.



How to obtain numerical summaries?

1. Analytical calculation: limited applications.

(a) Example: Is the brain like a muscle – use it and it grows? A
controlled paired experiment with 59 pairs of rats resulted in
a sample mean of 5.72% increase of the cortex weight for the
rats who were given “brain exercise” everyday. Assume that
population percentage increase is N(θ, σ2) with σ = 5.13%,
and a flat prior.

Solution: The posterior distribution of θ is

p(θ|y) = N(ȳ, σ2/n) = N(5.72, 0.672).

Posterior mean, mode, standard deviation, . . ..



The 95% posterior interval is

5.75 ± z0.0250.67 = 5.75 ± 1.96 × 0.67 = [4.44, 7.06].

Some remarks on hypothesis testing.



(b) Example: For each professional football game, experts pro-
vide a point spread as a measure of the difference between
two teams. For n = 672 professional football games during
1981, 1983, and 1984, the discrepancies di between game out-
comes and point spread are recorded. It seems reasonable to
assume that the data points di, i = 1, . . . , n are iid samples
from N(0, σ2). The goal is to estimate σ2. Denote θ

.
= σ−2.

The (improper) prior of θ is assumed to be such that ln(θ) is
flat on R, or

π(θ) ∝ 1/θ.

Remark: This prior is equivalent to π(σ) ∝ 1/σ or ln(σ)
being flat on R.



Solution: The posterior distribution is

p(θ|d) ∝ π(θ) · p(d|θ) =
1

θ
·

(√
θ

2π

)n

e−
θ
2

∑n
i=1 d2

i

∝ θ
n
2−1e−

1
2

∑n
i=1 d2

i ·θ

It follows that θ = 1/σ2 has posterior

p(θ|d) = Gamma
(
n/2,

∑
d2
i/2
)

The data gives n = 672 and
∑

d2
i = 672 × 13.852. Then the

95% posterior interval can be obtained via software as

[1/214.1, 1/172.8].

Therefore the 95% posterior interval for σ2 is [172.8, 214.1],
and the 95% posterior interval for σ is

[13.1, 14.6].



2. By approximation: useful, especially for large-sample inference.

A special example is about Beta distribution. For α, β large,

Beta(α, β) ≈ N

(
α

α + β
,

αβ

(α + β)2(α + β + 1)

)

In general, one usually has a conditional central limit theorem
for large samples.(

θ − E[θ|y]√
Var[θ|y]

∣∣∣∣∣ y
)

≈ N(0, 1)



3. By simulation: commonly used and very flexible. For many
practical problems, it is very difficult to obtain analytical or an-
alytical approximation for the posterior distribution. However
it is often possible to draw samples from the posterior distri-
bution, and use the sample distribution as an approximation of
the posterior distribution.



Example. Suppose the posterior distribution for θ is Beta(6, 4).
The histogram of 1000 draws from this distribution is
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The 25th sample is 0.290, and the 976th sample is 0.856. Therefore the

95% posterior interval is [0.290, 0.856]. Sample mean is 0.601, and sample

standard deviation is 0.146. Note that the theoretical 95% posterior interval

is [0.299, 0.863], mean 0.60, and standard deviation 0.148.



Example. Suppose Y has distribution B(n; θ) and θ has a prior
density

π(θ) =

{
2θ , 0 ≤ θ ≤ 0.5

2(1 − θ), 0.5 < θ ≤ 1

Suppose n = 100, and the observation is y = 60. The posterior
distribution is

p(θ|y) ∝ π(θ)p(y|θ)

∝
{

θy+1(1 − θ)n−y, 0 ≤ θ ≤ 0.5

θy(1 − θ)n+y−1, 0.5 < θ ≤ 1

=

{
θ61(1 − θ)40, 0 ≤ θ ≤ 0.5

θ60(1 − θ)41, 0.5 < θ ≤ 1



The histogram of 5000 draws from this distribution is as follows.
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The 95% posterior interval from simulation is [0.494, 0.684]. Sample mean

is 0.591, and sample standard deviation is 0.0486. Note that the theoretical

95% posterior interval is [0.299, 0.863], mean 0.593, and standard deviation

0.0479.


